
Supporting UML Sequence Diagrams with a
Processor Net Approach

Tony Spiteri Staines
Department of Computer Information Systems, University of Malta, Malta

Email: toni_staines@yahoo.com

Abstract— UML sequence diagrams focus on the interaction
between different classes. For distributed real time
transaction processing it is possible to end up with complex
sequence diagrams, containing messages related to system
processes. It is difficult to examine alternative combinations
of message passing. A solution is to translate these diagrams
into an executable processor net model. This is based on the
‘actor model’, Petri net concepts and higher order net
constructs. A case study taken from a flight reservation
scenario is introduced and used to create a processor net
model. This approach offers various advantages like
identifying the main processes, executable model creation,
verification, formalization, defining schemas and
performance analysis.

Index Terms— UML, processor net, Petri nets, modeling,
verification, performance estimation

I. INTRODUCTION

The UML notations have gained widespread use for

designing different applications ranging from embedded
systems [3],[10] to distributed information systems.

Requirements engineering is based on formal
verification, modeling, performance estimation and
performance engineering. These are based on different
system view points and ideas like conceptual patterns in
[25],[27]. It is difficult to cover all these issues with a
single method. This could lead developers to opt for sub-
optimal solutions. According to [36] the UML is more
oriented towards software design whilst notations like
Fundamental Modeling Concepts [33] focus on the
conceptual system design, which is lacking in the UML.
The Model-Driven Engineering approach also tries to
tackle issues not accounted for in the UML in [26]. It is a
fact that most software engineering methods lack the
possibility of generating executable and verifiable models
in [23].

The UML is divided into two main types of notations.
These are static vs dynamic views. UML dynamic

diagrams have various problems [6] and lack precise
semantics. UML dynamic notations need verification. In
[7] an algorithm verifying activity diagrams is proposed.
Other suggestions deal with performance estimation and
performance models based on the UML diagrams and
semi markov processes.

A processor net can be used to model various aspects
of the UML interaction diagrams.

A. Petri Nets, Higher Order Nets and the UML
Various classes of Petri nets exist. There are several

proposals how the UML can be supported using Petri
nets. Petri nets can be classified into two main types: i)
basic Petri net classes and ii) higher order net classes.

Basic Petri nets offer a simple approach for validation,
structural analysis and performance modeling. The token
types are normally boolean and have a memory less state.
Different proposals exist how to combine UML notations
with these classes of Petri nets as in [1],[2],[4],[11]. It is
possible to generate stochastic models like generalized
stochastic Petri nets [22] from these Petri Nets.

Higher order nets [13],[14] have advanced properties.
PrT nets, colored Petri nets [15],[18],[19],[20], algebraic
Petri nets[34], object oriented Petri nets [1],[2],[17] and
Petri nets composed of advanced data types etc. can be
included in this category. Higher order nets are based on
data tokens, parameter programming, arc inscriptions,
input and output ports, procedures and functions. Some of
these classes use functional languages as described in
[8],[18]. It is possible to use these classes of Petri nets to
model UML notations as is done in [1],[2],[15],[20].
Modeling of complex activities and communication can
be easily achieved.

Unfortunately there is no general approach how to
support UML notations with Petri nets. Communication
based interaction diagrams seem to be the most suitable
for conversion.

B. B, Z, VDM and the UML
 UML notations are simple to use however they lack

proper verification. Formal specification languages like B
are used to tackle this problem. Unfortunately there are
problems to translate UML into B language constructs
addressed in [28]. There is no mechanism to ‘lift off’ a
specification in B and some other specification
languages. Z and VDM are schema based specification
languages. Schemas define behavior to be promoted to

Based on “ Supporting UML Sequence Diagrams Using a Processor
Net Model”, by T. Spiteri Staines which appeared in the Proceedings of
the IEEE International Symposium and Workshop on ECBS 2007,
Tucson Arizona, USA, March 2007. © 2007 IEEE.

64 JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

© 2007 ACADEMY PUBLISHER

Figure 1. Normal flight reservation

Figure 2. Flight reservation search + seat check combined

Figure 3. Flight reservation class :Flight requests a fare check

higher levels. A schema can be defined in terms of other
schemas. The processor net approach promotes the use of
schemas for processors using VDM or Z as is done in
[12]. Hence the problem when using B can be tackled.

C. Processor Net Model
The processor net based on the actor model in [12] is a

higher order net that combines Petri net theory with other
constructs. Instead of transitions, processors containing
detailed instructions are used. This model allows the
creation of different combinations. Petri nets allow the
combination of components, without being restricted to a
single general composition [34]. Places are defined as
channels, transitions are defined as processors. Tokens
are defined from different types, sets or colored sets.
Tokens can be anything from boolean, integer, string to
records or objects. Once basic types are created they can
be used to build complex types. The processor net is
constructed from an initial empty net obtained directly
from a sequence diagram. This model is refined and
processors are coded.

II. FLIGHT RESERVATION SCENARIO

A flight reservation system (FRS) is composed of
different components. A local flight reservation system
may connect to airline company databases or to global
distribution systems. Global distribution systems can be
accessed via different portals. The most important
operations of FRS systems are: i) searching and viewing
flight schedules, ii) Creating flight reservations, iii)
modifying/ canceling reservations. A flight reservation is
known as a PNR (passenger name record).

Flight reservation involves complex rules and different
costs. There are complex i) functional and ii) non-
functional requirements. E.g. the maximum time to create
a transaction should never exceed three minutes. Certain
airline companies send ‘availability updates’ to a central
server for flight reservation every three minutes. There
are operational issues e.g.: i) Once a Seat-Sell is
submitted there is immediate booking. ii) Delete or
modification update requires immediate notification.

The flight booking process is the most important
operation. The reservation process involves many
detailed steps and verification Different cost charges are
associated with different processes and steps. E.g. a
booking fee charge is more expensive than a query
charge. GDS providers have different charging policies
and service charges.

Some of the main GDS providers are: Amadeus,
Sabre, Galileo and Worldspan. Most parts of these
systems operate on legacy platforms. Emerging trends
exist where companies like ITA software are offering
optimized and flexible solutions using service oriented
architectures and reconfigurable components.

A. Traditional Approach
A traditional approach is used in legacy based systems.

The steps for reservation are carried out sequentially: i)
search request, ii) check seat availability, iii) check fare
and iv) reserve flight. These are depicted in Fig. 1.

B. Service Oriented Approach
In this scenario the steps for reservation can be carried

out in different sequences or combinations. E.g. search
request and check seat availability can be combined in a
single step as in Fig. 2. It is possible for different classes
to carry out different processes. Fig. 3. is a further
modification of Fig. 2. where class :Flight instead of :Gui
requests a fare check on receiving a search request.

III. GENERATING AN EMPTY PROCESSOR NET

A. Sequence Diagrams
Sequence diagrams typically depict message passing

between different classes and entities. UML 1.x and
UML 2.0 sequence diagrams have certain differences.

JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007 65

© 2007 ACADEMY PUBLISHER

Preconditions : A properly labeled UML 2 Sequence Diagram
Input: Sequence Diagram, identified class
Output: Processor – Net Diagram (Elementary Flat Processor Net Definition)

START

 FOR EACH message m∈ M sent by the identified class to the right hand side
 exclusively
 DO
 Insert new processor p
 Insert new channel c
 Insert input flow/arc from c→ p
 OD

 FOR EACH return message rm∈ RM received by the identified class from the right hand side
 classes exclusively if there exists a match with a proper processor p
 DO
 Insert new channel c
 Identify proper processor pn ∈ P where {n = 1.. total no of processors}
 Insert output flow/arc from pn → c
 OD

 FOR EACH processor px ∈ P where {x = 1 to P -1}
 DO
 Insert new channel c

 Insert output flow/arc cpx →

 Insert input flow/arc 1+→ xpc
 OD

STOP

Figure 4. Sequence diagram conversion algorithm

Figure 5. Initial processor net model

Figure 6. Steps for constructing the executable model

Sequence diagrams have evolved from message sequence
charts. Sequence diagrams can be converted to
communication diagrams. In UML 2.0 sequence diagram
message types are: synchronous or call, asynchronous,
creation or reply. Sequence diagrams can employ
complex constructs and become difficult to read.

B. Sequence Diagram Conversion
Fig. 1,2,3 describe different variations of the

reservation process. This has to be performed within a
defined period of time and some form of
acknowledgement received.

The conventional approach to modeling sequence
diagrams with Petri nets is to model message
communication as in [11] or treat classes as processors.

A different ‘main actor’ based concept is presented
here. The ‘actor’ initiates the whole process of message
communication with the other classes via another main
class like the :GUI. In this example the :GUI class is the
identified actor class for the algorithm in fig. 4. This is
because it is through the :GUI that the main processes
are conducted. Processes of other classes are ignored
because they do not concern the main actor directly.

The algorithm in fig. 4 is used to convert the UML 2

sequence diagram in fig. 1 into the empty processor net of
fig. 5. The algorithm’s function is to identify all
important messages sent and received by the identified
main actor class and generate a processor net. Other
messages and constructs are ignored. The result is that the
processor net model generated is a useful simplification
of the sequence diagram. The same algorithm could be
modified to generate a place transition Petri net.

The result of the algorithm in fig. 3 is defined as a flat
net three tuple (P,F,C) model that is not decomposable.
The three tuple (P,F,C) consists of a finite set of
processors P where P = {p1,p2….pn} and P φ≠ , a finite
set of directed flows/arcs F , where the arcs are from a

processor p to a channel c or from a channel c to a
processor p; () (){ }PxCCxPF ∪⊆ ; φ≠F . A finite
set of channels C, where C ={c1,c2,…cn} , φ≠C .
F,P,C are mutually disjoint. The empty process or net
model shares properties with elementary nets.

The model obtained is still empty requiring additional
development to obtain a fully executable processor net.

More rules and constructs are needed. Rules for tokens,
processor firing, data types and complex class types are
explained in [12].

IV. STEPS FOR CONSTRUCTING THE EXECUTABLE
PROCESSOR NET

66 JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

© 2007 ACADEMY PUBLISHER

Figure 7. Final processor net

The steps in fig. 6 are used to build the fully
executable processor net model. It is possible to use high
level. High level / colored Petri net modeling tools like
EXSPECT for executable specification described in
[8],[9] or the CPN tools [15], [18] can be used for this
task.

The model describe here was built and coded using the
EXSPECT tool [8],[9] which is the ideal environment for
the processor net. The main steps are described below.

Step1: Construct the empty processor net. The empty

processor net in fig. 4 is built using channels, processors
and connectors.

Step2: Rename channels and processors. This step is
optional. The channels and processors are correctly
named to represent the real system, making it more
readable.

Step3: Add stores if required. Stores are similar to
channels but they can have data types representing
different system states and data similar to databases.
Three stores are easily identified from the sequence
diagram, these are: Flight_Store, Fare_Store and the
Reservation_Store and have data types Flight, Fare and
Reservation respectively.

Step4: Specify, define and insert data types. Data types
must be correctly identified and defined. Different type
constructors, sets, lists, mapping types and tuple types
can be constructed. For the described system, types
identified from the UML diagrams were used. A PNR
(Passenger Name Record) type was created having details
like hename, flight_code, seats, hecontact, hetk, herf,
heeot. Other data types like flight ,fare, confirmation
were also created. The tokens created are bound to these
types.

Step5: Code the processors. Processor specification
uses a functional specification language [8]. Special
functions and constructs based on set theory can be
specified. The following tasks are performed to code the
processor: i) define inputs, ii) define outputs and iii)
define a value expression for the processor. The input and
outputs are the channels & stores. The processor
definition or inscription processes the input tokens. The
processor consists of a specification that builds the output
value from the input value bound to the tokens. e.g. out
<─ in code copies the value of in channel to the out
channel. Code in section 4 has been included as a
comprehensive example.

 Step6: Execute and verify the final model. The final
model shown in fig. 7 is executed as follows: i) tokens
with appropriate values are placed in the channels &
stores, ii) processors are fired, iii) the output produced in
the output channels & stores is checked. A processor is
activated only when all its preconditions are met. This
implies that its input channels & stores must contain
information that satisfying the processor definition for
activation. When a processor is activated the input tokens
are consumed and output tokens are created and placed
accordingly in the output channels.

Verification of the final model means that it is checked
for dead processors, unreachable states, etc. Even if a

processor fires and outputs something, this does not
automatically imply that the processor is working
successfully. A wrong result could actually be obtained.
So verification means checking the results for
correctness. If there are errors in the specification then it
would mean that steps 4,5 would have to be repeated.
Various scenarios composed of different properties can
be examined. E.g. what happens when one important
input value is missing. This is not possible with the UML
sequence diagrams. The models could be enhanced with
other constructs.

V. FORMAL SPECIFICATION SCHEMAS FROM THE
PROCESSOR NET

A. Specification languages
A formal specification language is mainly based on

textual notations, whilst constructs for modeling like Petri
nets, a processor net, colored Petri nets etc. are graphical.
Two main parts of the processor net can be identified. i)
the modeling part and ii) the specification as explained in
[12].

Formal specification languages like VDM or Z are
based on schemas. These languages are extendable.
Complex types and functions can be defined in terms of
basic types and primitive functions.

The processor net model can be properly described
using elements from Z and VDM and extensions. Thus
the processor net can be properly defined in terms of
schemas. Schemas normally composed of [name|
declaration| predicate] parts can be created for the
processors, processor relations, channels, stores and the

JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007 67

© 2007 ACADEMY PUBLISHER

Figure 8. Schema for reservation placing processor

complete system etc. It is also possible to define system
constraints, states, initialization operations, exception
handling, token firing and timing issues etc. in terms of
schemas as in [21]. Processors being visible in processor
net are ideal to use for schemas.

B. Processor reservation placing code
The code fragment below is a simplified version of

processor: RESERVATION_PLACING.

 result= (pick(set([x:Flight_Store|x@flight_code=
Create_Reservation@flight_code]))
// checks the reservation request with flight details

seat_check= result@seats>= Create_Reservation@seats
// checks for flight match with the reservation entered
and that seats are available .

update_flight_store= Flight_Store< [flight_code:result
@flight_code),avail:result@avail),seats:result@seats) -
Create_Reservation@seats]ins(set([x:Flight_Store|x@
flight_code!=Create_Reservation@flight_code]))
// update the flight_store contents with the reservation
details

--Processor main implementation--

if seat_check= true then

 Reservation_Store<─Create_Reservation ins
 Reservation_Store,
 // add the new reservation to reservation store

 Booking_Confirmation<─ Create_Reservation,
 // send booking confirmation result

 update_flight_store

fi

C. Processor schemas
The processor implementation can be converted into

high level schema.
Primitive functions defined are: i) a Projection function

Á that selects values from rows and tuples (e.g. K 2

(a,b,c,d) yields b , ii) a Set function that returns a set of
members of x for a specific condition Set[x:T->bool]:$x,
iii) a Pick function that converts a set into a tuple
Pick[x:$T]:T [8,9,12]. An initial schema for the
reservation placing is shown in fig. 8. This schema
requires the support of other schemas that are not shown
here.

Other schemas could be created for create_reservation,
fare_checked, booking_confirmation. The processor
relations for reservation placing and the other processors
can be defined in a schema like format refer to [12] for
more details. Schemas can be defined in terms of other
schemas. This could be done for the complete system.

Logics, temporal logics and CCS can be used to
describe the system.

VI. MODEL CHECKING, PERFORMANCE ESTIMATION AND
OPTIMIZATION METHODS

A. Model checking
The processor net is composed of higher order

constructs applied to Petri nets. This means that it also
has a simple identity. Simulation of the model will not
necessarily indicate any structural problems. Prior to
simulation it is possible to treat the model in fig.7 as a
simple Petri net. Token identities are ignored, processors
are treated as transitions. Channels and stores are treated
as places.

Classic Petri net theory is well founded and has many
analysis techniques applicable to structural checking.
These techniques are based on mathematical properties.
The model in fig. 7 can be represented using an incidence
matrix or flow matrix. This would describe the input and
output flows of the net. From the incidence matrix itself
conclusions about the structure of the model can be
deduced.

 The reachability tree, reachability graph and place
invariants can be found for the model. Other properties
like boundedness, safeness, liveness, reversibility, etc can
be examined. Some of these results are presented in the
results section.

B. Processor net transformation method
The processor net in fig. 7 is based on acyclic

behavior. The processor net can be transformed for time
analysis.

The processor net is considered to be composed of a
set of ordered processes executing in a particular order.
Model modification is as follows: i) all channels data
types are replaced by a single common data type ii)
channels that not connecting the processors are removed
iii) processors are modified to contain time, iv) a random
store is added giving tokens random time values from a
range [−

ie , +
ie]. The values −

ie and +
ie are the min, max

processing time. v) Optionally a firing cycle can be
added.

Concepts from Petri net theory [29] are used. These
ensure there are place and transition invariants and

68 JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

© 2007 ACADEMY PUBLISHER

feedback mechanisms [31,32]. The processor net can be
directly transformed into a time place transition net.

C. Rules for alternative combinations
Processor net processors are ordered sequentially. For

finding alternative combinations the following rules
apply: i) Only two types of processor combination are
possible: sequential or parallel. ii) The processor net is
always choice free and conflict free. iii) All processors
are functional. iv) The processor net has at least one
directed path from the initial processor to the terminating
processor. v) All processors must be in the directed path.
vi) Precedence constraints for the processors are
observed. Combining processors cannot result an increase
in the number of steps in the system.

A large sized net can be reduced or simplified by
combining processors and channels using Petri net
reduction rules that preserve liveness and boundedness
[12,32]. These rules restrict the number of possible
combinations. Combining processors also depends on the
business rules. These two steps indicate how to find
combinations i) Define the transformed processor net. ii)
Find alternative configurations using the given rules. If
two processors a,b execute in parallel and

)()(ba PtimePtime < then the critical path or cycle
time is determined by processor b. So for time analysis
processor ‘a’ could be omitted [12].

D. Performance estimation
Techniques focusing on single measure like time can

be used for performance evaluation. The transformed
processor net can be represented as an acyclical directed
bipartite graph or activity network. Time analysis and
critical path analysis can be performed. It is possible to
add a cycle to the net and use cycle time analysis as is
done for Time Petri nets. Simulation models for different
configurations can be built and results compared.

E. Optimization Methods
An optimization problem can consist of a set of

independent variables, parameters and conditions or
restrictions defining acceptable values for the variables.

It is possible to treat alternative processor net model
configurations as an optimization problem. In this case
variables, conditions and restrictions not considered in
performance estimation can be considered. The processor
net is composed of a number of processors. Each
processor can have various properties having direct or
indirect relationships with other properties. The complete
system would be composed of properties and conditions.

An optimization problem or problem function to be
minimized can be described in terms of an objective
function F, subject to constraint functions {ci}. Both
functions are real-valued scalar functions.

The category of optimization problems can be
expressed in terms of a generalized NCP (non linear
complimentary problem) form as follows: minimize F(x)
, subject to ci(x)=0, i=1,2,….,m’; ci(x)≥ 0, i= m’+1,….,m,
where ∈x Rn [37]. This notation could be used even if it
is not an NCP problem.

The steps to solve the optimization problem would be
i) find which class fits the problem based on the problem
function and constraint functions ii) find an optimum
solution. The following properties can be used to identify
the problem class: i) objective function: single variable
functions, linear functions, sum of squares of linear
functions, quadratic functions, sum of squares of non
linear functions, smooth nonlinear functions, etc. ii)
constraint functions: no constraints, simple bounds, linear
functions, sparse linear functions, non linear functions,
etc. E.g. a problem can have a linear objective function
subject to non linear constraint functions. This opens the
possibility of having many different problem classes.

Where the constraint functions and the objective
function are both linear, linear programming can be used
for optimization. Solving the problem might generate
unique solutions.

A basic approach to optimizing the processor net is to
try to minimize the system cost. This is based on the
individual processor cost per unit time and the time
utilized by that processor as in (1).

 ∑
=

n

p
ppTC

1
. (1)

In (1) p = 1..n, where p is the processor number and n

the maximum number of processors , Cp is the unique
unit time cost of processor p ,Tp is the average processing
time for processor p. If Cp the unique unit time cost is a
constant for each processor, the objective and constraint
function are linear then the problem can be represented as
follows: minimize xcT subject to bAx ≥ , where
∈x Rn , c is a constant arbitrary non zero n- vector and x

is the optimal solution as explained in [37]. There are
different ways of formulating this problem for solving
e.g. as an integer program, linear integer program etc.

 The optimization models can range from simple to
advanced. This depends on the variables and constraints
involved. Complex optimization could be required. The
problem can be formulated as a combinatorial
optimization problem (COP). Solutions could be found
using integer programming or heuristic algorithms [30].

From different perspective network calculus described
in [38] can be used to model the network behavior for
different scenarios. Network calculus fits the processor
net idea under certain new assumptions. E.g. the
processors are treated as network nodes etc. Estimation
results are possible for bounds and calculating the QOS
(quality of service). The processor net in fig. 7 can be
classified as a feed-forward network. It has unidirectional
links and no cycle. Since there is no loop, this system
would have finite burstiness. The critical load factor
could be used for calculations. A service curve can be
constructed. This approach could be useful for response
optimizing the overall system response time etc.

JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007 69

© 2007 ACADEMY PUBLISHER

−
−

−−

−

−

−

0000
0000
0000
0100
0110
1011

1000
0100
0100
0010
0010
0001
0001

Figure 9. Flow matrix/ incidence matrix

Figure 10. Reachability tree

VII. RESULTS

A. Structural properties and reachability Analysis
To examine these properties the processor net model in

fig. 7 is treated as a Petri net, token identities are ignored.
The structural properties of the net can be inferred by
examining the incidence matrix for the flows of the net
and the reachability graph. The marking M0 represents
the token values in the channels and stores where M0 =
(c1..c11,s1,s2,s3), where s1, s2, s3 represent the marking
of the stores and c1..c11 represent channel markings. The
stores are never empty from the Petri net point of view.
They can contain a token that is empty. The firing
sequence is denoted by M0-p1-M1-p2-M2-p3-M3-p4-M4.

The reachability tree in fig. 10 indicates that every
processor is live, the net is bounded and safe. The net has
home states. The result is interesting because it may help
in the analysis of behavioral properties of complex
systems. There are identifiable patterns in the flow matrix
in fig. 9 indicating sequential behavior, boundedness.
These indicate the structure of the net. It is possible to
compute the complete net behavior using the flow matrix
and the initial marking.

B. Modeling the behavioural sequence using real data
This modeling is done at a high level and the tokens

contain real data. Processors can contain detailed
programming logic that is useful for testing an executable
model.

Appropriate data is placed in the stores, data tokens
that represent actions are added and processors are
enabled and fired getting results.

Processor RESERVATION_ PLACING is enabled by
placing data tokens in Flight_Store, Create_Reservation
and Fare_Checked. These are shown in the ‘before’
column in Table I. After firing the processor updated
details are placed in the Flight_Store. The number of
seats available are reduced by the number that was

booked. A new reservation message is added to the
Reservation_Store. Finally a reply message is placed in
the Booking_Confirmation channel.

 All the processors are executed and similar results are
obtained.

C. Performance analysis
The idea of performance analysis is explained in

section VI. Fig. 11 shows two different configurations.
In configuration A two processors SEAT_CHECKING
and SEARCHING have been placed to operate in
parallel. Searching & seat_checking can be reduced to a
single processor yielding identical results for this type of
analysis only. This is not possible with every GDS.

TABLE I.
DATA FOR PROCESSOR RESERVATION PLACING EXECUTION

STORES BEFORE AFTER

Flight_Store

{[avail:'YES',flight_code:

'KLM105',seats:150]}

{[avail:'YES',flight_code:'

KLM105',seats:148]}

Reservation_Store

{} {[hename:’NM1 SMITH
J’,flight_code:’KLM105’,s
eats:2,hecontact:’AP929
49693’,hetk:’TKTL01MA
R’ herf:’RF
JOE’,heot:’ER’]}

CHANNELS

Create_Reservation

hename:’NM1 SMITH
J’,flight_code:’KLM105’,
seats:2,hecontact:’AP92
949693’,hetk:’TKTL01M
AR’ herf:’RF
JOE’,heot:’ER’

Fare_Checked 1

Booking_Confirmation

hename:’NM1 SMITH
J’,flight_code:’KLM105’,s
eats:2,hecontact:’AP929
49693’,hetk:’TKTL01MA
R’ herf:’RF
JOE’,heot:’ER’

70 JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

© 2007 ACADEMY PUBLISHER

Figure 11. Two different configurations

Figure 12. Cumulative reservation time

Modern service oriented architectures and component

based architectures allow for different configurations. An
example of this is QTX developed by ITA software.

 Configuration A is an improvement over configuration
B. The average cycle time is 42 seconds for configuration
A and 46 seconds for configuration B. This is obtained
from table III. The data was obtained from 300 system
cycles, using the time ranges in table II. Fig. 12 depicts
the results of table III graphically. Time values are
generated randomly within the defined range from a
uniform distribution. Table II shows the max and min
times for each processor. The models in fig. 11 can also
be analyzed using Petri net theory.

D. Optimization Example
Assuming that a different cost can be identified each

processor per unit time. E.g. the estimated cost for
searching per second is $ 0. 001333, fare checking is $
0.0005, etc. It is possible to represent this as an objective
function for minimization. The objective function for four
processor model in fig. 7 is expressed in (2).

1000

666.6666.15.033.1 dcbaP +++
= . (2)

Variables a,b,c,d represent the time in seconds
consumed by each processor. Example constraint
functions are presented in (3). These constraints are based
on timing issues.

TABLE II.
 PROCESSOR MAX AND MIN TIME

 PROCESSOR Min
Time (s)

Max
Time(s)

SEARCHING 2 9
SEAT_CHECKING 2.9 10
FARE_CHECKING 2 8

RESERVATION_PLACING 20 40
REPEAT 0 0

TABLE II.
 PROCESSOR MAX AND MIN TIME

 PROCESSOR Min
Time (s)

Max
Time(s)

SEARCHING 2 9
SEAT_CHECKING 2.9 10
FARE_CHECKING 2 8

RESERVATION_PLACING 20 40
REPEAT 0 0

TABLE III.
CUMULATIVE RESERVATION TIME

No. of System Cycles Time Config. A Time Config. B

10 373 418

30 1179 1308

70 2848 3166

100 4099 4565

150 6289 6994

200 8307 9251

250 10447 11610

300 12597 13977

JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007 71

© 2007 ACADEMY PUBLISHER

5025.1
03

25.1
02

2

≥+
≥−+

≥−
≥−

≥

da
acb

bc
ab

a

 (3)

Combining two processors into one processor gives a
different scenario. This could be possible for the UML
sequence diagram in fig. 3. In this case the objective
function for minimization can be represented as in (4),
subject to the constraints in (5).

1000

666.61.233.1 cbaP ++
= . (4)

5025.1
03

25.1
02

2

≥+
≥−

≥
≥−

≥

ca
ab

b
ab

a

 (5)

The Simplex method [37] developed for solving linear
programming problems can be used. The following
results are obtained. The optimal solution for (2) is p =
0.174504 when a = 2, b = 4, c = 8, d = 23.5. This implies
that the whole process would cost $0.174 and take 37.5
seconds. The optimal solution for (4) is p = 0.171776
when a = 2, b = 6, c = 23.5. This is minimally less
expensive at $0.171 and takes less time. Modifying the
constraints in (3) and (5) it is possible to obtain totally
different results.

VIII. CONCLUSION

It has been shown how UML sequence diagrams can
be converted to a processor net and analyzed. This is a
practical way to support UML Sequence Diagrams. It is
possible to use the processor net to obtain optimized
models. This would be useful for describing special
classes of real time systems.

The processor net model is more compact than a Petri
net. It can be converted into other classes of Petri nets.
Specifications can be defined for each processor. Formal
definitions and proofs could be used. The processor net
can be developed to create a detailed ‘Actor Model’ [12].

This approach also raises some fundamental issues if it
is best to model the complete system before performing
optimization. Optimization might imply a major system
change.

The case study described in reality is more complex
there are many issues like price to seating relations which
include the time dimension. These are hard to describe
and represent.

It is possible to find other analogies to the processor
net approach. The processor net preserves properties that
are common with other network structures of different

types. It could be possible to apply concepts from these
areas to the processor net or vice-versa.

Finally there are some limitations of this approach. i)
The described algorithm cannot be used for all UML
sequence diagrams. ii) the resulting net is a simplification
of the UML diagram, this might be undesirable. iii)
complex nets and even complex scenarios might be
difficult to optimize, especially if proper information is
not available.

REFERENCES

[1] L. Baresi, M. Pezze, “On Formalizing UML with High-
Level-Petri Nets”, Concurrent object-oriented
programming and petri nets: advances in Petri nets,
Springer-Verlag, ISBN 3-540-4192-x, 2001, pp. 276-304.

[2] L. Baresi, “Some Hints on Formalizing UML with Object
Petri Nets”, 6th World Conferenece Proceedings on
Software Engineering and Knowledge Engineering, Ischia
Italy, 2002.

[3] G. Booch, Object-Oriented Design with Applications, 2d
ed. Reading, Mass.: Addison-Wesley, 1991.

[4] B.Bordbar, L. Giacomini, D.J. Holding, “Design of
Distributed Manufacturing Systems using UML and Petri
Nets”,6th International Conference on Intelligent Systems,
Federation of Automatic Control(IFAC) Spain, May 2006,
pp. 91-96.

[5] C.Canevet, S.Gilmore, J. Hilliston, L Kloul, P. Stevens,
“Analysing UML 2.0 Activity Diagrams in the Software
Performance Engineering Process”, DEGAS Project, Lab.
for Foundations of Computer Science Univ. of Edinburgh
Scotland, Sep 2002.

[6] G. Engels, J. H. Hausmann, R. Heckel, S. Sauer, “Testing
The Consistency of Dynamic UML Diagrams”,
Proceedings of the 6th International Congress of
Integrated Design and Process Technology , IDPT,
Pasadena CA USA, Jun 2002.

[7] R. Eshuis , R. Wieringa, An Execution Algorithm for UML
Activity Graphs, Lecture Notes in Computer Science, Vol
2185, Springer-Verlag, 2001, pp. 47-61.

[8] Exspect User Manual, Technische Universiteit, Eindhoven,
1999.

[9] Exspect Tool, Technische Universiteit, Eindhoven.
[10] G. Frick, B. Scherrer, K.D. Muller-Glaser, “Designing the

Software Architecture of an Embedded System with UML
2.0”,Proceedings of UML 2004 Workshop On Software
Architecture Description & UML, Portugal, Oct 11-15
2004.

[11] T. Gehrke, U.Goltz, H. Wehrheim, “The Dynamic Models
of UML: Towards a Semantics and its Application in the
Development Process”, Technical Report Informatik-
Bericht 11/98, University of Hildesheim, Germany, Sep
1998.

[12] K.M. van Hee, Information Systems Engineering A Formal
Approach, University Press Cambridge, 1994.

[13] K. Hoffmann, T. Mossakowski, “Algebraic Higher- Order
Nets: Graphs and Petri Nets as Tokens”,16th International
Workshop WADT, Lecture Notes in Computer Science,
Vol. 2755, Springer – Verlag, , Nov 2003, pp. 253-267.

[14] J.W. Janneck, R. Esser, “Higher-Order Petri Net Modelling
– Techniques and Applications”, ACM International
Conference Proceedings Series; Vol. 145 Proccedings of
the conference on application & theory of Petri Nets:
Formal Methods in Software Engineering and defense

72 JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

© 2007 ACADEMY PUBLISHER

systems – Vol 12. (WSEFM), Adelaide Australia, Jun
2002, pp. 17-25.

[15] J.B. Jørgensen, “Coloured Petri Nets in UML-Based
Software Development – Designing Middleware for
Pervasive Healthcare” ,Proc. 4th Int. Workshop on the
Practical use of CPN & CPN tools, Diami Technical
Report PB-560, Aarhus Denmark, Aug 2002, pp. 61-80.

[16] C. Kabajunga, R. Pooley, “Simulating UML Sequence
Diagrams”, Proc. of 15th UK Perf. Eng. Workshops, Dept.
of Computer Science Univ. of Bristol, Jul 1999,pp. 23-33.

[17] B. Krena, T. Vojnar, “Type Analysis in Object-Oriented
Petri Nets”, Proceedings of ISM’01 Hradec nad moranici
Czech Republic (Marq Ostrava), 2001, pp. 173-180.

[18] L.M. Kristensen, S. Christensen, K. Jensen, “The
Practioner’s Guide to Coloured Petri Nets”, International
Journal On Software Tools for Tech. Transfer (STTT),
Vol. 2, Springer-Verlag,1998, pp. 98-132.

[19] L.M. Kristensen, K. Jensen, “Specification and Validation
of an Edge Router Discovery Protocol for Mobile AD Hoc
Networks”, Lecture Notes in Computer Science, Vol.
3147,Springer – Verlag,2004, pp. 248 -269.

[20] L.M. Kristensen, J.B. Jorgensen, K. Jensen, “Application
of Coloured Petri Nets in System Development”, Lecture
Notes in Computer Science, Vol. 3098 , Springer-Verlag,
2004, pp. 626-685.

[21] D. Lightfoot, Formal Specification using Z, Palgrave , NY,
2001, ISBN 0-333-76327-0, Ch 6 pp. 37 – 97.

[22] C. Lindemann, A. Thummler, A. Klemm, M. Lohmann,
O.P. Waldhorst, “Performance Analysis of Time-Enhanced
UML Diagrams Based on Stochastic Processes”, 3rd ACM
Workshop on Software & Performance Rome , Jul 2002,
pp. 25-34.

[23] J.W.S. Liu, Real-Time Systems, Pretence Hall, NJ, 2000.
[24] R. Pooley, “Using UML to Derive Stochastic Process

Algebra Models”, Proc. of 14thUK Perf. Eng. Workshops,
Univ. of Edinburgh Scotland, Jul 1998.

[25] J.A. Saldhana, S.M. Shatz, Z. Hu, “Formalization of Object
Behavior and Interaction From UML
Models”,International Journal of Software & Knowledge
Engineering, 11(6), 2001, pp. 643-673.

[26] D.C. Schmidt, “Model-Driven Engineering”, IEEE
Computer Model-Driven Engineering\\Smart Cameras,
Vol 39 No 2, Feb 2006, pp. 25-31.

[27] C.U. Smith, Performance Engineering of Software
Systems, Addison-Wesley, 1990.

[28] C.Snook, M.Butler, “UML-B: Formal Modeling and
Design Aided by UML”, ACM Transactions on Software
Engineering and Methodology, Vol 15 No 1, Jan 2006, pp.
92–122.

[29] G. Stemersch, R.K. Boel, “Structuring acyclical Petri Nets
for Reachability Analysis and Control”, International
Journal of Intelligent Control and Systems, Vol 10 No 2,
Jun 2005, pp. 175-187.

[30] L.A. Wolsey, Integer Programming, Wiley, NJ USA,
1998.

[31] K. Yamalidou, J Moody, M. Lemmon, P. Antsaklis,
“Feedback Control of Petri Nets Based on Place
Invariants”, Technical Report of the ISIS Group University
of Notre Dame IN 46556, ISIS-94-002, 1994.

[32] M. Zhou, K. Venkatesh, Modeling, Simulation, and
Control of Flexible Manufacturing Systems A Petri Net
Approach, Series in Intelligent Control and Intelligent
Automation vol. 6 World Scientific, MA USA, 1999.

[33] A. Knopfel, B.Grone, P. Tabeling, Fundamental Modelling
Concepts, Wiley, NJ USA, 2006.

[34] J. Desel, E. Kindler, “Petri Nets and Components
extending the DAWN approach”, D. Moldt (ed.):

Workshop on Modelling of Objects, Components, and
Agents., Aarhus Denmark, Aug 2001.

[35] S. Donatelli , M. Ribaudo , J. Hillston, “A Comparison of
Performance Evaluation Process Algebra and Generalized
Stochastic Petri Nets”, Proceedings of the 6th International
Workshop on Petri Nets and Performance Models, October
03-06, 1995,pp.158-173.

[36] P. Tabeling, B. Grone, “Integration Architecture Elicitation
for Large Computer based Systems”, ECBS 2005,
Greenbelt, MD, USA, Apr 2005,pp.51-61.

[37] P.E. Gill, W. Murray, M.H. Wright, Practical
Optimization, Academic Press, Harcout Science &
Technology San Diego USA, 2000, pp.1-5, 67-77.

[38] J.Y. La Boudec, P. Thiran, Network Calculus – A Theory
of Deterministic Queing Systems for the Internet, LNCS
Vol 2050, Springer-Verlag, 2001 , ISBN 978-3-540-
42184-9. Ch.1 & Ch.6.

JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007 73

© 2007 ACADEMY PUBLISHER

