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Abstract— Due to the network technology advances, an 
order-of-magnitude jump has been produced in the network 
bandwidth. This fact has returned to wake up the interest 
on protocol offloading, since network communication is a 
key factor for system performance. Thus, much research 
work on offloading is been done, particularly on TCP 
offloading as it has been the main transport protocol for 
many years, and in fact, it is the most used protocol in the 
networks. Nevertheless, some recent studies on protocol 
offloading have produced some controversy about its 
benefits. 
This paper describes a model to simulate the protocol 
offloading by using the simulator Simics. It can be used for 
a functional system simulation, including the application 
program, the operating system, the protocol stack and the 
device drivers, since network-oriented applications require 
this kind of full-system simulation. Nevertheless, as Simics 
does not provide a detailed network I/O model, in this paper 
we describe the way we have overcome this problem.  

 
Index Terms—full-system simulation, simics, offloading,  
 

I.  INTRODUCTION 

In high performance computing (HPC) platforms, 
network communication is a key factor that determines 
the performance. A communication bottleneck may lead 
to a significant loss of overall platform performance. 
With the availability of high bandwidth network links 
such as Gigabit, 10-Gigabit or 40-Gigabit Ethernet, an 
order-of-magnitude gain in network performance is 
expected. This is the performance achieved with Myrinet 
or SCI networks, specialized for cluster and high-
performance parallel platforms environments. 
Nevertheless, processing protocols such as TCP/IP 
requires significant CPU resources. This way, the 
communication bottleneck has been moved to node’s 
CPU. So, the network interface (NI) performance is 
determinant in the overall communication path 
performance, being specialized software and hardware 
(offload engines) the technology that reduces the 
processing constraints (overhead associated to protocol 
processing) due to context switching, multiple data copies 
and interrupt mechanisms. As a solution to reduce the 
communication overhead, offload protocol processing 

from the CPU to the network interface card (NIC) has 
been proposed. 
This way, the CPU does not have to process the 
communication protocols, and the NIC can directly 
interact with the network without the CPU participation, 
thus allowing both the decrease in the interrupt 
processing cost for the CPU, and the decrease of protocol 
latency for short control messages (like ACKs) that, this 
way, do not have to go to the main memory through the 
I/O bus.  
 Nevertheless, besides the works showing the 
advantages of protocol offloading, some recent papers 
have presented results arguing that this technique does 
not benefit applications. Particularly, TCP/IP offloading 
has been highly controversial because, as some studies 
have demonstrated, TCP/IP processing costs are small 
compared to data transference overheads and the costs of 
interfacing the protocol stack to the NIC and the 
operating system. The advantage on using TCP/IP is the 
connectivity with other systems and other networks 
through routers, switches, etc, since it has been the main 
transport protocol for the Internet Protocol Stack for 
years. 
 The continuous increase in the network data rates and 
the interest on IP storage due to the emergence of 
network storage protocols, such as iSCSI, to replace 
storage-specific networks (SCSI, FiberChannel,…) by 
commoditized networks (Ethernet) have contributed to 
maintain the debate about TCP/IP offload. Thus, models 
such as LAWS [20] and EMO [21] have been proposed to 
provide a frame for interpreting the experimental results 
and to drive the discussions over offload technologies, 
allowing us the exploration of the offloading space of 
design in stream-oriented (in the case of LAWS) and 
message-oriented (in the case of EMO) applications. 
In order to evaluate computer architecture proposal and 
check its performance, simulation is the most frequent 
technique. So it is necessary to have a simulation 
platform that allows us to model the architecture in a real 
way. This way, the simulator has to simulate the machine 
with sufficient detail, and it must be possible to drive it 
with realistic workloads such as web server, databases or 
even benchmarks. So, simulators that run only user-
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mode, single-threaded workloads are not adequate [24]. A 
full-system simulator allows the execution of complete 
software stacks from real systems without any 
modification. Simics [1,4] is a full-system simulator that 
fulfils these requirements and it is the simulation tool we 
have used in our work. Nevertheless, Simics presents 
some difficulties for a network-oriented simulation.  
 In this paper, after a brief introduction to protocol 
offloading and the controversy around its usefulness 
(Section 2), we describe the way we have used Simics to 
analyze protocol offloading (Section 3). Section 4 
provides the experimental results and the conclusions are 
given in Section 5. 

II.  PROTOCOL OFFLOADING 

Over the last years, and due to the advances in 
network technology, much research work has been done 
in order to optimize the network processing in end-
systems. In fact, many actual vendors are designing and 
manufacturing Offload engines, also called TOE (TCP 
Offload Engines) in the case of TCP protocol, and in 
general, other NICs (Network Interface Card) with 
Network processors (NPs) that provides the Network 
Interfaces with some processing capabilities. The vendors 
argue that this processing capabilities on the NICs are 
necessary to grant data flows at network speed with the 
latest technology (10 Gigabit Ethernet or 40 Gigabit 
Ethernet, for instance). Thus, much research work has 
been done in order to improve the communication 
performance. 

This research can be classified into two 
complementary alternatives. One of these alternatives 
searches for decreasing the software overhead in the 
communication protocols either by optimizing the 
TCP/IP layers, or by proposing new and lighter protocols.  
Moreover, these new protocols usually fall into one of 
two types: the protocols that optimize the operating 
system communication support (GAMMA [14], CLIC 
[15]), and the user level network interfaces [16], such as 
the VIA (Virtual Interface Architecture) standard [17].  
 The other researching alternative in this field tries to 
take advantage of the improvement of the NIC resources. 
Many of the interconnection networks used in current 
cluster-based computing systems include NICs with 
programmable processors (also called Intelligent NICs, 
INICs), and much research has been done towards the use 
of these processors to offload processing from the host 
CPU. This way, the CPU is free from communication 
overheads and it is possible a faster implementation of 
more flexible communication systems. It is also possible 
to include network processors (NP) [5, 6, 18] in the NIC 
 There are some advantages that offloading 
communication functions to the NIC can provide: 

1. An increment in the CPU cycles available for 
application processing 

2. The protocol latency can be reduced as short 
messages, such as the ACKs, do not need to travel 
through the E/S bus; and (b) the CPU does not have 
to process interrupts for context changing to attend 
the received messages. 

3. DMA efficiency improvement due to short 
messages assembling. 

4. Bus contention can be reduced due to less use of I/O 
system bus. 

5. Improvement in the efficiency of the 
communication protocols due to the possibility of 
dynamic protocol management.  

 
Nevertheless, some works [9-12] provide experimental 

results to argue that protocol offloading, in particular 
TCP offloading, does not clearly benefit the 
communication performance of the applications. On the 
one hand, the reasons for this scepticism are the 
difficulties in the implementation, debugging, quality 
assurance and management of the offloaded protocols [9]. 
The communication between the NIC (with the offloaded 
protocol) and the CPU and the API could be as complex 
as the protocol to be offloaded [12] (cited in [9]). 
Protocol offloading requires the coordination between the 
NIC and the OS for a correct management of resources 
such as the buffers, the port numbers, etc. In case of 
protocols such as TCP, the control of the buffers is 
complicated and could hamper the offloading benefits 
(for example, the TCP buffers must be held until 
acknowledged or pending reassembly). Moreover, the 
inefficiency of short TCP connections is due to the 
overhead of processing the events that are visible to the 
application and cannot be avoided by protocol offloading 
[9]. Probably, these are not definitive arguments with 
respect to the offloading usefulness but they 
counterbalance the possible benefits. 
 On the other hand, there are fundamental reasons that 
affect the possible offloading advantages. One of them is 
the ratio of host CPU speed to NIC processing speed. The 
CPU speed is usually higher than the speed of processors 
in the NIC and, moreover, the increment in the CPU 
speeds according the Moore’s law tends to maintain or 
even to increase this ratio. Thus, the part of the protocol 
that is offloaded would require more execution time in 
the NIC than in the CPU, and the NIC could appear as the 
communication bottleneck. The use of general-purpose 
processors in the NIC (with speeds similar to the CPU) 
could represent a bad compromise between performance 
and cost [11]. Moreover, the limitations in the resources 
(memory) available in the NIC could imply restrictions in 
the system scalability (for example, limitations in the size 
of the IP routing table).     
 These problems are clearly apparent in the use of TCP 
protocol either in WAN applications (such as FTP and e-
mail) or in LAN applications that require low bandwidth 
(such as Telnet). In these cases the overheads of the 
connection management are the most important and the 
more difficult to avoid by protocol offloading. In this 
way, it seems that this technique is more adequate in 
applications requiring high bandwidths, low latencies, 
and long-term connections [9]. For example RDMA 
(Remote Direct Access Memory) is a protocol that allows 
0-copy packet transference to the corresponding memory 
buffer. As the RDMA component DDP (Direct Data 
Placement) requires an early demultiplexing of the input 
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packets, its implementation in the NIC can be 
advantageous.  
 Nevertheless, there are other works that demonstrate 
the benefits of TCP offloading. In [8] an experimental 
study is carried out based on the emulation of a NIC 
connected to the I/O bus and controlled by one of the 
CPUs in the SMP. The results show improvements from 
600% to 900% in the TCP-emulated offload. 
 The paper by Shivam and Chase [20] describes the 
LAWS model to characterize the protocol offloading 
benefits in Internet services and streaming data 
applications. The LAWS model is based on four 
parameters: the ratio of CPU speed to NIC speed (Lag 
ratio); the ratio of application processing needs to 
communication processing overhead (Application ratio); 
the ratio of host saturation bandwidth to raw network 
bandwidth (Wire ratio); and the ratio of overhead for 
communication with offload to overhead for 
communication without offload (Structural ratio). As the 
ratios used by LAWS are independent of a particular 
protocol this model is extensible. Among the conclusions 
of the analysis provided in [20] for through-limited 
applications (Internet servers) is that offloading is more 
worthwhile as application and structural ratios decrease, 
for example, with faster networks (application ratio 
decrease) and improvements in the offloading techniques 
(structural ratio decrease).   
 Nevertheless, LAWS is stream-oriented and useful in 
applications where the end-to-end throughput depends on 
network bandwidth or processing overhead more than on 
latency. Thus, it is not very useful to understand the 
latency minimization in the parallel applications. In [21], 
Gilfeather and Maccabe propose EMO (Extensible 
Message-oriented Offload model) to analyze the 
performance of various offload strategies for message 
oriented protocols. It is based on the cycles of protocol 
processing, C, on the NIC and CPU (at the OS, and 
application levels); the CPU cycles, O, to move data and 
control between the NIC, the OS and the application; the 
time, L, to move data and control between the NIC, the 
OS and the application; and the rate, R, of the CPU and 
the processor in the NIC. The benefits of offloading 
techniques, such as splintered TCP [28], are also justified 
in [21], and the circumstances in which offloading 
significantly reduces latency and allows the application 
control over protocol overhead are also described. It is 
possible to map EMO onto LAWS by taking into account 
that while EMO considers an arbitrary amount of time for 
a specified amount of bytes, LAWS considers an arbitrary 
number of bytes in a specified amount of time. 

III. TOWARDS A REALISTIC SIMULATION 

The research in the computer system design issues 
dealing with high-bandwidth networking requires an 
adequate simulation tool providing a computer model that 
makes it possible to run commercial OS kernels (as the 
most part of the network code runs at the system level), 
and other features for network-oriented simulation, such 
as a timing model of the network DMA activity and a 
coherent and accurate model of the system memory [2]. 

There are not many simulators with these characteristics. 
Some examples are M5 [3], SimOS [26], and some other 
simulators based on Simics [1,4], such as GEMS [24] and 
TFsim [25].  

Simics [1,4] is a commercial full system simulator 
that allows engineers to have accurate hardware models 
in such a way that software cannot detect the difference 
between real hardware and the provided virtual 
environment. This way, Simics allows the simulation of 
application code, operating system, device drivers and 
protocol stacks running on the hardware modelled. 
Nevertheless, Simics is a functional simulator and does 
not provide an accurate timing model. Precisely, in [22] 
Simics is extended with detailed timing models. In [23] 
some  are reported with respect to the capabilities of 
Simics in the model of x86 processors (out-of-order 
microarchitectural issues such as branch prediction, use 
of reorder buffer, the number of functional units, etc. are 
not modelled) and the simulation of cc-NUMA computers 
with accurate cache miss models. In these cases, the 
functionality of Simics should be extended to allow 
accurate evaluations of some commercial workloads. On 
the other side, Simics is a fast functional simulator that 
makes it possible to simulate complex applications, 
operating systems, network stack protocols, and other real 
workloads. 

In this paper, we consider the use of Simics for 
protocol offloading evaluation. In order to do this, we 
need a network interface model that processes the 
protocol instead the main CPU of the system. Simics has 
several limitations that are necessary to have into account 
to simulate protocol offloading or networks in general: 
 

a) Networks are simulated at packet level. The 
transactions are performed as one event. Thus, the details 
of a network packet transaction (by sending individual 
bytes) are not simulated. Instead, the complete transaction 
is simulated as one action. In this way, the network and 
I/O devices are simulated in a transaction-based style. 
This constitutes an important drawback in the network-
oriented system simulation, where detailed timing models 
of network DMA events are required [2]. 
 

b) Simulated link bandwidth could be potentially 
infinite, but in practice, a very high bandwidth (i.e.: 10 
Gbps), requires a high simulation time and the results are 
not as expected (although Simics is able to handle high 
bandwidths, the NIC model does not). 
 

c) Packets are delivered to network with a 
configurable latency that depends on the length of a time 
slice. A time slice in Simics is the minimum time that we 
could measure. It could be modified, but the lower bound 
is determined by the CPU speed. So, it is necessary to 
ensure that the minimum latency we are simulating is 
enough to allow the maximum bandwidth needed for our 
simulation purposes. 
 

d) Using shorter time slices (lower latencies) in 
multi-machine configurations slows down the simulation 
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speed. So, this latency could not be as low as one would 
like. 

  
e) In order to build simulation models at 

hardware level, Simics provides the stall execution mode 
that allows us to simulate latencies or time accesses, but 
only between the CPU and the memory, and not for the 
buses.  
 
 Despite these limitations, we have used Simics instead 
of simulators such as M5 [3] or SimOS [26] due to the 
ability to change the simulation parameters and to create 
hardware models, as well as to simulate a lot of different 
CPU models with Simics. In fact, it provides the DML 
(Device Modeling Language) language. This is not only a 
configuration language but also a hardware description 
language for modelling devices. Furthermore, because of 
its C++ features, the debugging process in simulators 
such as M5 and SimOS is harder compared with that in 
Simics, that also provides effective tools for debugging 
and profiling. There are other simulators, such as GEMS 
[24] or TFSim [25], based in Simics, that provide 
accurate timing models but they are focused to specific 
systems. For instance, GEMS is a Simics based simulator 
for Sparc-based computers. 

Taking into account the above issues, we have built a 
Simics simulation model by defining two customized 
machines and a standard Ethernet network connecting 
them in the same way we could have in the real world. 
Simics even allows us the connection between the 
simulated machine and a real network, using the Simics 
Central module. Nevertheless, we have avoided the use of 
this Simics Central module in order to reduce the 
simulation time and increase the attainable maximum 
bandwidth: since Simics Central acts as a router, it limits 
the simulated effective bandwidth. This way, we have 
connected our two machines directly, something similar 
as using a crossover Ethernet cable in the real world. 
We have used two models in our simulations. The first 
one corresponds to the non-offloaded system, in which 
we have a Pentium 4 based machine running at 400 MHz 
(enough to have up to 1 Gbps at network level) having a 
scaled model avoiding to slow down the simulation work. 
We have used Simics NIC gigabit models in the 
BCM5703 PCI based Ethernet card included in our 
system. We have assumed a memory 10 times slower 
than the CPU. The model is shown in Figure 1. 
 

CPU 0 

MEM 0 

I / O PCI  
MEM PCI 

NIC 
BCM 5703 C 

Mapped in Simics Ethernet

North Bridge 0 

Onboard  
MEMORY 

Application  &  
CommunicationProcessing 

PCI BUS 

 
Figure 1. Model for non-offloading simulation 

 
With this model we have determined the maximum 

performance we can achieve using a simple machine with 
one processor, and no offloading effects. This way, the 
CPU of the system executes the application and processes 
the communication protocols. The maximum throughputs 
and the CPU loads for this model are shown in Section 4. 

In order to offload the protocols, and so discharge the 
protocol processing work from the CPU, we have used 
the model shown in Figure 2, corresponding to a system 
in which one of the processors has been isolated from the 
other and the NIC is connected directly to this CPU in 
order to improve the parallelism between application and 
network processes. In Simics, by default, the bridges 
merely act as connectors. In this case, they do not model 
any contention at simulation time. The way to simulate a 
contention model is through timing models, by 
connecting a timing model to each entry of the bridge 
where access contention is possible. This is not a precise 
way to model contention, but it provides an adequate 
simulation of the contention behaviour. Thus, in our 
model (Figure 2), the north bridge and the buses use 
timing models and do not only act as connectors. In the 
ideal case, where no timing models are used, 
transferences between CPUs and memory would not hold 
any other transference. 
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Figure 2. Model for offloading simulation 

 
On the other hand, in Simics, PCI I/O and memory 

spaces are mapped in the main memory (MEM0). So, at 
hardware level, transferences between these memory 
spaces would not necessarily require a bridge because 
Simics allows us the definition of a full-custom hardware 
architecture. We add a north bridge in our architecture in 
order to simulate a real and standard machine in which 
we can install a standard operating system (i.e.: Linux). 

The computer of Figure 2 includes two Pentium 4 
CPUs, a DRAM module of 128 MB, an APIC bus, a PCI 
bus with a Tigon-3 (BCM5703C) gigabit Ethernet card 
attached, and a text serial console. The use of a text serial 
console is due to a limitation in Simics that at the moment 
is not able to have more than one machine running over a 
single Simics instance with graphical consoles. It only 
can simulate and communicate several Simics instances 
through the Simics Central module. Furthermore, using 
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text serial consoles (thus avoiding the use of graphical 
consoles) we reach a faster simulation.  

Once we have two machines defined and networked, 
Simics allows an operating system to be installed over 
them. For our purposes we have used Debian Linux with 
a 2.6 kernel which will allow us the necessary support for 
our system architecture and the implementation of the 
required changes. 

On the operating system layer, we call a TCP/IP 
thread and it is bounded to the processor in the NIC. The 
above architecture makes possible the TCP/IP stack 
execution without disturbing the remaining processors of 
the host (CPU0 in this case). This way, we have isolated 
the processor in the NIC to remove it from cross-call 
participation. Furthermore, since the processor in the NIC 
and the host processor have their own memory spaces 
that can be accessed concurrently, the host processor is 
not slowed down by memory or bus traffic. 

IV. EXPERIMENTAL RESULTS 

In order to evaluate protocol offloading, we have used 
several Simics and operating system features, in a similar 
way that in [8]. This way, using the kernel 2.6 facilities 
such as cpuset objects, it is possible to assign a CPU to 
the communication subsystem, isolating it from any other 
load, running no other threads and receiving no 
interrupts. The cpuset objects make it possible to avoid 
attaching processes to the isolated CPU’s. They are Linux 
lightweight objects that allow us the machine partition. 
This applies to the CPUs as well as to the memory. Thus, 
the memory used by a cpuset object can be restricted to 
some of the nodes of a NUMA system. 

In this way, we had a system with a processor, CPU0, 
for running applications and the operating system 
processes and another processor, CPU1, for running the 
communication subsystem.  
 The goal using a full-system simulator is to examine 
the effect of parameters that could modify the offloading 
performance, such as the difference between speeds in the 
host and in the NIC CPUs. 

In order to test our model and evaluate offloading, we 
have used netpipe [27], which is a protocol-independent 
tool that measures the network performance in terms of 
the available throughput between two hosts. It consists of 
two parts: a protocol independent driver, and a protocol 
specific communication section. The communication 
section depends on the specific protocol used, since it 
implements the connection and transferring functions, 
whereas the driver remains the same. For each 
measurement, netpipe increments the block size 
following its own algorithm. For UDP measurements we 
have used netperf  [29]. 
 In our experiments we have used optimized network 
parameters in order to achieve the maximum throughput 
in every test, with or without offloading. For instance, we 
are using MTU 9000 (jumbo frames). Also we have used 
standard TCP windows, which sometimes produce 
oscillations in the throughput. This could be avoided 
using oversized TCP windows (i.e.: 256 Kbytes), but the 
maximum attainable throughput should not be affected.   

 
In the following graphs (Figure 3 and 4), we illustrate 

some experimental results using TCP or UDP protocols  
and a gigabit network. In Figure 3, the loads of CPU0 in 
the no-offloaded and offloaded cases are compared. 
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Figure 3. CPU load curves with and without offloading 

 
When the protocol is offloaded, the CPU0 load is 

lower as it only executes the application that generates 
data. When the CPU0 has to generate data and process 
the protocol, its load grows up to 90% of the maximum: 
the CPU0 is busy and there are not many cycles available 
for other tasks. 
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Figure 4. Decrease in the number of interrupts 

 
The curves of Figure 4 provide the benefit on CPU 

time associated to the interrupts when the communication 
protocol is offloaded. Thus, a 50% in the figure means 
that when the protocol is offloaded, CPU0 receives half 
of the interrupts that it received in the non-offloading 
case, and a 0% that with and without offloading, CPU0 
receives the same number of interrupts. 

TABLE I.   
LATENCY FOR DIFFERENT OFFLOADING ALTERNATIVES 

Offloading Latency (µs) 
1 24.4 
2 31.68 
4 42.53 
6 46.61 
10 120.54 

No Offloading 66.9 
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The decrease in the interrupts per second obtained 
with offloading is about 60% for TCP, and about 50% for 
UDP. So, with regards to the offloading effects in the 
overall performance, as more cycles are required for 
protocol processing, higher is the  improvement in the 
time spent in interrupt servicing (less interrupts and less 
CPU time spent processing them). Thus, as TCP requires 
more CPU cycles than UDP, the benefits are more 
apparent in the case of TCP. 

The results obtained with netpipe are shown in 
Figures 5 to 8. These graphs provide the throughput for 
each transfer block size and the maximum attainable 
throughput as well as the latency. 

 Figure 5 shows the Round Trip Time vs Block Size 
and Table 1 provides the latency, both measured with 
Netpipe. In the notation, Offload x, x is the number of delays, 
with respect to a reference value, to access memory from CPU1. 
So, Offload 2 means twice more delays in memory accesses 
from CPU1 than Offload 1. As we can see, memory latency 
is an important bottleneck in the communications path, 
and its effect is more noticeable for small packets. 
Therefore, the implementation of techniques that 
improves memory accesses, such as DMA or any 
improved DMA technique [30] are necessary in order to 
obtain benefits from any protocol offloading technique. 
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Figure 5. RTT on Gigabit Ethernet with and without offloading 

 
 

The experiments we have performed were done over 
Gigabit Ethernet, by using TCP as transport protocol. 
Higher throughputs do not imply lower latencies. In TCP, 
the latency depends on a lot of TCP configuration factors. 
In the test we have performed, TCP parameters have been 
optimized, and so, this is the reason why the 
improvement obtained with offloading could be less 
noticeable then other effects (such as throughput 
improvement). This can be seen in Figure 5. However, in 
Table 1, we can see the latency improvement and in 
Figure 6a the saturation point in both offloaded and non-
offloaded TCP cases, in which we can see how the 
saturation point depends on the offloading capabilities. In 
figure 6b we can see the improvement in latency. 
Nevertheless, latency and saturation point have a heavy 
dependence on TCP configuration such as TCP buffers, 
or the use of Nagle Algorithm. 

To obtain the results that show the improvements 
caused by offloading, we have modelled the effect of 
having a non-ideal connection between the CPU0 and 
CPU1. In order to simulate this, we have introduced the 
corresponding timing models in the NIC bus and in the 
memory accesses from the processor of the NIC.  

Figure 7 shows the throughput improvement for 
different offloading configurations. In Figure 8, it is 
shown the effect of the different speeds of CPU0 (host 
CPU) and CPU1 (NIC CPU). 
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Figure 6a. Saturation points for different offloading alternatives 
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Figure 6b. Saturation graph. Latency detail 
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Figure 7. Throughput improvement 

 
In Figure 7, the throughputs for different latency 

values in the NIC accesses are shown and as we can see, 
the memory latency is decisive in the performance 
obtained. The lower throughputs obtained in the case of 
small block sizes are due to the ACKs required by any 
TCP block transference. 

Figure 8 shows the effect of the technology of the 
NIC processor in the performance of protocol offloading. 
As this is one of the arguments to question the protocol 
offloading benefits, this analysis is interesting. In order to 
do the corresponding simulations, we have modified the 
step rate of the NIC processor. The curves in Figure 8 
correspond to the communication performance for NIC 
processors running at 75%, 50% and 25% of the host 
CPU.  
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Figure 8. Throughput for different NIC processor speeds 

 
As we can see form Figure 8, the speed of the processor 
at the NIC (CPU1) affects in a decisive way to the 
throughputs. The performance gets worse as the 
processor speed decreases. Moreover, in the case of a 
very slow NIC processor, the performance for protocol 
offloading is even worse than the performance without 
offloading. So, it is clear that offloading improves the 
communication performance only if the processor 
included in the NIC (CPU1) is sufficient fast compared 

with the system CPU (CPU0). Otherwise, offloading 
could even diminish the performance.  

V. CONCLUSSIONS 

In this paper we have considered the use of Simics to 
analyze protocol offloading. Although Simics presents 
some limitations and it is possible to use other simulators 
for our purposes, the resources provided by Simics for 
device modelling and the debugging facilities, make 
Simics an appropriate tool. Moreover, it allows a relative 
fast simulation of the different models.   
 The simulation results obtained shows the 
improvement provided by offloading heavy protocols like 
TCP, not only in the ideal case, in which we use ideal 
buses, but also in more realistic situations, in which 
memory latencies and non-ideal buses are modelled. 
Thanks to the Simics model, it is possible to analyse the 
most important parameters and the conditions in which 
offloading determines greater improvements in the 
overall communication performance. 
 The results obtained in the experiments we have done 
show throughput improvements in all the cases where the 
host the NIC processors have similar speed. Moreover it 
is shown that offloading releases the 40% of the system 
CPU cycles in applications with intensive processor 
utilization. On the other side, we also present results that 
show how the technology of the processor included in the 
NIC affects the overall communication performance. The 
behaviour we have observed in our experiments coincides 
with the analyses and conclusions provided in papers 
such as [20]. This situation constitutes an evidence of the 
correctness of our Simics model for protocol offloading. 
Nevertheless, we are now working in the quantitative 
analysis of our experimental results according to the 
expressions provided by the LAWS model [20] and the 
mapping of EMO model [21] onto LAWS.    
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