
Architecture Potential Analysis:
A Closer Look inside Architecture Evaluation

Bastian Florentz, Michaela Huhn
Institute for Programming and Reactive Systems, TechnicalUniversity at Brunswick, Germany

Email: {florentz,huhn}@ips.cs.tu-bs.de

Abstract— The share of software in embedded systems has
been growing permanently in the recent years. Thus, soft-
ware architecture as well as its evaluation have become
important parts of the development of embedded systems to
describe, assess, and assure sound architecture as basis for
high quality systems. Furthermore, design space exploration
can be based on architecture evaluation. To achieve an
efficient exploration process, architectural decisions need
to be taken into account as part of the architecture. In
this paper, a method for analyzing architecture potential
on the basis of dependencies between quality attributes
is presented and applied. An explicit representation and
correlation of such dependencies provides decision support
for architectural concerns. Not only can suboptimal decisions
be avoided but rather valuable options are highlighted.
Besides the quality of an architecture, knowledge of how
to achieve and even improve the quality can be analyzed.
The latter is the concern of architecture potential analysis
presented in this paper. Furthermore, architectural decisions
can be documented and will be traceable and justifiable
with respect to the development rationale. The ongoing
development process can then be based on dependable and
well documented architectural decisions. The predictability
of change impacts is increased. Thus, time and costs can be
saved by avoiding suboptimal changes.

Index Terms— Embedded Systems, Architecture, Evaluation,
Analysis, Design Space Exploration

I. I NTRODUCTION

High quality and low development effort are two supe-
rior goals for development processes of modern software-
intensive systems. Not just model-based development
processes but also explicitly underlying architectures are
the upcoming way to achieve these superior goals. While
high quality can be attributed to the system architecture
itself, low development effort is mainly based on sound ar-
chitectural decisions. Especially software-intensive high-
quality systems with short innovation cycles can highly
profit from time- and cost-efficient system development.
Thus, not just the established components but their com-
position as well, defined by an adequate architecture, are
important parts of the development process. To assure the
quality of architecture, evaluation has to be performed and
documented to identify the most promising variants and
to profit from experiences made during the development
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process. These experiences in combination with results
of sensitivity analysis build the basis for understanding
architecture evaluation even in case of being a non-
expert regarding some of the quality attributes contained
in the evaluation. Furthermore, the dependencies in the
architecture evaluation can be used to guide changes in
architectures, i.e. applying architecture potential analysis.

Industrial projects (e.g. Florentz [1]) have shown that
the superior goals can be only reached if architecture
documentation and the communication of architectural
decisions are supported. Both are provided by the explicit
representation of dependencies in the architecture evalu-
ation. In this paper, architecture potential analysis is pre-
sented to identify interesting dependencies and correlate
them to get a closer look inside architecture evaluation.

First, a model for representing architecture, its el-
ements, and their relevant properties will be defined.
This model is motivated by the automotive domain and
contains architecture views on software, hardware, and
the mappings of software as well as communication to
hardware (cf. AUTOSAR, Heinecke et al. [2], and EAST-
EAA, Debruyne et al. [3]). It is based on the component-
and-connector architecture viewtype (see Clements et
al. [4]), which allows for application of component-based
approaches besides a concise description of the system
structure.

Second, the quality of architecture variants has to be
evaluated. Therefore, quality attributes have to be defined
to represent architectural requirements and evaluate archi-
tectures with respect to those requirements (cf. Clements
et al. [5]). The compliance of architecture variants to
quality attributes can be evaluated by certain techniques
whose results have to be interpreted to a quality rate
depicting the fulfillment of the architectural goals. A
model for defining architecture goals based on quality
attributes is described in Section VI. The structure of
quality attributes is called QADAG (Quality Attribute
Directed Acyclic Graph). The structure is the entry point
for the architecture potential analysis. Furthermore, it
allows for discussing the rationale of the architecture
development.

Several approaches deal with the evaluation of software
architecture. Ali Babar and Gorton [6], Ali Babar et
al. [7], Bergner et al. [8], Dobrica and Niemelä [9],
Ionita et al. [10], and Grunske [11]) have compared the
different approaches in surveys. According to Abowd et
al. [12], architecture evaluation methods are classified
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into qualitative, quantitative, and hybrid methods. Besides
the integration of several architecture evaluation methods
or techniques and the comparison of several architecture
variants, the approach presented in this paper aims at the
analysis of dependencies between the quality attributes
based on quantitative methods as well as on the quantifi-
cation of qualitative methods.

Third, the evaluation results have to be analyzed with
respect to possible improvements of the quality in case of
changes respectively further development of architecture
variants. In addition to an evaluation that determines the
quality of the architecture, analysis concerned with the
dependencies of qualityon the architecture has to be per-
formed. Besides sensitivity analysis (see Bass et al. [5]),
the Modular Performance Analysis (MPA for short, see
Wandeler et al. [13]) will be applied to investigate depen-
dencies of the performance quality attribute. The results
of the analysis will be interpreted and fed back to the
development process. In this paper, we illustrate how
the evaluation structure, the QADAG, can be used to set
dependencies into relation and to identify potential of an
architecture. Thus, development tendencies can be derived
and discussed to increase the quality of the architecture.
Furthermore, development effort can be saved that may
be lost if invested in unpromising variants.

The rest of this paper is organized as follows: The
terms used in this work are introduced in Section II.
Section III introduces the architecture model which is
based on the component-and-connector (C&C) viewtype
(see Clements et al. [4]). Architecture variants are built on
this model according to three levels of architectural deci-
sions presented Section IV. The impact of those decisions
as well as its predictability are discussed in Section V.
In Section VI, the structuring of quality attributes is
described, which is used in the case study in Section VII
that contains the evaluation result representation as well.
Section VIII presents architecture evaluation sensitivity in
some details that are important for the interpretation of ar-
chitecture potential analysis and the motivation of further
attempts in the development of architecture variants. In
Section IX, dependencies in architecture and its evaluation
are analyzed and correlated to get statements about the
architecture potential. The results regarding some of the
dimensions and the evaluation are discussed. Section X
concludes.

II. T ERMINOLOGY

As our field of interest is slightly more general than
pure software systems, we briefly review the terminology.

Architecture evaluationis directed to software as well
as to system architecture in this paper. Embedded systems,
consisting of hardware short of resources and software
realizing the system functionality, build the center of
interest.

A quality attribute is a quality goal requiring that the
system under consideration at least meets the quality
level given in the requirements. TheQADAG represents
a hierarchical structuring of the quality attributes as a

directed acyclic graph. A quality attribute, containing
scenarios and constraints, may (1) be decomposed into
(sub-)attributes or (2) have an evaluation technique. This
hierarchical composition can represent the Goal-Question
as well as the Factor-Criterion relation of the Goals-
Question-Metric (GQM) approach, Basili [14], respec-
tively the Factor-Criterion-Metric (FCM) approach, Mc-
Call et al. [15]. An example of a quality attribute is the
average bus load that arises from a particular application
in a distributed controller network. The bus load may be
a subattribute of the system performance.

An evaluation techniqueassociated with a quality at-
tribute describes exactly how to evaluate the architecture
regarding that quality attribute taking into account the
attached scenarios and constraints. This corresponds in
some sense to the metrics part of GQM or FCM, respec-
tively.

A scenariospecifies current and future uses of a system
that are relevant for architecture design (cf. Bass et
al. [5]). Hence, it describes the interaction between the
system and stakeholders.

An evaluation resultis generated by applying an eval-
uation technique. The result of an arbitrary unit can be
assigned by aninterpretationto a quality rate.

Thequality rate is a scaled value (0 and 100 %) repre-
senting the ratio of meeting the requirements represented
by a quality attribute. The quality rate is also known as
utility in the economic view of the Cost Benefit Analysis
Method (CBAM, see Bass et al. [5]) in direct association
to the development expenses spent to reach a particular
quality. A quality rate of 100 % represents the best ratio of
meeting the requirements, where as a quality rate of 0 %
represents the worst ratio of meeting the requirements. It
is possible to add a so called K.O.-flag (or just K.O. for
short) to a quality rate. This means that the quality of the
architecture, regarding a proper quality attribute, will not
be acceptable because the system will not be working or
even buildable if the quality rate is 0 %. Thus, improper
variants can be instantly rejected.

Sensitivity analysisprovides information on the de-
pendency of evaluation techniques on the architecture
(or at least parts of it). Sensitivity analysis is the first
step in getting to know about dependencies between the
architecture and its evaluation and dependencies inside the
evaluation itself. In the context of this paper, sensitivity
analysis is not just meant to identify sensitive points
(see Clements et al. [16]) but also to provide explicit
information on sensitivity over a certain range of values,
i.e. dependencies of evaluation results on architecture
artifacts.

A dependencydescribes the architecture and the qual-
ity attributes (actually their evaluation result). Further-
more, dependencies also exist between different quality
attributes. The latter can be seen as indirect dependencies
because they are based on dependencies between archi-
tecture and evaluation in most cases. Furthermore, there
are dependencies between the properties of architectural
elements, e.g. the costs of a more powerful controller
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will be higher than the costs for a less powerful one.
Such dependencies will be necessary to correlate quality
attribute dependencies on architecture elements. Actually,
the interpretation of a raw value to a quality rate can be
seen as one kind of dependency as well although it may
be predefined by a system architect.

An architectural decisiondescribes the determination
of a particular part of the architecture in order to reach
the quality requirements. Architectural decisions can be
made on different levels which have various impact and
predictability (see Section V).

Architecture potentialis meant to be the possibilities
for improving of the evaluation result of a particular
architecture variant (see Florentz [17]). It depends on the
actual decisions made for a variant and is analyzed by
architecture potential analysis presented in Section IX.

III. E MBEDDED SYSTEMS ARCHITECTURE

The architectures to be evaluated in this approach are
embedded system architectures in the automotive domain.
The variability of such systems lies in the different
hardware platforms used to realize a given function ar-
chitecture, the mapping of functions to controllers, and
the mapping of the communication. A brief introduction
to automotive architecture models is given in this section.

The underlying concept is the component-and-
connector viewtype (see Clements et al. [4]). The syntax
and semantics of components and connectors are extended
and described by several metamodels to achieve a well
defined and domain-specific ADL. For a detailed descrip-
tion of the metamodels see Florentz and Huhn [18]. In the
application domain of embedded automotive systems, the
focus lies on functions virtually connected via common
signals (provided and required resp.). These functions -
building up the system functionality - are distributed to
a controller network containing actuators and sensors.
Depending on this function mapping, the communication
of the functions has to be ensured by transmitting signals
across communication lines (e.g. buses); Either between
controllers as well as from sensors to a controller or from
a controller to an actuator.

The class diagram in Figure 1 shows the assignment
of data types to components and connectors on the level
of the metamodel. Which properties to assign depends on
the concrete components and connectors as well as on
the quality attributes relevant in the evaluation process.
Thus, properties may be added or refined during the
architectural development process, because some archi-
tectures may got extended. Thus, more information is
available and necessary for further and more precise
evaluation. In Section VI, examples for properties in
different development phases are provided.

IV. L EVELS OFARCHITECTURAL DECISIONS

Building an architecture is - like the whole software
or systems development process - based on various de-
cisions. Thus, architecture as structure or structures of
a system (cf. Clements et al. [4]) is based on structural

Property

A DataType contains
a formal description of
its meaning and unit.

Which concrete DataTypes

components and connectors.
to apply depends on the

Architecture Component Connector

DataType

* *

*
*

linked to

Property

Figure 1. Architecture properties

design decisions regarding the selection of components
and the way in which to combine them into a system
or subsystem. These decisions are called architectural
decisions. Although the structure should be determined
before building the system, this is not done in a single
step but in an accompanying manner. In this section, levels
of architectural decisions are discussed according to the
point in time to be made as well as their concern in
the application domain of software-intensive embedded
automotive systems (cf. Heinecke et al. [2] and Debruyne
et al. [3]). Top-level decisions build the requirements for
the system to be realized. High-level decisions determine
fundamental principles on which the realization will be
based. Low-level decisions determine how the system
is structured on the fundamental principles to meet the
requirements. Figure 2 shows a sequential order from
top-level architectural decisions down to low-level ones.
Actually, neither the sublevels of each level nor the levels
themselves are totally independent. The sequential order
shows the chronology of the main levels’ decisions. On
the right hand side of Figure 2, a differentiation between
the impact of the levels’ decision and its predictability is
depicted.
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Figure 2. Decision levels

The function architecture, the hardware architecture,
the function mapping, and the communication mapping
provide views on embedded systems architecture as pre-
sented in Section III. In conformance to AUTOSAR
and EAST-EAA, the views support the separation of
software and hardware to decouple the development of the
functionality from the one of controllers. This provides
additional flexibility in system development as well as the
substitutability of hardware components that may become
unavailable over the years.

a) Top-level architectural decisions:They concern
requirements on the system to be realized. With the choice
of the system functionality by determining the function
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architecture, the functional requirements are set implic-
itly, whereas extra-functional requirements are explicitly
represented by quality attributes. The relative importance
of the quality attributes concerns the top level, too. Thus,
what the software or system is meant to do with respect to
which particular quality attributes are top-level decisions.
Top-level decisions are invariant between several variants
to achieve a fair respectively common basis.

b) High-level architectural decisions:They are con-
cerned with the application of architectural patterns and
various technical options in order to meet architectural
requirements represented by main quality attributes. Thus,
high-level decisions are mainly fundamental. They are to
be made early in the architecture development process,
therefore influencing most of the subsequent decisions.
In contrast to top-level decisions, high-level ones may
change over variants to explore the suitability of partic-
ular technologies and patterns to functional and quality
requirements.

c) Low-level architectural decisions:They are clos-
est to the system realization. They deal with the system
decomposition, following the top- and high-level deci-
sions. The first sublevel of low-level decisions is the
choice of hardware components, i.e. controllers, sensors,
actuators, communication lines, and their composition.
After the so-called hardware architecture has been figured
out, the functionality has to be deployed on the hardware,
which is the second sublevel. The decoupling of software
and hardware as one of the main intentions of e.g.
AUTOSAR requires this step of composition. Further-
more, the function mapping determines which functions
will communicate across controller boundaries. The third
sublevel is the communication mapping taking the inter
controller communication needs into account. Differences
in low-level decisions provide most variation points for
architecture variants.

V. DECISION IMPACT AND PREDICTABILITY

Software architecture is the set of design de-
cisions which, if made incorrectly, may cause
your project to be canceled.

Eoin Woods

The decision impact is greatest for earliest decisions,
i.e. top-level directly followed by high-level decisions.
Subsequent ones will depend on these and are restricted
because they have to take earlier decisions into account.
As a consequence, suboptimal early decisions bear many
problems and are the hardest to fix. Top-level decisions
which lead to concrete functional and extra-functional
requirements are the most extensive. Actually, building
a system without making these decisions, i.e. without
requirements, is trivial as every realization of a system
can meet no requirements (cf. Clements et al. [4]). At
this point, the legitimate question arises, how top-level
decisions can have impact and on what. After all, they
actually set the requirements, and thus, have been made
without considering concrete ones. Nevertheless, there are
requirements to be taken into account. The functionality

to be provided and the demanded quality represented by
quality attributes are not given as arbitrary choices by the
management. The superior goal is to build systems which
are realizable, attractive, and competitive on the market.
Actually, top-level decisions are made with this superior
goal in mind. Once made, they are invariant regarding
all architecture variants taken into account. High-level
decisions restrict the options for later decisions. They fill
the gap between the abstract top-level and the concrete
low-level. Consequently, the impact of such decisions is
quite high, hence bad decisions may be fatal for the whole
project. Low-level decisions still have enough impact
to support high quality systems as well as to spoil the
system. Thus, they can be likewise fatal but are easier to
revise.

The predictability of the impact of different decision
level is contrary to the impact itself. The earlier a decision
is made, the more impact it has (cf. Bontempi and
Kruijtzer [19]), the less predictable the impact is. This is
due to the fact that there is a wide range of consequences
such a decision may have on the many options to be
chosen by subsequent decisions. The predictability of the
impact of top-level decisions is based on experiences
concerning the buildability of the systems and tradeoffs of
quality attributes involved (see Florentz [17]). High-level
decisions again fill the gap between top and low-level
decisions. Their impact can be predicted easier because
the results of applying certain architectural patterns or
technologies are well known. Nevertheless, the impact
of low-level decisions is the first to be predictable more
precisely, the reason for which is the strong relation to
the system realization. It can be put into direct relation
to one or more quality attributes (mostly subattributes of
the main attributes). The impact of an architectural low-
level decision can be expressed with means of sensitivity
analysis. The dependency of quality attributes on the
architecture can represent the impact of low-level deci-
sions. These concrete dependencies allow quite precise
predictions.

VI. A RCHITECTUREEVALUATION

The main elements of architecture evaluation are qual-
ity attributes which build the QADAG. Its metamodel is
shown in Figure 3. Each quality attribute may have several
associated scenarios to specify the requirements that have
to be taken into account for architecture development.
Scenarios are used to express what may happen to a
system in its life cycle (see Kazman et al. [20] and [21]).
In most cases, scenarios specify requirements relevant
for architecture design decisions. An example from the
automotive domain is that system architects have to be
aware of late changes for certain hardware components.
Semiconductor suppliers may announce at any time that
some product is discontinued soon and substituted by a
defined set of successor products (which partially differ
in their properties). Another scenario may anticipate the
evolution of the system in future series. To specify further
requirements and restrictions that refer to the architecture
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Figure 3. QADAG metamodel

development and realization, constraints are assigned to
an attribute. An example for a constraint is that only
certain vendors or technologies must be considered.

Further elements of the QADAG are introduced in the
following sections. A case study containing an example
QADAG is presented in Section VII.

A. Evaluation Techniques

Architecture evaluation can be (1) done in early design
phases for a time saving and coarse-grained design space
exploration and (2) redone in later design phases for assur-
ing architecture quality. The granularity of the architecture
models depends on the design phase in which the eval-
uation takes place. Therefore, the evaluation techniques
applied in the evaluation process may change during the
design process to take additional details of the architecture
into account.

Initially, several architecture variants participate in the
evaluation process. An efficient design space exploration
requires a rapid exclusion of inadequate variants. Prob-
lems of imprecise and incomplete architecture and design
details have to be handled by approximating evaluation
techniques performable on the low level of detail avail-
able.

One example for changing respectively growing details
is the communication in a controller network. It depends
on the function mapping as well as the communication
mapping. These architectural parts are variables of an
architecture and have to be build or modeled during
the development process. To keep modeling effort within
bounds, concrete communication details for each variant
are not provided because most of the variants may not
be processed any further. Thus, only abstract information
on the communication is available in early design phases.
In this case, a simple scheduling algorithm of Liu and
Layland [22] is applied to evaluate the network utilization

U =

m∑

i=1

(Ci/Ti)

with U as the utilization,Ci as the time needed for
the transmission of signali, andTi as the transmission
cycle of signali. With given function and communication
mapping, only the width of signals in bit and an estimation
of their cyclic appearance are needed to compute an

approximated average load on known communication
hardware (e.g. CAN with 125.000 bit/s transmission rate).

For evaluation as a mean of quality assurance, more
and more precise details of the communication may be
available. For example, see the performance model which
is based on the system architecture model in Wandeler
et al. [13]. The Modular Performance Analysis (MPA)
expects event stream and resource models as input. Event
stream models contain detailed information on the com-
munication behavior, i.e. the occurrences of events respec-
tively signals. Periodic (maybe with jitter or bursts) and
sporadic occurrences can be included in the evaluation
now. The more conservative approach above has taken
only straight periodic occurrences into account because of
a lack of concrete scheduling information. Furthermore,
a resource model is needed by the MPA describing the
resources available in the controller network. In addition
to the approach above, MPA takes execution times as
reaction of event arrival into account. Thus, not only com-
munication performance but computation performance is
analyzed and therefore evaluated as well. The amount
of required input data reveals that this approach is most
appropriate to limited sets of architecture variants. This
keeps the effort of building the input models for each
of the variants as low as possible. Based on the MPA,
an example how to perform architecture evaluation in
the QADAG is given in Section VII. Scenarios and
constraints are associated to quality attributes containing
an evaluation technique in most cases. In performance
analysis for architecture evaluation, a concrete example
of an event stream can be considered as a load scenario.

B. Interpretations and Data Types

The hierarchical structure of quality attributes, the
QADAG, is based on the composite pattern. Thus, it
has leaf and composite quality attributes. Leaf quality
attributes contain an evaluation technique describing how
to evaluate the architecture regarding the quality attribute.
Composite quality attributes contain a joining technique
describing how to combine several evaluation results to
one. In both cases, the result may be represented as raw
value (a data type instance) of a unit predefined by the
evaluation technique or the quality attribute, e.g. resource
utilization in % as percentage or costs per unit.

Additionally, a quality rate expression is useful, which
is a data type instance. A quality rate is an interpretation
of the raw value to a scale from 0 to 100 %. It de-
notes the architecture variant’s meeting of a requirement
represented by a quality attribute. While raw values are
less expressive for people in an architecture development
process, who are not close to a particular aspect of archi-
tecture, the interpretation to a quality rate can be seen as a
common communication basis for architectural decisions.
The view graph in Figure 4 is an example for the hardware
costs interpretation to the quality rate. A higher quality
rate means better meeting of the requirements. Thus,
higher costs are interpreted to lower quality regarding the
hardware costs quality attribute taking into account the
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Figure 4. Interpretation of hardware costs

overall hardware costs of one unit of the system to be
built. Some quality attributes of the hardware itself may
be increased with rising costs. However, this is not part
of this interpretation but of e.g. a performance quality
attribute.

C. Evaluation Hierarchy and Joining Techniques

The QADAG is not restricted to be a tree because
multiple occurrences of the same quality attribute as
subattribute and additional restriction for other quality
attributes should be allowed. For example, some perfor-
mance quality attribute can be demanded to be of certain
quality to support a modifiability quality attribute. Lack-
ing quality would lead to a rejection of the architecture
variant by the modifiability attribute. Modifiability needs
performance reserves in case of adding new functional-
ity. Thus, the quality of the performance attribute may
influence the modifiability.

A composite quality attribute retrieves its quality result
from its subattributes. It has no evaluation technique
but a joining technique attached. This joining technique
describes how to retrieve the quality result from the
results of the subattributes. In most cases, a weighted
and normalized summation will be applied to get a result
based on several quality rates. Thus, a weight has to be
assigned for each subattribute to the superordinate quality
attribute. These weights are implicitly contained in the
joining technique instance in Figure 3. We do not restrict
the sum of the subattribute weights to be 1. This is not
necessary because the weighted sum of the quality results
will be normalized.

In some cases, the joining of non interpreted raw
values may make sense. Hardware costs are one example,
because additional expenses in one part of the architecture
may be compensated by savings in other parts. Obviously,
costs are substitutable along architecture elements, tech-
nical properties like RAM or ROM capacities are not.
Our experiences in industrial projects have shown that
the interpretation of raw values for joining should be
considered as late as possible, although an interpretation
can be useful for documentation anyway. But an early
interpretation means early loss of result details because
of the generalizing character of the interpretation. Thus,
the coherence of results which may be substitutable,
like costs, is lost and may lead to a disqualification of
architecture variants, that taken as a whole are promising.

(I)

NAV

113 MIPS

MMI
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NAV

260 MIPS

RAD

NAV

260 MIPS

MMI

22 MIPS
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130 MIPS72 kbps 72 kbps

(III)(II)

Figure 6. In-Car Radio Navigation System architectures (cf. [13])

VII. E VALUATION CASE STUDY

The focus of this case study lies on performance eval-
uation. Therefore, an example is given (see Figure 5) on
how to structure performance quality attributes. Actually,
the forming of the QADAG depends on the application
domain and partially (for refinement) on the progress
of the architecture development. Costs, performance, and
modifiability are first class quality attributes to show the
benefits of this approach. The rectangles with a double
outline above the separator represent composite quality
attributes, the singly outlined rectangles below the sepa-
rator represent leaf quality attributes which have directly
associated evaluation techniques not shown in the figure.
The meaning of the separator is addressed in Section VIII.

Although the performance of computation hardware
(devices) and of communication hardware are related,
they can separately be considered. Thus, a more detailed
analysis can be applied on the architecture based on more
specific evaluation results. The simple scheduling algo-
rithm of Liu and Layland [22] (s.a.) can be used to assess
bus utilization as well as RAM and ROM utilization,
although RAM and ROM are utilized nearly statically in
the automotive domain. The CPU usage is quite a bit more
difficult to evaluate. Especially in early design phases,
only few details of resource requirements and scheduling
are available. Thus, the CPU usage evaluation is mainly
based on an expert’s know-how. With growing amount
of detailed information, approaches like the MPA can
be applied in the evaluation process. Figure 6 contains
architecture Variants I, II, and III of the In-Car Radio
Navigation System introduced and analyzed in Wandeler
et al. [13] (actually, I is C, II is D, III is E in the original
case study).

A. Evaluating Costs

As can be seen in Figure 6, the architecture variants
differ in the underlying hardware architecture. The im-
plementation of the functions is assumed to be invariant
regarding the controllers on which they are mapped. Thus,
software costs are considered without details. Variants I
and II are based on a controller network which leads
to additional costs in contrast to Variant III based on
a single controller. Furthermore, the computation power
will serve as basis for controller costs. Actually, the prices
are contrived which does not effect the presentation of
the possibilities of this approach. Moreover, prices will
change over time anyway. Thus, the documentation of
them is important to understand back-dated architectural
decisions.
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The variants prices are :
Variant I: e16 (e10 + e1 + e5 (network))
Variant II: e14 (e4 + e5 + e5 (network))
Variant III: e10

The interpretation of hardware costs is depicted in Fig-
ure 4. Thee 10 variant is most affordable,e16 the least
affordable. Thus,e10 will be interpreted to 90 % quality
rate. Actually,e16 is still affordable as the interpretation
will be 40 % quality rate.e14 is interpreted to a quality
rate of 60 %.

B. Evaluating Performance

MPA is based on the communication behavior of the
system. While multimedia mass data is not considered in
the evaluated architectures (there are additional commu-
nication lines for such data), the delay of communication
and the following computations are most interesting.
Delay in the communication will lead to delay of the
computation start. Furthermore, the computation itself
will take time, too. The TMC (Traffic Message Channel)
may cause computation-intensive reactions of the system,
i.e. recalculation of the route. The driver will tolerate
some delay for such calculations, but in case of a change
of the radio volume, the reaction should be immediately
noticeable to save the drivers patience. Thus, the system
performance can be measured by the reaction latency.
MPA works on use case scenarios (for communication
behavior) represented by message sequence charts with
detailed information on time and computation power
consumption of the messages and following computations.
In combination with knowledge about the hardware re-
sources, an MPA model (performance model) can be cre-
ated for each architecture variant. This model allows for
analyzing (evaluating) the performance of the respective
variant. MPA results state that the requirements are met
by all architectures. Thus, a 100 % quality rate is assigned
for each variant (see Wandeler et al. [13]). The benefits
of integrating the MPA are presented in Section IX, in
which the results are considered in detail.

C. Evaluating Modifiability

Sufficient performance for all variants and the costs
quality attribute in mind qualify the least expensive vari-
ant to be realized. This is no surprise and represents most

business strategies. The evaluation of the architecture
modifiability shows the benefits of taking several quality
attributes into account. A growth scenario attached to the
modifiability quality attribute defines that the architecture
should be reusable in product lines targeted at lower
budget. Thus, the navigation system can be left out of
the architecture while radio and MMI (Man Machine
Interface) are still necessary. Let Variants II and III be
favorites because of their low costs. If the navigation
system is left out, the hardware architecture of Variant II
will be scaled down to a single controller architecture.
Variant III already contains only one controller. The
performance will not be affected negatively because the
computation-intensive navigation system is no longer part
of the system (scalability:ok). Variant II can get rid of the
unused capacities and therefore costs (saving potential:
e9), Variant III can not (saving potential:e0). Thus,
Variant II without navigation system is onlye5 which is
half the price of Variant III.

D. Result Representation

Next to specific diagrams representing e.g. technical
evaluation results, a summation of the results can be
represented with respect to the QADAG. Tables I, II,
and III show the essential information to trace the over-
all results: name of the quality attribute (gray), quality
rate (interpreted value), raw value (where available), and
weights of subattributes in case of a composite quality
attribute with weighted summation as joining technique.

An explicit and detailed documentation of the eval-
uation is not covered by this representation of course.
But for understanding the reasons why some variant got
qualified, the table representation is quite efficient.

Furthermore, the tables are the basis for discussion
regarding the importance of quality attributes, i.e. their
weight. As seen above, the most cost-efficient Variant III
is ruled out by the more expensive Variant II. The weights
reflect the requirement for at least partial reuse of the
architecture in other products or product lines with the
background of saving expenses for additional system de-
velopments. Omitting the modifiability, Variant III would
be the most promising one.
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Variant I
80 %
-

50 100 50
costs performance modifiability
70 % 100 % 50 %
- - -

100 100 200 100 100 100
HW costs SW costs devices com sav.pot. scalab.

40 % 100 % 100 % 100 % 0 % 100 %
e16 - - MPA: ok e0 ok

100 100 50 150
devices com mem CPU (weights)

- - 100 % 100 % QA name
e11 e5 - MPA: ok quality rate

result

TABLE I.
ARCHITECTUREEVALUATION VARIANT I

Variant II
95 %
-

50 100 50
costs performance modifiability
80 % 100 % 100 %
- - -

100 100 200 100 100 100
HW costs SW costs devices com sav.pot. scalab.

60 % 100 % 100 % 100 % 100 % 100 %
e14 - - MPA: ok e9 ok

100 100 50 150
devices com mem CPU (weights)

- - 100 % 100 % QA name
e9 e5 - MPA: ok quality rate

result

TABLE II.
ARCHITECTUREEVALUATION VARIANT II

Variant III
86.25 %

-
50 100 50

costs performance modifiability
95 % 100 % 50 %
- - -

100 100 200 100 100 100
HW costs SW costs devices com sav.pot. scalab.

90 % 100 % 100 % 100 % 0 % 100 %
e10 - - MPA: ok e0 ok

100 100 50 150
devices com mem CPU (weights)

- - 100 % 100 % QA name
e10 e0 - MPA: ok quality rate

result

TABLE III.
ARCHITECTUREEVALUATION VARIANT III

Weights and Impact
25 % 50 % 25 %

50 100 50
costs performance modifiability

12.5 % 12.5 % 33.3 % 16.6 % 12.5 % 12.5 %
100 100 200 100 100 100

HW costs SW costs devices com sav.pot. scalab.
6.25 % 6.25 % 8.3 % 25.0 %

100 100 50 150 impact
devices com mem CPU weights

QA name

TABLE IV.
WEIGHTS AND IMPACT
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HW costs (EUR)

(%)

difference of EUR 3
=> quality change of
40 percentage pointsHW costs: EUR 16

=> 40% quality rate

difference of EUR 6
=> quality change of
10 percentage points

quality rate

50

105 15 20

100

Figure 7. Interpretation of costs

VIII. E VALUATION SENSITIVITY AND CHALLENGE

In this section, the sensitivity of architecture evaluation
is discussed in detail. We will highlight the difference
between structural impact and architectural impact on the
evaluation results. The structural impact describes the im-
pact of the evaluation structure, i.e. the hierarchy of qual-
ity attributes. Whereas the architectural impact describes
the sensitivity regarding architecture artifacts. Figure5
draws a line between composite quality attributes, which
build the hierarchy and are accountable for the structural
impact, and leaf quality attributes. The latter describe
how to evaluate an architecture and are accountable for
the architectural impact. To give a concrete statement
about the evaluation sensitivity, both impacts have to be
taken into account in combination. Because of competing
impacts, which actually lead to tradeoffs, the overall
quality requirements may not be reached. To describe a
reachable level of quality, which we call thechallenge
of an evaluation, those tradeoffs have to be analyzed and
made explicit. The challenge is addressed at the end of
this section.

A. Structural Impact

To make it short, the structural impact can be consid-
ered as the absolute weight of a quality attribute if the
joining of partial results is proportional. (Otherwise, the
structural impact can be quite difficult to express.)

Table IV presents the absolute weights based on the
relative importance of the quality attribute. We mention
this structural impact not just because it is necessary to
align different sensitivities. Building a QADAG means
building the hierarchy of quality attributes. With growing
width, the share of a single quality attribute’s impact
becomes smaller. With growing depth, the share of impact
has to be shared again by the respective subattributes.
These facts should be considered for building a QADAG.
Our experiences have shown, that disregarding these facts
by building a purely organizational arrangement of quality
attributes, the absolute weight may not represent their ac-
tual importance. Thus, the weights have to be determined
in order to represent the importance of a quality attribute
like mentioned in Section VI-C. Otherwise, the evaluation
results may be corrupted.

Nevertheless, the weights are usually determined in a
stakeholder meeting. And their designation can be quite
abstract. To avoid this, the Analytic Hierarchy Process

(AHP) supports determining the weights based on intu-
itive statements about the relative importance between two
quality attributes. For more information on the AHP see
Zhu et al. [23].

B. Architectural Impact

Sensitivity of architecture evaluation describes the fact
that the evaluation, or rather its result, is dependent on
architecture artifacts. The description of the sensitivities
can be quite difficult, not just because of the big amount of
sensitivities or resulting tradeoffs. The most challenging
and interesting fact is that sensitivities are not just existent
or inexistent (see Clements et al. [16]). Dependent on the
actual architecture variant, the evaluation result may be
influenced in different ways by changing the architecture,
e.g. by touching sensitive parts of the architecture.

The description of sensitivity can be quantified in the
embedded domain. For example, changing an architecture
variant, which is inured to minor changes, may have less
effect than changing one in a more critical area regarding
a stakeholder’s needs. This means the sensitivity depends
on the actual architecture variant. Figure 7 illustrates this
issue based on a costs interpretation. Because of the non-
linear dependency between costs and quality, the actual
value of the variant is a matter of particular interest.
The sensitivity, or rather its architectural impact, strongly
depends on the actual variant and may be considerably
different for other variants.

C. Challenge

According to the impact of architectural decisions and
the structural and architectural impact of changes on the
evaluation results, it is useful to describe how challenging
it may be to fulfill the overall quality requirement. A
stand-alone quantified quality result alone misses expres-
siveness. Quantified results are expressive only if (1) com-
parative results of other architectures are available or
(2) a reference value respectively a scale, which represents
the reachable quality result, can be given. Actually, to
reach the quality of this reference is the challenge of
an evaluation and to provide this reference is one of the
biggest challenges for sensitivity analysis. Tradeoffs are
the key for analyzing the challenge because many strong
tradeoffs can make it quite difficult to reach a certain
level of quality. Low quality results may be caused by
very challenging requirements and not necessarily by bad
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architecture decisions. The challenge is a very important
means of communication between stakeholders. It can be
used to explain why some system may not be realizable
on an overall satisfactory level.

IX. A RCHITECTUREPOTENTIAL ANALYSIS

Architecture potential analysis is motivated by the
need for knowledge of the insides of the evaluation,
i.e. dependencies of the architecture quality. With this
knowledge, design space exploration can be performed
more efficiently. Without this knowledge, the evaluation
of a new architecture variant has to be performed to
check its quality, which can be quite expensive. Known
dependencies can guide the development and changes
of an architecture and save development resources. Fur-
thermore, they help to explain and document architec-
tural decisions. Documentation is quite important because
dependencies may change over time. For example, the
dependency between costs and performance depends on
the market and available technology. Over the years,
the costs for performance (i.e. powerful hardware) will
drop as well as the willingness to pay will do. But
the need for performance will rise in order to provide
additional functionality. This is just a small example for
the complex and changing dependencies. To actually ana-
lyze architecture and its evaluation regarding its potential,
i.e. the possibility of increasing the overall quality of
an architecture, the dependencies have to be taken into
account seriously.

In this section, we present how to identify important,
i.e. to be analyzed, dependencies. The In-Car Radio
Navigation System of Wandeler et al. [13] is taken as
case study for the architecture potential analysis. After
interpreting the results, we discuss how to benefit from
the uncovered architecture potential.

A. Identifying Important Dependencies

Architecture quality is represented by quality attributes
and eventually by the quality rate which, after all, is the
interpretation of evaluation results. Thus, interpretation
instances as dependencies of quality rates on evaluation
results need to be taken into account first. Either a
promising tradeoff is already known or tradeoff analysis
(e.g. the Architecture Tradeoff Analysis Method, ATAM,
see Bass et al. [5] and Clements et al. [16]) has to be
performed. For the case study, the tradeoff between costs
and performance has been chosen. The legitimate question
arises how to correlate dependencies without common
reference. In case of costs, the interpretation in Figure 4
is based on the raw value of the evaluation result which
is costs ine . Performance in terms of user noticeable
quality is expressed in system reaction delay. Because
of various use cases, or in this case rather meaning user
interactions, the interpretation has to be given with respect
to the particular timing requirements of a particular use
case. Figure 9 depicts the common interpretation of delay
based on the expectations of the user. The tolerance limit,

which represents 100 % of the timing requirements, is
applied as point of reference for all use cases.

Although the existence of a costs performance tradeoff
is well known, information on how to correlate those
quality interpretations is quite rare. Especially a relation
between expected delay with respect to various use cases
and costs is not available without further analysis. Hence,
performance analysis is just a first step of getting a
link in a chain of dependencies needed for correlation.
Furthermore, the performance analysis results themselves
determine additional dependencies to be investigated. As
we already know without performance analysis, the MPA
provides results describing dependencies in the form of
delay of particular use cases in milliseconds over proces-
sor speed. While delays regarding various use cases can
easily be aligned at the user’s tolerance limit (see above),
the dependency of processor speed on costs still needs to
be investigated. Actually, this can be done by inquiring a
business department and sifting through some price lists.
In the following section, the steps to correlate the quality
interpretations via a chain of dependencies are performed
on the case study.

B. Performing the Analysis

The MPA has shown that there is no need to improve
the performance quality of the architecture variants. All
variants already meet the requirements. Sensitivity analy-
sis is needed to uncover sensitivities of the evaluation re-
sults regarding changes of an architecture variant. Because
sensitive points (cf. Clements et al. [16]) and tradeoffs are
already known, the actual dependencies between quality
attributes have to be taken into account as will be shown
in the subsequent paragraphs.

Again, the MPA is applied for analyzing the perfor-
mance. One of the results is shown in Figure 8. This
result is taken from Wandeler et al. [13] and will be input
for further considerations. The x- and z-axes represent
the processor speed available in Variant II. The y-axis
represents the delay of handling a TMC (Traffic Message
Channel) use case, which describes the system reactions
on the reception of a TMC message. Actually, the delay
is a (mathematical) function over the processor speed.

The evaluation is based on costs and performance.
While performance is sufficient in all variants, costs
reduction is the center of interest. But, costs and per-
formance quality attributes are reciprocally influenced
by changes in the architecture. MPA provides analysis
results for the favorite Variant II as shown in Figure 8.
The delay will grow if processor speed is decreased.
More delay means worse interpretation, i.e. lower quality
rate. In general, higher performance of a CPU is the
equivalent to higher costs. Thus, in case of higher perfor-
mance, the results of the cost quality attribute becomes
worse. These facts are combined to uncover architecture
potential. Figures 9 to 14 represent input, intermediate
steps, and output of the analysis for architecture potential.
Following, the rationale and meaning of each coordinate
system is explained in detail.
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Figure 8. MPA result (Variant II), see [13]

user’s tolerance limit
(%)

50

100

100%50% 150% expected delay (%)

quality rate

Figure 9. Interpretation of expected delay with user’s tolerance limit as
reference point

Figure 9: Interpretation of expected delay with user’s
tolerance limit: The quality rate interpretation of the
expected delay and the user’s tolerance limit are shown in
this coordinate system. The delay is given as percentage
because the absolute delay depends on the complexity
of the task to be solved. For example, the user will
be more patient at complex navigation tasks than at
simple volume changes. Thus, the actual requirements
depend on the task’s complexity. As a common basis,
the requirements are taken into account with respect to
the respective complexity. The interpretation of hardware
costs is already given in Figure 4.

Figure 10: MPA result as delays of MMI/RAD pro-
cessor speed in various scenarios (Variant II):This figure
contains the MPA result for architecture Variant II. It rep-
resents the dependency between the MMI/RAD processor
speed and the delays of some scenarios, i.e. use cases. The
dependencies are nearly uniform, which is true for most
delays observed by MPA in the case study. Thus, this
result is taken as representative to save analysis effort.
For more precise results, this analysis has to be performed
for each of the architecture variants, each of the scenarios,
and each of the processors deployed in a variant.

Additionally, the user’s delay tolerance limit is given
explicitly in the coordinate system. This is an important
piece of information in order to be able to map costs to
delay via the processor speed. Because the quality rate
interpretation for delay is given in percent of expected
delay and the dependency on processor speed is given as
absolute value in milliseconds.

user’s tolerance limit

(TMC)

(other)40

500(TMC)

(other)20

A2V: audible and visible change
1000

7550 100

delay (ms)

125

delays between

TMC: TMC receive and visible changes

K2A: key press and audible change

(TMC)

(K2A)

(A2V)

~40% ~60% ~80% ~100%
(MIPS)

processor speed

Figure 10. MPA result as delays of MMI/RAD processor speed in
various scenarios (Variant II)

(MIPS)10050 150 200
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costs
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260
processor speed

Figure 11. Costs for processor speed (basis for costs-delaydependency)

Please note that the requirements given in [13] are
raised to design the analysis more expressive.

Figure 11: Costs for processor speed:The depen-
dency of processor speed on costs is depicted in this
system. Such information has to be obtained from the
business/purchasing department and may change over
time. Thus, it is quite important to document such infor-
mation for later reconstruction of architectural decisions.

This dependency is necessary in architecture potential
analysis because the costs interpretation needs to be
correlated with the performance interpretation via the
MPA results. Hence, a dependency between costs and the
MPA results has to be identified. While the delay will be
correlated with respect to the user’s tolerance limit, the
processor speed needs to be put into relation with costs.
This is the rationale of the costs performance tradeoff.
If there was no dependency between costs and processor
speed, i.e. the hardware performance, this tradeoff would
not exist.

expected

processor
solution

simple network
solution (+ 5 EUR)

single

105 15 20 costs(EUR)

50

100

delay (%)

Figure 12. Costs-delay dependencies left: without network, right: with
network
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Figure 13. Architecture potential based on costs-delay dependencies
without network

quality rate
(%)

HW costs QR

joined result

max. current favorite (= Var. II)

50

5 15 20 HW costs (EUR)

100

expected delay (%)

expected delay QR

2550
10

100

Figure 14. Architecture potential based on costs-delay dependencies
with network

Figure 12: Costs-delay dependencies, left hand side:
without network, right hand side: with network:The
dependency between costs and delay can be derived via
the processor speed, because the dependencyof processor
speed on costs and the dependency of delayon processor
speed are already known. The graphs show the costs of the
hardware (without and with network) that keep the delay
in the scope of the user’s expectations. Until now, only
processor costs have been taken into account as hardware
costs. Therefore, a second dependency containing the
network costs is shown in the coordinate system. This
is necessary, because the interpretation of costs takes
network costs into account. Although they are invariant
regarding a changes of the processor performance, they
are not to be neglected. Thus, the additional dependency
is given.

The represented dependencies are necessary to correlate
hardware costs and (expected) delay on the x-axis of the
coordinate systems in Figures 13 and 14. In these coordi-
nate systems, the architecture potential, which to uncover
and express was the main intention of the analysis, is
depicted.

Figure 13 and 14: Architecture potential based on
costs-delay dependency:Both systems contain the same
type of analysis result. Because of differences in Vari-
ants II and III (with and without network), the analysis
results have to be presented separately. Thus, the position
of the expected delay quality rate is shifted to the right
in respect to the hardware costs quality rate in the second
system (Variant II). This is necessary to regard network
costs. The third graph in both systems represents the
partial quality result based on the weighted summation of
both quality rates. The distance to the maximum of this

graph (see the arrow) presents the architecture potential
for the variants. The results are discussed in detail below.

C. Exploiting Architecture Potential

The analysis of architecture potential uncovers not
just potential regarding particular quality attributes. The
documentation of the analysis results helps to express
architectural knowledge. Besides the directly contained
information, it can be justified to derive indirect results
on their basis.

First, the costs performance tradeoff can be considered
based on the complete sensitivities instead of just sensitive
points. Hence, not just the tradeoff itself but the impact
of an architectural change is known. It can be predicted
quite precisely by taking the intensity of the change
into account. Furthermore, the tradeoff can be discussed
regarding particular architecture variants for which its
effects can be quite different.

Second, an extended view on the architecture rationale,
represented by the quality attributes, is provided. In the
coordinate systems in Figures 13 and 14 is shown that the
overall architecture potential regarding saving expenses
is significantly lower for the network based solution.
The single controller solution provides more potential
on this score. The reason for this are the costs for the
network, which are not considered in a processor down-
scaling of the currently available architecture variants.
Actually, these costs push the modifiability result because
the system can be modified during design time and even
life time without directly affecting the controllers. Thus, a
low-price version without navigation system can be easily
realized. Moreover, the system can be offered with an
optional navigation system (which can be refit later).

While more architecture potential is predicted for the
single processor solution, the network solution already
made it in the evaluation. To use the identified architecture
potential, further considerations should be done. The iden-
tified potential is directed to saving expenses while keep-
ing the performance up. Modifiability is not yet included.
Thus, the predicted improvements by downsizing one
controller are carried forward to the evaluation to consider
modifiability. Actually, this procedure is much simpler
than extending the analysis for architecture potential. If
the feedback reveals ambiguous results, the analysis can
still be extended.

The result of a changed Variant II will be raised to ap-
proximately 97.8 %. The result of an even more changed
Variant III will be raised to approximately 86.7 %. This
seems to be surprising at first, because Variant III may
be less expensive. But, the original evaluation favored
Variant II already because of its higher modifiability,
which has not been considered in the analysis for architec-
ture potential. Furthermore, device costs have significantly
less structural impact than the CPU performance in this
case study (6.25 % vs. 25.0 %, see Table IV) and the
architectural impact of costs is limited for Variant III
as exemplarily depicted in Figure 7. Thus, although
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Variant III has more potential, this is not sufficient to
make up the advantage of Variant II.

The nearly optimal fulfillment of the requirements by
a changed Variant II do not motivate building additional
variants or making further attempts of improvement. At
most down-scaling of the remaining controller of Vari-
ant II may be taken into account in this special case to
achieve even more improvement. Variant III will not be
regarded any more.

In a less definite case study, to know about the chal-
lenge of the evaluation (see Section VIII) could be helpful
to determine whether further attempts are promising.

X. CONCLUSION

Concise architecture and architecture evaluation models
are necessary to perform analysis of architecture potential.
Expressing analysis results provides a closer look inside
the architecture evaluation which is useful for document-
ing architectural decisions and knowledge as well as for
design space exploration. This closer look supports the
quick, cost-efficient, and traceable development of system
architectures for dependable embedded systems.

To show applicability of this approach in several
domains, a special performance analysis called MPA
has been included. The results have been the input for
architecture evaluation and for analysis of architecture
potential. Furthermore, the results of analysis methods
like the ATAM (see Bass et al. [5]) can be used to identify
sensitive points and tradeoffs to be explored in detail.

We have shown, that simple architecture evaluation
may not be sufficient for developing high quality archi-
tectures. But in combination with sensitivity analysis, the
potential of an architecture can be analyzed, presented,
and integrated in the development. Thus, unused potential
can be uncovered, promising changes can be highlighted,
and unprofitable development effort can be avoided.

Several approaches—originally dealing with perfor-
mance analysis—are extended to support design space
exploration (see Wandeler et al. [13], Henia et al. [24]).
Moreover, free resources and capacities to handle un-
expected changes and even imprecise requirements can
be detected with such approaches (see Hamann and
Ernst [25]). The analysis of architecture potential can be
considered as design space exploration regarding architec-
tural decisions introduced in Section IV. An integration
with approaches like [13] and [24] has turned out to be
quite promising as the results of this work and further
attempts have already shown. Furthermore, the integration
of hardware problems like cable harness layout (see
Gemmerich et al. [26]) for decreasing costs, weight, and
installation effort is an interesting field of ongoing work.

Besides the integration of approaches for particular
subdomains like performance and layout, an automated
architecture improvement support is desirable. It is still
a long way to automated generation of architectures,
however, the reuse of components, subarchitectures, and
architecture knowledge is highly interesting. Especially

with availability of component libraries, design space ex-
ploration and automated decision support become realistic
mid-term objectives.
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