
Building Dependable and Secure Web Services
L. E. Moser,1 P. M. Melliar-Smith,1 and W. Zhao2

Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 1

Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, OH 44115 2

Email: {moser, melliar-smith}@ece.ucsb.edu, wenbing@ieee.org

Abstract— Web Services offer great promise for integrating
and automating software applications within and between
enterprises over the Internet. However, ensuring that Web
Services can satisfy their clients’ requests when their clients
need them is a real challenge. In this paper we describe
dependability technologies, including transparent SOAP
connection failover, replication, checkpointing and message
logging, in addition to reliable messaging and transaction
management for which there exist Web Services specifi-
cations. We also present security technologies, including
encryption and digital signatures for which Web Services
specifications exist, as well as other security technologies.
We discuss how these technologies can be applied to the
components of a typical Web Services architecture to render
business activities that span multiple enterprises dependable
and secure.

Index Terms— Availability, business activity, consistency,
dependability, fault tolerance, intrusion tolerance, reliability,
security, trust, Web Service

I. INTRODUCTION

Web Services [9] enable the software of different
enterprises to interact with each other, even if those
enterprises use different hardware, different operating sys-
tems and different programming languages. Web Services
can streamline business activities over the Internet by
invoking operations automatically that, otherwise, would
be invoked manually by a human through a browser
and by enabling direct computer-to-computer interactions
between the computers of different enterprises.

The potential widespread use and benefits of Web
Services are compelling, because they facilitate:

• Automation of business activities distributed across
multiple enterprises

• Collaboration among enterprises by coupling to-
gether the business processes running on their com-
puter systems.

Web Services create opportunities for efficient ecosystems
of consumers and suppliers, collaborating and competing
for products and services over the Internet. Web Services

This journal paper is based on the conference paper “Making Web
Services Dependable” by L. E. Moser, P. M. Melliar-Smith and W.
Zhao, which appeared in the Proceedings of the First IEEE International
Conference on Availability, Reliability and Security, Vienna, Austria
(April 2006). c©2006 IEEE.

This research has been supported in part by MURI/AFOSR Grant
F49620-00-1-0330 for L. E. Moser and P. M. Melliar-Smith at the
University of California, Santa Barbara, and by a faculty startup award
for W. Zhao at Cleveland State University.

can run not only on mainframe computers and server
computers but also on client desktop computers and
mobile handsets.

Figure 1 shows a simple example of a business activity
that spans multiple enterprises and that consists of multi-
ple Web Services. The customer (Company A) purchases
a product from a distributor (Company B) using a Web
Service. Company B, in turn, employs Web Services of
three other companies, a supplier (Company C), a credit
card company (Company D) and a shipper (Company E).

Despite their great promise, Web Services introduce
new problems into enterprise computing, in particular:

• Faults or intrusions in the computer system of one
enterprise can adversely affect another enterprise

• Data consistency, integrity and privacy are difficult
to maintain

• Lack of availability, reliability and security can
damage relationships between an enterprise and its
customers, suppliers and partners.

These problems become more challenging as business ac-
tivities become more automated, as Web Services trigger
other Web Services, and as business activities involve
more enterprises and more steps.

In this paper we discuss strategies and technologies
for solving these and other problems that arise when
implementing business activities as Web Services. We
note that, as business activities increase in size, avail-
ability can deteriorate substantially unless mechanisms
are employed to protect against faults. We also note that
compensating transactions incur a greater risk of database
inconsistency as business activities scale to large sizes.
We review existing standards for Web Services related
to dependability and security, and identify their strengths
and weaknesses. We describe various technologies for
increasing the dependability and security of Web Ser-
vices, including transparent SOAP connection failover,
replication, checkpointing, message logging, encryption
and digital signatures. Finally, we show how to apply
these technologies to a typical Web Services architecture.

II. THE NEED FOR DEPENDABILITY AND SECURITY

A. Availability and Reliability

To ensure that Web Services can satisfy their clients’
requests when their clients need them, all of the Web
Services of a business activity, and all of the components

14 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

© 2007 ACADEMY PUBLISHER

Company C
(supplier)

Web Service

Web services middleware

Company D
(credit card company)

Web Service

Web services middleware

Company E
(shipper)

Web Service

Web services middleware

Company A
(customer)

Company B
(distributor)

operating system
and other tiers

Web Service Client

Web services middleware

Web Service

Web services middleware

2. Check
availability

1. Request
a quote

3. Respond
with a quote

4.Order
the product

5. Make
payment

6. Provide
shipping
information

5. Make
payment

6. Arrange
shipping

operating system
and other tiers

operating system
and other tiers

operating system
and other tiers

operating system
and other tiers

Figure 1. Use of Web Services in a business activity that spans multiple enterprises.

of those Web Services, must be dependable and secure. If
one of the components of a Web Service is not available
or reliable, all of the other components will be affected.

Availability is the probability that, if service is re-
quested from a system, that service is provided. Infor-
mally, availability is a measure of the uptime of a system;
five nines (0.99999) availability means that there can be
at most 5.25 minutes of planned and unplanned downtime
per year. Reliability is a measure of the time to occurence
of a failure, including an incorrect result. In general,
reliability is more difficult to ensure and to analyze than
availability.

The availability of a business activity can be much
less than the availability of any of the components of
the Web Services that comprise that business activity, as
the following example shows.

In this example, we let n be the number of tiers in a
Web Services architecture within an enterprise and let m
be the number of Web Services of different enterprises
that are involved in a business activity. We assume that
n is the same for all of the enterprises and that m is the
same for all of the business activities. We assume further
that the processes within the different tiers and within the
different enterprises are independent.

We let p be the probability that the processes in any
one of the tiers within an enterprise fails. Then, 1 − p
is the probability that they do not fail. If all of the
processes within those tiers are operational at the start
of the business activity, then

q = (1 − p)mn

is the probability that no fault occurs. For example, if

p = 0.00001, m = 4 and n = 3, then the probability
that no fault occurs is q = (1− p)12. The values of q for
different values of 1 − p are shown in Figure 2.

For l independent business activities (e.g., l business
activities per day), the probability that no fault occurs in
any of them is given by

r = ql = (1 − p)lmn

With the same values of m and n as above, i.e., m = 4
and n = 3, and with 1−p = 0.99999, the probability that
no fault occurs is r = (0.99999)12l. The values of r for
different values of l are shown in Figure 2.

m = 4, n = 3

1-p q

0.9 0.282
0.99 0.886
0.999 0.9881
0.9999 0.9988
0.99999 0.99988

1 − p = 0.99999

l r

10 0.99880
100 0.98807
1000 0.88692
10000 0.30119
100000 0.00001

Figure 2. The availability q of a single business activity based on the
availability 1 − p of a single component, assuming m = 4 enterprises
and n = 3 tiers, and the availability r of a number l of business activities
for 1 − p = 0.99999.

Many business computer systems must process 100,000
business activities per day, and the probability of complete
success can be astonishingly low, as Figure 2 shows.
Because of the nature of Web Services and business
activities, all of the components of all of the Web Services
involved in a business activity must be highly available

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 15

© 2007 ACADEMY PUBLISHER

in order to achieve a high probability that all of the
business activities will complete successfully. Even with
careful programming and testing, it is unlikely that the
probability of a fault in a step of a business activity will be
reduced below 0.00001. Therefore, the required levels of
availability cannot be achieved realistically without fault
tolerance, recovery and retry, which must be regarded as
essential to make business activities using Web Services
available and reliable.

Data consistency is also crucial for Web Services,
where a business activity spans multiple enterprises over
the Internet and where detecting and correcting inconsis-
tencies is difficult, time consuming and expensive.

Transactions have been used successfully to maintain
data consistency within an enterprise. However, they have
been used much less in wide-area distributed systems.
One of the problems with distributed transactions based
on the Two Phase Commit (2PC) protocol is that the
participants incur the risk that their data will be locked,
and will become inaccessible, for an arbitrarily long
time, if the transaction coordinator fails. In theory, this
risk can be mitigated by a Three Phase Commit (3PC)
protocol or by replicating the transaction coordinator [24],
[43]. In practice, few transaction processing systems use
a 3PC protocol because of the high overheads in the
fault-free case, and because replication of the transaction
coordinator presents challenging problems as discussed
below. Moreover, transaction commit does not scale well
as the number of participants in the transaction increases.

Currently, business activities are typically implemented
using multiple local transactions, with compensating
transactions [11] to abort business activities that cannot be
completed. Unfortunately, compensating transactions are
difficult to design and program, have a high error rate,
and incur a high risk of data inconsistency.

Figure 3 shows the probability of potential inconsis-
tency for a business activity, for various rates of failure
of individual local transactions, when using compensating
transactions. Compensating transactions are assumed to
incur the same fault rate as regular transactions, although
realistically their fault rate is probably higher. Although
the risk of data being locked for a substantial period
of time (because the transaction coordinator failed) is

0 1 10 102 103 104 105 106 107 108 109

Number of Business Activities

1.0

0.8

0.6

0.4

0.2

0.0

P
ro

b
a
b

il
it

y
th

a
t

d
a
ta

b
a
s
e

b
e
c
o

m
e
s

p
o

te
n

ti
a
ll
y

in
c
o

n
s
is

te
n

t

10-3 10-4 10-5

10-6

Figure 3. The probability that a database is left in a potentially
inconsistent state after l business activities, for various rates of failure
of individual local transactions, when using compensating transactions.

unacceptable, the risk of data inconistency resulting from
the use of compensating transactions is even more unac-
ceptable. Consequently, mechanisms that prevent both the
locking of data by failed transactions, and potential incon-
sistency of data resulting from incorrect compensations,
are essential for reliable operation of business activities.

B. Security

Because Web Services operate in the open environment
of the Internet, security is a critical concern for business
activities implemented as Web Services.

Web Services expose interfaces and operations publicly,
which presents potential security problems. Web Services
use XML data formats with self-describing data elements,
which reveal to hackers how to interact with them. Web
Services are based on SOAP, which is based on HTTP,
which allows messages to pass through enterprise fire-
walls. Web Services publish information about how to
access and use their interfaces and operations in WSDL
files, which facilitates and attracts attacks.

In a Web Services environment, sensitive and personal
information (e.g., credit card numbers) and business in-
formation (e.g., customer contacts and employee names)
are transmitted as parameters of the Web Services. Con-
sequently, data privacy (confidentiality) and data integrity
are important.

Data privacy ensures that the contents of the data
transmitted between a sender and a receiver over the
Internet are not viewed by a third party. Data integrity
ensures that the data are neither damaged nor altered when
they are in transit between the sender and the receiver.

Encryption is typically used to provide data privacy
and data integrity for sensitive and personal information
before it is transmitted over the network. However, once
the data reaches the server, typically it is decrypted and
stored in a single place, where a malicious user might be
able to access it.

Authentication is used to verify that a person, a com-
puter, or a computer program, such as a Web Service, is
who or what it claims to be. Authentication can be used
to provide:

• Authorization, which determines whether a privilege
will be granted to a particular user

• Non-repudiation, which ensures that a user is not
able to deny having done something that was autho-
rized to be done.

In a Web Services environment, a Web Services provider
might be authenticated by the Web Services client before
the client invokes the Web Service and sends personal
information. The client might also be authenticated by
the Web Services provider before the provider executes
the Web Service and returns critical information to the
client in its reply.

Some clients might be authorized to invoke some op-
erations of a Web Service, whereas other clients might be
authorized to invoke other operations of the Web Service.
A preferred client might have its own endpoint to the

16 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

© 2007 ACADEMY PUBLISHER

Web Service, whereas less preferred clients might share
a single endpoint.

Traditional methods for non-repudiation, such as digital
signatures, are vulnerable to forgery. Digital transactions
are also potentially subject to fraud, e.g., when computer
system is broken into or infected with viruses. Participants
can claim such fraud to repudiate a transaction.

III. BACKGROUND

A. Web Services

Web Services standards [9] define the syntax of Web
Services documents, the format of messages, and the
means to describe and find Web Services. They do not
define implementation mechanisms or application pro-
gram interfaces, which remain proprietary to individual
vendors. Different vendors can implement Web Services
infrastructures in different ways. Thus, Web Services
standards provide interoperability between Web Services
that are implemented using different hardware, different
operating systems and different programming languages,
but they do not provide portability of application pro-
grams from one platform to another. The basic Web
Services standards comprise:

• The eXtensible Markup Language (XML), which
defines the syntax of Web Services documents, so
that the information in those documents is self-
describing.

• The Simple Object Access Protocol (SOAP) for
XML messaging and mapping of data types, so that
applications can communicate with one another.

• The Web Services Description Language (WSDL)
for describing a Web Service, its name, the oper-
ations that can be called on it, the parameters of
those operations, and the location to which to send
requests.

• The Universal Description Discovery and Integration
(UDDI) standard, which is used by the Registry
where providers publish and advertise their Web
Services, and clients query and search for Web
Services to discover what the services offer and how
to access them.

B. Dependability and Security

In [3] Avizienis, Laprie, Randell and Landwehr have
presented the basic concepts of, and a taxonomy of,
dependable and secure computing. We highlight some of
the key terminology and definitions below.

1) Replication: In dependable systems, replication
protects a server application against faults, so that if one
replica becomes faulty, another replica is available to
provide the service to the clients. Replication is typically
used for the crash fault model, which requires 2f + 1
replicas to tolerate up to f faulty replicas. The most
commonly used replication strategies are passive, active
and semi-active replication, which are summarized below.

• Passive replication: There is a single primary replica
that executes the operations invoked by the clients

on the server application, and one or more backup
replicas that do not execute those operations. The
replication infrastructure transfers a checkpoint of
the primary to the backups periodically or at the end
of each remote invocation.

• Active replication: All of the replicas execute the
operations invoked by the clients on the server
application independently and at approximately, but
not necessarily exactly, the same physical time. A
checkpoint is used only to bring up a new active
replica.

• Semi-active replication: Both the primary and the
backup replicas execute each invoked operation. The
primary provides directives (such as the order in
which messages are to be processed) to the backups.
The backups follow those directives and, thus, lag
slightly behind the primary in executing the oper-
ations. Only the primary communicates results and
invokes further operations.

2) Checkpointing: In dependable systems, checkpoint-
ing (i.e., recording the state of a replica) is used by
all replication strategies but in different ways. Passive
replication uses checkpointing during normal operation.
Active replication and semi-active replication do not use
checkpointing during normal operation, but they do use it
to initialize a new or recovering replica. The checkpoints
of an application process can be stored on disk, or they
can be transmitted to and stored on another processor.

If a fault occurs, the application process is restarted on
the same or a different processor and its state is restored
using the most recent checkpoint. There are two kinds of
checkpointing, namely, application-aware checkpointing
and application-transparent checkpointing.

• Application-aware checkpointing: The application
programmer implements getState() and setState()
methods. The getState() method captures particular
parts of the application state and encodes that state
into a byte sequence. The setState() method decodes
the byte sequence and restores the application state
from the checkpoint.

• Application-transparent checkpointing: The check-
pointing infrastructure uses operating system mech-
anisms [23] to capture the state of the application
process (including file descriptors, thread stacks,
etc), without the need for the application programmer
to implement the getState() and setState() methods.

There are two kinds of application-transparent check-
pointing, namely, full checkpointing and incremental
checkpointing:

• Full checkpointing: The checkpointing infrastructure
captures the entire memory image of the application
process (including file descriptors, thread stacks,
etc), without knowing the data structures of the
application program.

• Incremental checkpointing: The checkpointing in-
frastructure captures only those pages of the memory
image that have changed since the last checkpoint.
The infrastructure transmits the incremental check-

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 17

© 2007 ACADEMY PUBLISHER

point to the designated processor or disk, and the
incremental checkpoint is merged with the most
recent full checkpoint stored there.

3) Encryption: To provide data privacy (confiden-
tially), encyption is used to obscure information (e.g., hide
the contents of a message) so that it is unreadable without
special knowledge. To encrypt a message, the sender
can use a pre-established security key, or can generate a
symmetric key on-the-fly and include the key (encrypted
with the receiver’s public key) in the message.

The Secure Sockets Layer (SSL) is the most common
way of implementing data privacy. SSL provides public
key encryption using a public key and a private key. It
also supports authentication of the sender and, optionally,
authentication of the receiver.

However, SSL provides only a point-to-point security
solution. In a Web Services environment, where Web
Services are chained together and multiple enterprises
are involved, end-to-end security is required. Moreover,
SSL incurs a high overhead because it encrypts and
decrypts entire messages, when perhaps only some of the
information in the message needs to be encrypted.

4) Digital Signatures and Message Authentication
Codes: Each of these technologies is used to provide
authentication.

Digital signatures are typically implemented using pub-
lic key encryption. First, the sender produces a digest
of the message by hashing the message using a secure
hash function such as SHA1 [25] or MD5 [35]. Then,
the sender generates a digital signature using the sender’s
private key. When the receiver receives the encrypted
digested message, it decrypts the digest and transforms
the digest back to the original message using the sender’s
public key. The receiver can then be certain that the owner
of the private key signed the document. Using a message
digest (rather than the entire message) reduces the cost of
encryption and decryption.

For a digital signature to have validity, the receiver
must be confident that the key is owned by the entity that
the receiver thinks owns the key. To protect against an
imposter interacting with the receiver, a certificate issued
by a trusted Certificate Authority is often used to match
a public key with the actual entity.

A Message Authentication Code (MAC) is a short piece
of information that is used to authenticate a message. A
MAC differs from a digital signature in that the sender
and the receiver use a single secret key. The sender and
receiver of a message must agree on the key before
initiating communication. A MAC does not provide non-
repudication like a digital signature does.

C. Web Services Dependability and Security Standards

The Web Services community has published several
specifications related to reliable messaging, transaction
management and security.

1) Reliable Messaging: The Web Services Reliable
Messaging (WS-ReliableMessaging) specification [8] and

RMP

SOAP

HTTP

TCP

IP

RMP

SOAP

HTTP

TCP

IP

Web Service
Application

Client
Application

Figure 4. Reliable messaging protocol stack.

the Web Services Reliability (WS-Reliability) specifi-
cation [36] define application-level reliable messaging
protocols that operate over SOAP.

SOAP typically operates over HTTP, which in turn
operates over TCP, which operates over IP. Even though
TCP delivers messages reliably, and in order, to the Trans-
port Layer, there is no guarantee that SOAP messages
sent over HTTP are reliably delivered all the way up the
protocol stack to the destination application. If a SOAP
message is not delivered successfully (e.g., because it has
an incomplete address), the sender application receives
a response containing a SOAP fault element that gives
status or error information.

Both WS-Reliability and WS-ReliableMessaging pro-
vide reliable messaging for SOAP to the destination
application, using acknowledgments and retransmissions
with different quality of service levels, including at least
once, at most once, exactly once and source ordered
message delivery. Figure 4 shows the protocol stack,
where RMP stands for Reliable Messaging Protocol.

2) Transactions and Business Activities: The Web Ser-
vices specifications [10], [11], [12] for both short-running
transactions and long-running business activities that span
multiple enterprises aim to provide data consistency and
protection against faults.

The Web Services Transaction (WS-Transaction) spec-
ification [10] includes protocols for atomic distributed
transaction commitment, based on the Two Phase Commit
(2PC) protocol. Transaction processing based on the 2PC
protocol, as defined by the WS-Transaction specification,
provides data consistency for Web Services applications.
However, if the transaction coordinator fails and all of the
participants in the transaction have voted to commit but
have not received a commit from the coordinator, the 2PC
protocol blocks and requires the participants to wait for
the coordinator to recover, which can take an arbitrarily
long time.

The Web Services Business Agreement (WS-Business
Agreement) protocols [11] support long-running transac-

18 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

© 2007 ACADEMY PUBLISHER

tions that span multiple enterprises, are not two-phase,
and allow the business logic to determine whether the
business activity should roll forward or roll backward.

The Web Services Coordination (WS-Coordination)
specification [12] describes a framework for plugging in
protocols that coordinate the actions of distributed ap-
plications, including those that require strict consistency
and those that require agreement of only a proper subset
of the participants. A Web Service creates a context that
is used to propagate an activity to other Web Services
and to register for a particular coordination protocol. Par-
ticipants make heuristic decisions regarding the outcome
of transactions. However, continued processing without
waiting for coordinator recovery can compromise data
consistency.

3) Security: The XML Encryption specification [41]
builds on the Secure Sockets Layer (SSL) and provides an
end-to-end solution that addresses the drawbacks of SSL.
Using XML Encryption, a client can selectively encrypt
an XML element or its contents. Moreover, a client can
encrypt XML elements that are intended for different
parties using different keys. To reduce the overhead of
encryption and decryption, some XML elements might
not be encrypted at all.

The XML Digital Signatures specification [40] provides
of way to represent a digital signature in XML. With XML
Digital Signatures, a client can sign different parts of a
document using different digital signatures. Because the
digital signatures are in-line, the signed documents can
be easily archived and later retrieved.

The WS-Security specification [30] defines end-to-end
security mechanisms for SOAP. WS-Security achieves
integrity by attaching a digital signature of the sender to
the message. Moreover, it achieves privacy (confidential-
ity) by encrypting all or part of the message, often the
message body. In addition, it achieves authentication by
embedding a security token in the message.

More specifically, WS-Security defines a set of SOAP
extensions as XML structures that employ XML Encryp-
tion and XML Digital Signatures within the context of
SOAP messages. WS-Security specifies XML structures
for security claims and security tokens. A security claim
is a statement that a client (or a user) makes, such as
the client’s name, identity, key, rights and privileges. A
security token is a collection of security claims. The most
simple form of security token is the username/password
token, where the sender of the message specifies a user-
name and a password (typically in digest form), and the
receiver verifies it. WS-Security also defines a timestamp-
based mechanism to defend against replay attacks.

Several other Web Services specifications extend WS-
Security to include more comprehensive secure messaging
support. The Web Services Trust (WS-Trust) specification
[2] describes mechanisms for security token manage-
ment (issuance, renewal, revocation and verification) and
methods to establish trust relationships using the security
tokens. The Web Services Federation (WS-Federation)
specification [5] describes mechanisms that enable the

sharing of user identity and authentication information
across different trust domains, so that the target services
do not require the users’ local identities.

IV. DEPENDABILITY AND SECURITY TECHNOLOGY

Dependability and security technology can increase the
levels of availability, reliability, consistency and security
for Web Services. This technology includes reliable mes-
saging, replication, checkpointing and restoration, mes-
sage logging and replay, and transactions, as well as
security mechanisms, as discussed below (see also [22]).

Neither the WS-Reliability specification nor the WS-
Reliable Messaging specification addresses the topics of
message persistence and recovery from faults. However,
these mechanisms are essential for reliable operation
of business activities composed of one or more Web
Services, and they are tightly coupled to the reliable
handling of messages.

If a Web Service fails after a message has been
delivered to it and after it has acknowledged receipt
of the message but before it has fully processed the
message (e.g., because it has invoked a nested request),
the following actions are required.

• The recovering Web Service must be restored to the
checkpointed state it had at some moment preceding
the fault.

• The TCP connections must be restored.
• Messages received subsequent to checkpointing the

state must be replayed from a log on distributed or
persistent storage.

• Messages, generated by the recovering Web Service,
that have already been delivered to other Web Ser-
vices, must be detected and suppressed.

A. Reliable Messaging

WS-Reliability and WS-ReliableMessaging can be
readily extended to make the re-establishment of the
connections of a Web Service transparent to remote clients
and servers so that they do not need to reissue requests or
replies. We refer to this capability as transparent SOAP
connection failover.

Transparent SOAP connection failover involves the
reliable message header and body for a group or sequence
of messages and, in addition for WS-Reliability, the state
that was negotiated for the agreement, before transmitting
the messages in that set. The messages can be logged
on disk for local restart, or in the volatile memory of a
backup computer for failover to the backup computer.

B. Replication

Replication is used in fault-tolerant systems to protect
a server application against faults, so that if one replica
becomes faulty, another replica is available to provide
the service to the clients. As discussed previously, there
are several different replication strategies, namely, active,
passive and semi-active replication.

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 19

© 2007 ACADEMY PUBLISHER

The most challenging aspect of replication is main-
taining the consistency of the replicas, as operations are
invoked on the service, as the states of the replicas change,
and as faults occur. Replica consistency is obviously
critical for active and semi-active replication, which must
maintain the consistency of two or more concurrently
executing replicas. Less obviously, replica consistency is
also important for passive replication because a recovering
replica must repeat computations and communications
with other Web Services since the most recent chechpoint.
Those computations and communications must be consis-
tent with the prior computations and communications to
avoid disrupting other Web Services. Maintaining replica
consistency requires the sanitization of non-deterministic
operations and also the handling of side-effects, as dis-
cussed below.

C. Checkpointing and Restoration

Checkpointing is used by all replication strategies but
in different ways. Passive replication uses checkpointing
during normal operation. Active replication and semi-
active replication do not use checkpointing during normal
operation, but use it to initialize a new or recovering
replica.

The checkpoints of an application process can be stored
on disk, or can be transmitted to and stored on another
processor. If a fault occurs, the application process is then
restarted on the same or a different processor, and the
most recent checkpoint is used to restore the process to
the state it had at the time of the checkpoint.

For applications that involve multiple threads within a
process or data structures that contain pointers, it is dif-
ficult to implement the getState() and setState() methods
of application-aware checkpointing. On the other hand,
application-transparent checkpointing does not produce
checkpoints that are portable across hardware architec-
tures, because a checkpoint taken as a binary image
contains values of variables that differ for different ar-
chitectures, such as memory addresses.

D. Message Logging and Replay

For simple restart without replication or checkpointing,
and for all replication and checkpointing strategies, an
infrastructure that provides dependability must support
message logging and replay. Again, the messages can
be logged either in the memory of another processor
or on disk. However, logging the messages on disk and
subsequently replaying them from disk can adversely
affect performance.

For restart without either replication or checkpointing,
the entire message history (from the first message to
the most recent message in the set) must be retained
and all of the messages must be replayed to the new
or recovering replica. For replication and checkpointing,
only the messages since the most recent checkpoint need
to be replayed.

E. Sanitizing Non-Deterministic Operations

Extensive research has been undertaken on the topic
of sanitizing non-deterministic operations (see, e.g., our
previous work [31], [42]).

Messaging is one source of replica non-determinism,
because messages can be received by the replicas in
different orders, due to loss of messages and retrans-
missions, delays in the network, etc. To maintain replica
consistency, messages must be delivered to all of the
replicas reliably and in the same order. Such a message
delivery service is called atomic broadcast or atomic
multicast [16]. For passive replication, the infrastructure
must log messages on disk or in the memory of another
processor so that, if the primary replica fails, the messages
after the checkpoint can be replayed. For both active
and passive replication, the infrastructure must detect and
suppress duplicate invocations and duplicate responses.

Another source of replica non-determinism is multi-
threading. If two threads within a replica share data, they
must claim and release mutexes to protect that shared
data. However, the threads in different replicas will likely
run at slightly different speeds and, thus, they might
claim mutexes in different orders. To maintain replica
consistency, the mutexes must be granted to the threads
within the replicas in the same order.

Other sources of replica non-determinism include op-
erating system functions that return values local to the
processor on which they are executed, such as rand() and
gettimeofday(), or inputs for the replicas from different
redundant sources, or system exceptions due to, say,
exhaustion of memory on one of the processors. Such
sources of replica non-determinism must be sanitized,
so that all of the replicas see the same values of the
functions, the same inputs from the redundant sources,
and the same system exceptions. This sanitization must
be done, regardless of which replication strategy is used.

F. Handling Side-Effects

In addition to sanitizing non-deterministic operations,
side-effects that occur as the result of a client’s invoking
operations on a Web Service must be handled properly to
achieve replica consistency.

In particular, if a Web Service writes data to a file or
a database, those operations must be handled correctly.
The actions taken depend on whether each replica has
its own copy of the database or the file, or the replicas
have a single shared copy. Similarly, if a Web Service
sends messages to, or invokes operations on, other Web
Services, those operations can have side-effects that must
be handled properly.

G. Transactions and Business Activities

Within a single enterprise, transactions have been suc-
cessfully used to provide data consistency and to protect
data against faults by means of their ACID properties, as
discussed previously.

20 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

© 2007 ACADEMY PUBLISHER

Browser
Apache

Web Server

Client Tier

Application Servlet

Tomcat Servlet Engine

Axis SOAP Engine
Database

Database TierApplication Presentation Tier

JBoss Application Server

Application Logic Tier

Session Beans

Entity Beans

Application Logic

Middle Tier

Axis SOAP Engine

Figure 5. Three-tier Web Services architecture.

It is possible to achieve higher availability of Web
Services that employ transactions by using transactions
and replication together. In particular, by replicating the
transaction coordinator, the 2PC protocol can be rendered
non-blocking and exactly-once semantics can be provided
for the clients’ invocations. Moreover, by replicating the
middle-tier components and using transparent transaction
retry, roll-forward recovery can be achieved. We have
implemented an infrastructure for CORBA [43] that repli-
cates the transaction coordinator and also the middle-tier
application objects to protect the business logic processing
and to avoid potentially long service disruptions caused
by failure of the coordinator. A similar infrastructure for
Web Services can provide high availability, reliability and
data consistency.

H. Security Mechanisms

As described previously, WS-Security achieves mes-
sage authentication by embedding a security token in
the message. The most simple form of security token is
the username/password token. For better protection, more
sophisticated security tokens such as the SAML token [6],
Kerberos token [19] or X.509 token [20] can be used.

For many kinds of Web Services, the dependability
mechanisms and the secure messaging mechanisms de-
scribed above are sufficient. However, some mission-
critical Web Services, such as those used in financial
transactions (e.g., banking and stock trading) require a
higher degree of dependability and security, which can
be achieved by means of more sophisticated and stringent
mechanisms to handle, for example, intrusion attacks [39].

Instead of trying to prevent every single intrusion,
intrusion tolerance allows and tolerates them. Intrusion
tolerance is related to Byzantine fault tolerance [28],
which is used for the arbitrary fault model that requires
3f + 1 replicas to tolerate up to f faulty replicas. Like
conventional fault tolerance, the most effective approach
for achieving intrusion tolerance is to distribute the pro-
cessing and storage across a network of computers. The
mechanisms that ensure totally ordered message delivery
under the Byzantine fault model involve three phases of
message exchange between the replicas. The cost is sig-
nificantly higher than that of conventional fault tolerance.

Confidentiality (privacy) in the presence of intrusions
can also be realized through distribution. The concern
for confidentiality requires mechanisms beyond Byzantine

fault tolerance, because naive replication of secret data
across several sites is perceived to reduce confidentiality
(there are more sites available for penetration to gain ac-
cess to a secet). One promising approach is the separation
of secret processing from normal processing [45]. Secret
processing is carried out using a secret sharing scheme
such as the Fragmentation-Redundancy-Scattering (FRS)
method [18], and normal processing is replicated using
Byzantine fault tolerance mechanisms.

V. DEPENDABLE AND SECURE

WEB SERVICES ARCHITECTURES

Web Services applications are usually programmed
in Java or .Net. We refer here to a typical Java-based
implementation.

A three-tier Web Services architecture involves clients
in the first tier, a Web server, a servlet engine and/or a
J2EE application server in the middle tier, and a database
system in the third tier, as shown in Figure 5. The clients
communicate with the Web server and invoke operations
of the Web Service, which is deployed in a server-side
container. The server-side container can be a servlet con-
tainer such as Tomcat, or a container in a J2EE application
server such as JBoss or Geronimo. The Axis SOAP engine
works with both types of containers. Typically, there are
multiple clients and multiple Web servers that are used
for load balancing the clients’ requests.

In a typical Web Services use case, the client accesses a
Web page, which consists of HTML and Java Servlets or
JSP scripts. The client can make invocations by clicking
on one or more links provided in the Web page. Once a
request reaches the servlet engine, a servlet creates dy-
namic content for the Web page, and might also perform
simple business logic processing and communicate with
the database system. Applications that involve complex
business logic processing typically use a J2EE application
server. Multiple J2EE application servers might be used
to load balance the clients’ requests. The servlet creates
dynamic content for the presentation of the Web page
and communicates with the container, which contains
session beans that perform the business logic processing
and entity beans that correspond to the database records.

Within an enterprise, the components of a Web Service
can be made dependable and secure using the technology
discussed previously, as shown in Figures 6, 7 and 8 and
discussed below.

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 21

© 2007 ACADEMY PUBLISHER

RMP

SOAP

HTTP

TCP

IP

Client

RMP

SOAP

HTTP

TCP

IP

Primary
Web Server

RMP

SOAP

HTTP

TCP

IP

Backup
Web Server

FT FT

Figure 6. Fault-tolerant Web server.

A. Web Server

A Web server is sometimes regarded as “stateless” in
that it does not retain any application state between its
response to a client’s request and the client’s next request.
The application state is either stored in the database or
returned to the client in a URL or a cookie. However,
during the processing of a client’s request, the Web server
does maintain application state and also hidden internal
state, such as the progress of nested invocations or disk
accesses or the state of the connections with the servlet
engine or the database. The state that results from actions
that are visible to other processes must also be captured,
and restored if a fault occurs.

If the Web server fails while processing a client’s re-
quest, either the unreplicated Web server must be restarted
and the client must reissue the request, or the replicated
Web server must be failed over from the primary to a
backup on another processor, as shown in Figure 6. In the
latter case, the fault tolerance infrastructure must replay
the client’s requests to the restarted or backup Web server
after the checkpoint has been restored. In either case, the
Web server must not write the state to the database, or
send a response to the client, more than once.

In addition, the infrastructure at the servlet engine or
the J2EE application server must ensure that the restarted
or backup Web server receives its response messages
reliably and in the correct order, if the Web server fails.

B. Servlet

To achieve high availability, fault tolerance must be
provided for the containers and the servlets contained
within them using replication, checkpointing and message
logging, as shown in Figure 7.

Even if the state of the servlet application, such as the
state stored in a session object, is written to the database
before the servlet sends a response back to the Web server,
a checkpoint must be taken that includes the state within
the Tomcat containers, such as the connections with the
Web server and the J2EE application server or database
server. Subsequently, if the servlet engine fails while it
is processing a client’s request and interacting with the
J2EE application server or the database server, the servlet

engine must be brought back up or failed over to a
backup servlet engine, its state must be restored from the
checkpoint, and the messages after the checkpoint must
be replayed.

C. J2EE Application Server

Some three-tier Web Services architectures use J2EE
application servers. The J2EE standard derives from the
CORBA standard, and mandates the use of CORBA’s
Internet Inter-ORB Protocol (IIOP). The CORBA Ob-
ject Transaction Service [33] provides data consistency
through atomic commitment of distributed transactions.
The Fault Tolerant CORBA standard [32] provides high
availability by replicating the application objects. Several
implementations of Fault Tolerant CORBA exist (see, e.g.,
[31], [42]).

Fault tolerance must be provided for the J2EE con-
tainers and the beans contained within them, as shown
in Figure 7, even if the application is coded as one
or more transactions with roll backward recovery and
the beans are entity beans whose states are stored in a
database. Again, the reason is that the J2EE container
contains considerable hidden internal state. If application-
transparent checkpointing is used, the interactions and
overlap between the checkpoint of the J2EE container
process and the states of the entity beans stored in the
database must be reconciled.

D. Transaction Coordinator

To achieve both high availability and data consistency
for transaction-based applications, the transaction coordi-
nator must be replicated. Replication of the transaction
coordinator renders the 2PC protocol non-blocking and
achieves exactly-once semantics for the clients’ invoca-
tions [24]. Furthermore, if the middle-tier servers are also
replicated and transparent transaction retry is used, roll-
forward recovery can be achieved [43].

E. Database Server

Much work has been done on improving the reliability
and availability of database systems. Vaysburd [38] has
provided an excellent survey of commercial packages that
provide fault tolerance for database systems, with respect
to such requirements as persistence, data consistency and
availability of service.

F. UDDI Registry

The UDDI Registry that contains the WSDL descrip-
tions is critically important in providing dependability for
Web Services. If a Web Service fails, a client can query
the Registry to obtain the latest information on the Web
Service. If the latest binding information is different from
the binding information used by the failed Web Service,
a client can retry the Web Service with the new binding.
Similarly, if the original Web Service invocation exceeded
a timeout or the timeout changed, a client can retry the

22 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

© 2007 ACADEMY PUBLISHER

Web
Server

W2

Web
Server

W1

Servlet/JSP
Engine

S1

Servlet/JSP
Engine

S2

J2EE
Server

E1

J2EE
Server

E2
Database

D2

Database
D1

Client
Browser

A

Client
Browser

B

Client
Browser

C

Unreplicated
Clients

Replicated
Servers

Tier1 Tier2 Tier3

Figure 7. Fault-tolerant three-tier Web Services architecture.

Web Service with the new timeout. If the retry is not
successful, a client can use the Registry to select another
provider of a similar Web Service.

Consequently, the UDDI Registry must be readily
available for the clients that are looking for the WSDL
descriptions of the Web Services that they need. Avail-
ability of the UDDI Registry can be achieved using the
replication, checkpointing and message logging technol-
ogy, described above. Realizing that the availability of
the UDDI Registry is critically important, OASIS has
published a specification for lazy replication of the UDDI
Registry [15], where the updates are propagated point-to-
point from one replica to another replica.

G. Business Activities

Distributed transactions based on the 2PC protocol are
seldom used for business activities that span multiple
enterprises, because they unavoidably involve one enter-
prise’s locking the data records of another enterprise.
Instead, extended transactions, as defined by the WS-
BusinessActivity [11] and WS-Coordination [12] specifi-
cations, are used. Extended transactions typically involve
local transactions and compensating transactions [11] that
offset committed local transactions when a business ac-
tivity is rolled back. However, compensating transactions
can have undesirable effects, such as one transaction’s
seeing the results of another transaction before the com-
pensating transaction is applied.

In [44] we presented a reservation-based extended
transaction protocol for Web Services that coordinates
business activities and that avoids the use of compensat-
ing transactions. Each task within a business activity is
executed as two steps. The first step involves an explicit
reservation of resources according to the business logic.
The second step involves the confirmation or cancellation
of the reservation. Each step is executed as a separate
traditional transaction.

H. Proxy Server Architecture

In the proxy server architecture, shown in Figure 8, a
proxy server acts as an intermediary between the client

and the Web Services. The proxy server accepts incoming
calls from the client and invokes one or more Web
Services to fulfill the client’s request. If one of those
Web Services is not available, the proxy server invokes
an alternate Web Service that provides a similar service.

The proxy server can itself be a Web Service that wraps
or invokes the underlying Web Services. Alternatively, it
can be a servlet that accepts HTML or XML data, parses
the data, invokes the required Web Services, and returns
the results to the client as HTML or XML.

The proxy server architecture is particularly useful for
mobile clients, where the communication between the
mobile client and the proxy server is over a cellular
or wireless network, and the communication between
the proxy server and the Web Services is over a wired
network. By not using SOAP or XML between the mobile
client and the proxy server, the power consumed by the
mobile client, the latency seen by the client, and the
bandwidth used by the client are reduced.

I. Security Strategies

As discussed previously, security requires an end-to-
end solution, which involves not only technologies but
operational processes. The entire path that the data takes
is important, not only the exchange of data between the
client and the Web Service.

Encryption is used to ensure confidentiality (privacy)
of a client’s sensitive and personal information when it
is transferred across the network as parameters of a Web
Service. When the encrypted data reaches the server, it
is decrypted. Some businesses store the data in-the-clear
within a flat text file, and perhaps back up the data on
another disk drive. They might also forward the data in-
the-clear to another business or to a human.

Several different strategies exist for making this data
handling and forwarding more secure. One strategy is for
the server to encrypt the information before it stores or
forwards the data. Another strategy is for the client to
encrypt the data in such a way that the receiving server
can decrypt only part of it. Partial decryption, as is done in
XML Encryption, allows the receiving server to read only

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 23

© 2007 ACADEMY PUBLISHER

Client Proxy
Server

Travelocity
Travel

Service

Expedia
Travel

Service

Orbitz
Travel

Service

Trip to
New York
Monday

7:40am
$550

7:40am
$550

Trip to
New York
Monday

Trip to
New York
Monday

No response

Figure 8. The proxy server architecture.

certain information, such as routing information, so that
the rest of the information can be forwarded as encrypted
data to the appropriate party.

Authentication of Web Services can be provided using
several different strategies, which can be categorized as
system-level and application-level strategies.

System-level strategies do not require custom appli-
cation programming of the Web Service or changes to
the Web Service if the authentication strategy is changed.
The operating system, the middleware or the Web server
handles the authentication and authorization prior to for-
warding the SOAP request to the Web Service. System-
level strategies are typically based on credentials (user-
names/passwords) or digital certificates.

Application-level strategies require custom develop-
ment, and modification when the authentication mecha-
nism changes. Application-level strategies are based on
credentials included in the SOAP message header or body.
If the credentials are part of the SOAP message body,
the invoked Web Service must parse the credentials, as
well as implement the authentication and authorization
mechanisms. If the credentials are part of the SOAP
message header, a service other than the invoked Web
Service can parse and authorize the invocation.

VI. RELATED WORK

As discussed previously, there are a number of Web
Services standards that relate to dependability and secu-
rity, some of which have been implemented in widely
deployed Web Services middleware such as WebLogic,
WebSphere, JBoss and Apache.

In [34] Pallickara, Fox and Pallickara have provided
an excellent analysis of the WS-Reliability and WS-
ReliableMessaging specifications. They identify the sim-
ilarities and differences of the two specifications, and
recommend extensions to the protocols to ensure ordered
delivery across sets of messages and across multiple
destinations. They also discuss how the two specifications
might be used together. We have discussed deficiencies of

those specifications and have described mechanisms that
can be used to overcome them.

Aghdaie and Tamir [1] have investigated failover of
connections for Web servers (not Web Services) and
replay of messages for Web servers up to the HTTP layer
of the protocol stack, by modifying the Linux kernel
and the Apache Web server. Their work is similar to
our transparent TCP connection failover [26], which is
intended for general kinds of applications, including Web
Services. However, implementing failover support in the
operating system kernel is not portable across different
operating systems.

Several researchers have undertaken extensive research
on the topic of sanitizing non-deterministic operations
in order to maintain replica consistency (see, e.g., our
previous work [31], [42]). In particular, messages must be
delivered to the replicas reliably and in the same order,
which is called atomic broadcast or atomic multicast [16].
Recognizing this need, the Java Messaging Service (JMS)
has been extended to provide atomic multicast [27].

Hanik [21] has described in-memory session replication
for the Tomcat servlet engine that uses the Java Groups
group communication toolkit. His strategy exploits Java’s
serializability to checkpoint and restore session state, but
restricts what can be put into a session object to ensure
serializability. Moreover, his approach stores request data
in decentralized sources, such as temporary files, which
can result in data inconsistencies.

Bartoli, Prica and di Muro [7] have presented a frame-
work for program-to-program interaction across unreli-
able networks and an implementation in a Tomcat servlet
container. Their prototype is based on replication of
HTTP client session data and replication of a counter.
It provides the same consistency guarantees as a non-
replicated service with respect to the order of execution
requests. Moreover, it ensures that, even if a client issues
duplicate requests (e.g., because of a fault), the service
executes the client’s request at most once.

24 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

© 2007 ACADEMY PUBLISHER

Babaoglu, Bartoli, Maverick, Patarin and Wu [4] have
described a framework for prototyping J2EE replication
algorithms. They divide the replication code into two
layers, the framework which is common to all replication
algorithms and a specific replication algorithm which is
plugged into the framework.

Sun, Lin and Kemme [37] have implemented the OA-
SIS lazy replication strategy for the UDDI Registry, men-
tioned previously, as well as an eager replication strategy.
The eager replication strategy is based on middleware that
employs a multicast group communication protocol. They
provide response time, propagation time and execution
results for both lazy and eager replication in a LAN and
in a WAN.

Intrusion tolerance has been an active research topic
in recent years [13], [14], [18], [39], [45]. However,
research on intrusion-tolerant Web Services is rare. The
most relevant work is that of Merideth, et al. [29], who
have implemented a Byzantine fault-tolerant infrastructure
for Web Services applications. Their implementation is
based on the C++ library for Byzantine fault tolerance
described in [14], which uses a proprietary UDP-based
communication protocol. The major advantages of Web
Services are interoperability and extensibility; the use of
a proprietary messaging protocol negates both of them.
Moreover, no attempt is made to tackle the issue of
confidentiality.

VII. CONCLUSION

If Web Services are to achieve their objective of au-
tomating business activities across multiple enterprises,
they must be made dependable and secure. The existing
Web Services reliable messaging, transactions, business
activity and security specifications must be augmented
with additional mechanisms to provide higher levels of
dependability and security.

In this paper we have described various technologies
for increasing the dependability and security of Web
Services, including transparent SOAP connection failover,
replication, checkpointing, message logging, encryption
and digital signatures. We have also shown how to apply
these technologies to a typical Web Services architecture.

Some of the dependability and security technologies
discussed in this paper incur high computation and com-
munication overheads and, thus, are not ready for practical
use. Moreover, there exist other dependability and security
issues that need to be addressed, such as how to preserve
confidentiality in the case of intrusion attacks.

ACKNOWLEDGMENT

The authors wish to thank the reviewers for their
valuable comments.

REFERENCES

[1] N. Aghdaie and Y. Tamir, “Implementation and evaluation
of transparent fault-tolerant Web Service with kernel-level
support,” Proceedings of the IEEE International Confer-
ence on Computer Communications and Networks, Miami,
FL, October 2002, 63-68.

[2] S. Anderson, et al., “Web Services trust language,”
version 1.1, February 2005, http://www-128.ibm.com/
developerworks/library/specification/ws-trust/.

[3] A. Avizienis, J. C. Laprie, B. Randell and C. Landwehr,
”Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable and Secure
Computing 1, 1, January-March 2004, 11-33.

[4] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin and H.
Wu, “A framework for prototyping J2EE replication algo-
rithms,” Proceedings of the International Symposium on
Distributed Objects and Applications, Agia Napa, Cyprus,
October 2004, 1413-1426.

[5] S. Bajaj, et al., “Web Services federation language,”
version 1.0, July 2003, http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnglobspec/html/ws-federa-
tion.asp.

[6] A. Barbir, M. Gudgin, M. McIntosh and K. S. Morri-
son, “SAML token profile,” version 1.0, January 2006,
http://www.ws-i.org/Profiles/SAMLTokenProfile-1.0.html.

[7] A. Bartoli, M. Prica and E. A. di Muro, “A replica-
tion framework for program-to-program interaction across
unreliable networks and its implementation in a servlet
container,” Concurrency and Computation: Practice and
Experience 18, 7, June 2006, 701-724.

[8] R. Bilorusets, et al., “Web Services reliable messaging,”
February 2005, http://www-128.ibm.com/developerworks/
webservices/library/ws-rm/.

[9] D. Booth, H. Hass, F. McCabe, E. Newcomer, M. Cham-
pion, C. Ferris and D. Orchard, “Web Services architec-
ture,” February 2004, http://www.w3.org/TR/ws-arch.

[10] L. F. Cabrera, et al., “Web Services transaction,” August
2002, http://www.ibm.com/developerworks/library/ws-
transpec/.

[11] L. F. Cabrera, et al., “Web Services business ac-
tivity framework,” January 2004, http://www.ibm.com/
developerworks/library/ws-busact/.

[12] L. F. Cabrera, et al., “Web Services coordination,” Septem-
ber 2003, http://www.ibm.com/developerworks/library/ws-
coor/.

[13] C. Cachin and J. Poritz, ”Secure intrusion-tolerant repli-
cation on the Internet,” Proceedings of the 2002 Interna-
tional Conference on Dependable Systems and Networks,
Washington, D.C., June 2002, 167-176.

[14] M. Castro and B. Liskov, “Practical Byzantine fault tol-
erance and proactive recovery,” ACM Transactions on
Computer Systems 20, 4, 2002, 398-461.

[15] L. Clement, et al., “UDDI replication specification,”
version 2.03, July 2002, http://uddi.org/pubs/Replication-
V2.03-Published-20020719.pdf.

[16] X. Defago, A. Schiper and P. Urban, “Total order broadcast
and multicast algorithms: Taxonomy and survey,” Comput-
ing Surveys 36, 4, December 2004, 372-421.

[17] Y. Deswarte, N. Abghour, V. Nicomette and D. Powell,
”An intrusion-tolerant authorization scheme for Internet
applications,” Proceedings of the 2002 International Con-
ference on Dependable Systems and Networks, Washing-
ton, D.C., June 2002, C-1.1 - C-1.6.

[18] Y. Deswarte, L. Blain and J. Fabre, “Intrusion tolerance in
distributed computing systems,” Proceedings of the IEEE
Symposium on Research in Security and Privacy, Oakland,
CA, 1991, 110-121.

[19] P. Griffin, C. Kaler, P. Hallam-Baker and R. Monzillo,
“Web services security Kerberos token profile 1.1,” OASIS
specification, February 2006.

[20] P. Hallam-Baker, C. Kaler, R. Monzillo and A. Nadalin,
“Web services security X.509 certificate token profile,”
OASIS specification 200401, March 2004.

[21] F. Hanik, “In-memory session replication with Tomcat 4,”
April 2002, http://www.TheServerSide.com.

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 25

© 2007 ACADEMY PUBLISHER

[22] D. Ingham, S. Shrivastava and F. Panzieri, “Constructing
dependable Web Services,” IEEE Internet Computing 4, 1,
January/February 2000, 25-33.

[23] G. Janakiraman, J, Santos, D. Subhraveti and Y. Turner,
“Cruz: Application-transparent distributed checkpoint-
restart on standard operating systems,” Proceedings of the
IEEE International Conference on Dependable Systems
and Networks, Yokohama, Japan, June 2005, 260-269.

[24] R. Jimenez-Peris, M. Patino-Martinez, G. Alonso and
S. Arevalo, “A low-latency non-blocking commit ser-
vice,” Proceedings of the International Conference on
Distributed Computing, Lisbon, Portugal, October 2001,
93-107.

[25] D. Eastlake and P. Jones, “US Secure Hash Algorithm
1 (SHA1)”, RFC 3174, September 2001, http://www.
faqs.org/fcs/rfc3174.html.

[26] R. Koch, S. Hortikar, L. E. Moser and P. M. Melliar-Smith,
“Transparent TCP connection failover,” Proceedings of the
IEEE International Conference on Dependable Systems
and Networks, San Francisco, CA, June 2003, 383-392.

[27] A. Kupsys, S. Pleisch, A. Schiper and M. Wiesmann,
“Towards JMS compliant group communication,” Proceed-
ings of the IEEE International Symposium on Network
Computing and Applications, Cambridge, MA, August
2004, 131-140.

[28] L. Lamport, R. Shostak and M. Pease, “The Byzantine
generals problem,” ACM Transactions on Programming
Languages and Systems 4, 3, 1982, 382-401.

[29] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvel-
lou and P. Narasimhan, “Thema: Byzantine-fault-tolerant
middleware for Web service applications,” Proceedings of
the 24th IEEE Symposium on Reliable Distributed Systems,
Orlando, FL, October 2005, 131-140.

[30] A. Nadalin, C. Kaler, P. Hallam-Baker and R. Monzillo,
“Web services security: SOAP message security 1.0,”
OASIS specification 200401, March 2004.

[31] P. Narasimhan, L. E. Moser and P. M. Melliar-Smith,
“Strongly consistent replication and recovery of fault-
tolerant CORBA applications,” Computer Science and En-
gineering Journal 17, 2, March 2002, 103-114.

[32] Object Management Group, “Fault Tolerant CORBA,”
OMG Technical Committee Document formal/02-06-59,
Chapter 23, CORBA/IIOP 3.0, 2000, http://www.omg.org.

[33] Object Management Group, “Transaction Service Spec-
ification,” v1.2, OMG Technical Committee Document
ptc/2000-11-07, 2000, http://www.omg.org.

[34] S. Pallickara, G. Fox and S. L. Pallickara, “An analysis of
reliable delivery specifications for Web Services,” Proceed-
ings of the IEEE Conference on Information Technology,
Las Vegas, NV, April 2005, 360-365.

[35] R. Rivest, “The MD5 message-digest algorithm,” RFC
1321, April 1992, http://www.faqs.org/rfcs/rfc1321.html.

[36] T. Rutt, M. Peel, D. Bunting, K. Iwasa and J. Du-
rand, “Web Services reliability,” August 2004, http://oasis-
open.org/committees/ tc home.php?wg abbrev=wsrm.

[37] C. Sun, Y. Lin and B. Kemme, “Comparison of UDDI
registry replication strategies,” Proceedings of the IEEE
International Conference on Web Services, San Diego, CA,
July 2004, 218-225.

[38] A. Vaysburd, “Fault tolerance in three-tier applications:
Focusing on the database tier,” Proceedings of the IEEE
Symposium on Reliable Distributed Systems, Lausanne,
Switzerland, October 1999, 322-327.

[39] P. Verissimo, N. Neves and M. Correia, “Intrusion-tolerant
architectures: Concepts and design,” Lecture Notes in
Computer Science 2677, 2003, 90-109.

[40] W3C, “XML signature syntax and processing, February
2002, http://www.w3.org/TR/xmldsig-core/.

[41] W3C, “XML encryption syntax and processing,” Decem-
ber 2002, http://www.w3.org/TR/xmlenc-core/.

[42] W. Zhao, L. E. Moser and P. M. Melliar-Smith, “Design
and implementation of a pluggable fault tolerant CORBA
infrastructure,” Cluster Computing, Special Issue on De-
pendable Distributed Systems 7, 4, October 2004, 317-330.

[43] W. Zhao, L. E. Moser and P. M. Melliar-Smith, “Uni-
fication of transactions and replication in three-tier ar-
chitectures based on CORBA,” IEEE Transactions on
Dependable and Secure Computing 2, 1, January-March
2005, 20-33.

[44] W. Zhao, L. E. Moser and P. M. Melliar-Smith, “A
reservation-based coordination protocol for business activ-
ities” Proceedings of the IEEE International Conference
on Web Services, Orlando, FL, July 2005, 49-56.

[45] L. Zhou, F. Schneider and R. van Renesse, “COCA:
A secure distributed online certification authority,” ACM
Transactions on Computer Systems 20, 4, 2002, 329-368.

ABOUT THE AUTHORS

Louise E. Moser is a professor in the Department of Electrical
and Computer Engineering at the University of California, Santa
Barbara. At SRI International, she was a key contributor to the
design verification of the Software-Implemented Fault-Tolerant
(SIFT) reliable aircraft control computer. Dr. Moser has served
as an associate editor for IEEE Transactions on Computers
and an area editor for IEEE Computer magazine in the area
of networks and on numerous conference program committees.
She is an active participant in various standards organizations,
including the Service Availability Forum, where she was an
editor of the Application Interface Specification. Her research
interests include distributed systems, computer networks and
fault tolerance. Dr. Moser has served as principal investigator
for many R&D projects, and is the author or coauthor of more
than 230 publications. She received a Ph.D. in Mathematics from
the University of Wisconsin, Madison.

P. M. Michael Melliar-Smith is a professor in the Department
of Electrical and Computer Engineering at the University of
California, Santa Barbara. At GEC Computers in England, Dr.
Melliar-Smith was principal designer of the GEC 4080, which
won the Queen’s Award for Innovation. At the University of
Newcastle upon Tyne, he invented the definitions of fault, error
and failure, as well as the recovery block method for software
fault tolerance. As Senior Computer Scientist and Program
Director at Stanford Research Institute, he was involved in
the design of the Software-Implemented Fault-Tolerant (SIFT)
aircraft flight control computer. Dr. Melliar-Smith has served as
principal investigator for many R&D projects, and has authored
or coauthored more than 250 publications. His research interests
span the areas of distributed systems, communication networks
and protocols, and fault tolerance. He received a Ph.D. in
Computer Science from the University of Cambridge, England.

Wenbing Zhao is an assistant professor in the Department of
Electrical and Computer Engineering at Cleveland State Uni-
versity. His research interests span the fields of fault tolerance,
security, computer networks and distributed systems. He has
authored or coauthored more than 40 conference and journal
publications. One of his papers won the best paper award
in the International Symposium on Performance Evaluation of
Computer and Telecommunication System in 2002. Dr. Zhao
received the Ph.D. in Electrical and Computer Engineering from
the University of California, Santa Barbara.

26 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

© 2007 ACADEMY PUBLISHER

