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Mura Anteo Zamboni 7, I-40127 Bologna, Italy.
Email: cguidi@cs.unibo.it

Roberto Lucchi
European Commission, DG Joint Research Centre, Institute for Environment and Sustainability,

Spatial Data Infrastructures Unit,
T.P. 262, I-21020 Ispra (VA), Italy.

Email: roberto.lucchi@jrc.it

Abstract— The usual scenario of service oriented systems is
characterized by several services offering the same function-
alities, by new services that are continuosly deployed and
by other ones that are removed. In this context it can be
useful to dynamically discover and compose services at run-
time. Orchestration languages provide a mean to deal with
service composition, while the problem of fulfilling at run-
time the information about the involved services is usually
referred to as open-endedness. When designing service-based
applications both composition and open endedness play a
central role. Such issues are strongly related to mobility
mechanisms which make it possible to design applications
that acquire, during the execution, the information which
are necessary to invoke services. In this paper we discuss
the forms of mobility for the service oriented computing
paradigm. To this end we model a service by means of the
notions of interface, location, internal process and internal
state, then we formalize a calculus supporting the mobility
of each element listed above. We conclude by tracing a
comparison between the proposed calculus and the mobility
mechanisms supported by the Web Services technology.

Index Terms— Service oriented computing, mobility mecha-
nisms, formal methods, Web services.

I. I NTRODUCTION

Service Oriented Computing is an emerging paradigm
where services are platform independent autonomous
computational entities that, by means of standard pro-
tocols, support interoperability thus allowing to design
new and more complex services out of simpler ones. Or-
chestration languages [1]–[3] provide a mean to program
new services whose functionalities are implemented by
exploiting existing services. In particular, the workflow is
programmed from the perspective of a single endpoint
which orchestrates the invocations of all the involved
services and collects/elaborates all the corresponding re-
sults. Althought the activity is distributed over the system
the orchestrating process holds the execution state in a
centralized way.

Research partially funded by EU Integrated Project Sensoria, contract
n. 016004.

The usual context for service oriented computing is
characterized by the fact that new services can appear as
well as other ones can disappear during the evolution of
the system, and by the fact that a number of services offer
the same functionalities. In this scenario it can be useful to
select at run-time the specific service to be invoked among
the available ones. Moreover, there are other cases where
it is not possible to statically know the exact location of a
service which is to be invoked. For instance, consider the
case of a system where an administrative application up-
dates the software product versions of clients; it could be
organized as it follows. Each client is equipped of aclient
service which provides the software update functionality,
the administrative application is composed by asoftware
manager service and anupdate service. Thesoftware
manager service invokes theupdate one by passing the
list of clients which have to be updated, then theupdate
service invokes the software update functionality of all
the listedclient services. Since it is realistic to suppose
that the set of all clients changes during the evolution
of the whole system, theupdate service does not know
at design time the locations of the clients, thus it needs
to acquire them at run-time and in particular when it is
invoked by thesoftware manager service. The problem
of composing services that are not completely known at
design time is usually referred to asopen endedness.

In order to deal with open endedness the paper lists
and discusses the several forms of mobility for the service
oriented computing paradigm. In particular we proceed as
it follows: i) we define the service by logically classifying
the aspects that compose it, ii) we reason on the meaning
of supporting the mobility of such aspects, and iii) we
present a service-based calculus equipped with mobility
mechanisms. In particular, we characterize a service by
means of four components: thelocation, the internal
process, the interface and theinternal state. The location
expresses where the service is deployed and then avail-
able, the internal process represents the program which
implements and permits to supply the service functional-
ities, the interface represents the access points the service
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can use to interact with other ones and, finally, the internal
state represents the information the service internally
holds. The definition we propose is not pertaining to
a particular technology thus it permits to reason about
mobility without referring to a specific technology. We
discuss four kinds of mobility: the location mobility, the
internal process mobility, the interface mobility and the
internal state mobility. Once having discussed each of
them we proceed by presenting a service-based calculus
equipped with mobility mechanisms supporting all the
forms of mobility listed above.

Such a calculus, equipped of an operational semantics,
is an extension of a previous work [4], [5] obtained by
introducing the notions of service location and of tem-
plate. Templates define typed message structures which
are used to define the expected message types of each
access point of the service interface. Finally, we trace
a comparison between the mobility forms we propose
and the ones supported by the Web service technology
which is the most credited proposal for service oriented
computing. It emerges that the technology supports only
internal state mobility and location mobility. Moreover,
a section is dedicated to investigate the request-response
interaction pattern mechanism supported by the Web
service technology which seems to be weaker than the
common interpretation of the request-response interaction
pattern behavior.

The paper is structured as it follows. Section II defines
a service and reasons about the meaning of the vari-
ous forms of mobility that could be supported between
services. Section III presents the service-based calculus
supporting mobility mechanisms and its operational se-
mantics. Section IV compares the mobility mechanisms
we propose with the Web services technology. Section V
concludes the paper with some final remarks.

II. SERVICES FORMALIZATION AND MOBILITY

MECHANISMS

This section is devoted for deducing the basic concepts
of services and introducing the mobility mechanisms they
deal with.

A. Communication mechanisms

Service oriented computing is a message based para-
digm where messages must be seen as structured con-
tainers of typed data. Here we start by considering a
single data type we nameinformation which represents
a general information exploited by a SOC application.
In the following we will introduce additional data types
which will be exploited to support mobility; in particular
the location, operation, template and process data types.
Informally, locations univocally identify the services in
the system, operations and templates define the interface
of services and, finally, processes represent the internal
behavior of services. For the sake of this paper we abstract
away from a detailed classification of types even if it
is possible to refine types classification by considering

other data types (e.g. integer, float, string). As far as the
message structure is concerned, for the sake of generality,
here we consider a flat structure where messages are
seen as arrays of typed data. In the following message
structures will be described by introducing the notion
of messagetemplate. A template describes the expected
sequence of data types contained within a message.

Let inf be the type denoting the generic information,
T , ranged over by~t, be the set of templates defined as
arrays of type elements. For example~t′ = 〈inf, inf, inf〉
represents the structure of a message with three elements
whose type isinf . Let V al, ranged over byv, be the
set of values on which is defined a total order relation,
Inf ⊆ V al be the set of generic information andT be the
function that, givenv ∈ V al, returns the type ofv. Since
currently we are considering only the generic information
type we defineT (v) = inf if v ∈ Inf ; the remaining
cases wherev 6∈ Inf will be defined in the following
where additional types are introduced. We denote with
ṽ = 〈v0, v1, ..., vn〉 a tuple of values.

Let~t = 〈t1, . . . , tn〉 be a template and̃v = 〈v1, . . . , vs〉
be a tuple, we say that̃v satisfies~t, denoted as~t ⊢ ṽ, if
the following conditions hold:

1) n = s,
2) ∀vi, T (vi) = ti.

Every message that needs to be communicated between
two services has to be exchanged by means of interaction
points. Each service indeed exhibits a set of interaction
points, calledoperations, that are exploited for sending
and receiving requests to or from other services. Each
operation is described by a name and aninteraction
modality. According to [6], [7], there are four kinds of
peer-to-peer interaction modality divided into two groups:

• Operations which supply a service functionality,In-
put operations:

– One-Way: it is devoted to receive a request
message.

– Request-Response: it is devoted to receive a
request message which implies a response mes-
sage to the invoker.

• Operations which request a service functionality,
Output operations:

– Notification: it is devoted to send a request
message.

– Solicit-Response: it is devoted to send a request
message which requires a response message.

We call single message operations the One-Way and
the Notification operations and we calldouble message
operations the Request-Response and the Solicit-
Response ones. Formally, letO ⊆ V al be a set of
operation names and letOp be the set of operations
defined as it follows:

Op =
{
(o, ow,~t) | o ∈ O,~t ∈ T

}

∪
{
(o, n,~t) | o ∈ O, ~t ∈ T

}

∪
{

(o, rr,~t, ~t′) | o ∈ O, ~t, ~t′ ∈ T
}
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∪
{

(o, sr,~t, ~t′) | o ∈ O, ~t, ~t′ ∈ T
}

an operation is identified by a name (o), an interaction
modality (ow, n, rr and sr represent One-Way,
Notification, Request-Response and Solicit-Response
interaction modalities respectively) and one or two
templates (~t, ~t′) depending on the fact that the operation
deals with a single message (One-Way and Notification
operations) or two messages (Request-Response or
Solicit-Response operations). In the former case,~t
represents the template of the exchanged message
whereas in the latter one~t represents the template of
the request message and~t′ represents the template of
the reply one. In the following we useo~t, o~t, o~t,~t′

and
o~t,~t′

to range overOp where o~t represents a One-Way
operation whose name iso and the joint template is
~t, o~t represents a Notification operation whose name
is o and the joint template is~t, o~t,~t′

represents a
Request-Response operation whose name iso and the
joint templates are~t for the receiving message and
~t′ for the sending one and, finally,o~t,~t′

represents a
Solicit-Response operation whose name iso and the joint
templates are~t for the sending message and~t′ for the
receiving one. We say that two operationso~t ando′~t′ are
dual if o = o′ and~t = ~t′. Analogously, we say that two
operationso~t,~t′

ando′~t′′,~t′′′ aredual if o = o′, ~t = ~t′′ and
~t′ = ~t′′′. Formally we define duality in the following way:

o~t ⊲⊳ o′~t′ ⇔ o = o′ ∧ ~t = ~t′

o~t,~t′ ⊲⊳ o′~t′′,~t′′′ ⇔ o = o′ ∧ ~t = ~t′′ ∧ ~t′ = ~t′′′.

B. A model for representing services

A service is a computational entity located at a specific
uniquelocation (e.g. a URI) which has aninternal state
and is able to perform one or morefunctionalities. A
functionality can be a computational process which exe-
cutes an algorithm, a coordinating process which needs to
interact with other services or both. A service can receive
a message by means of an input operation and it can send
a message by means of an output one and expliciting the
location of the receiver. In other words, the operation
expresseshow to interact with a service whereas the
location specifieswhere the service can be accessed. The
set of all the operations exhibited by a service represents
the interface of the service. LetLoc, ranged over byl, be
the set of locations whereLoc ⊆ V al. Formally a service
is defined by the following tuple:

Service := (I,M, Pf , l)

where I ⊆ Op is the interface containing all the oper-
ations it can use,M is the internal state of the service
we use to represent all the information it manages (e.g.
variables, databases),Pf is the internal process which
expresses the service functionality encoded by exploiting
the formalismf and l ∈ Loc is the location where the
service is deployed. We remark that, in order to be as
general as possible, in this section we abstract away from

the specific formalismf and the representation of the
internal state; in the next section such notions will be
represented by a specific model.

C. Mobility mechanisms

In this section we describe the mobility mechanisms. To
this end we exploit the service notion of Section 2.1 and
we reason about the meaning of supporting the mobility
of each element of the service tuple, that is: internal
state mobility, location mobility, interface mobility and
internal process mobility. To the best of our knowledge,
Service Oriented Computing paradigm does not support
an implicit form of mobility1 but, since the interaction
mechanism is based on message passing, mobility can
be achieved by exchanging service elements by means
of service interfaces. This fact significantly affects the
designing issues because mobility must be explicitly
programmed by system designers.

• Internal state mobility: The mobility of the internal
state is strongly related to the message passing
communication mechanism. Indeed, the content of
a sent message is part of the information contained
in the internal state of the sender that the receiver
acquires and stores in its internal state. In other
words, a message exchange between two services can
be seen as an information mobility from the sender
internal state to the receiver one.

• Location mobility: Location mobility deals with the
possibility to receive a location by means of a mes-
sage exchange and to exploit it to access the service
deployed at that location. In this way for instance a
service can acquire, at run-time, the exact location
of a service whose functionalities are known. This
is the case of theupdate service discussed in the
Introduction section which knows the functionality
of the clients but not their locations.

• Interface mobility: Interface mobility means that a
service can acquire at run-time all the infomation
about an operation and then to exhibit it in its
interface. Namely, from a designing poit of view,
interface mobility allows for the separation of the
operation programming from the information nec-
essary to perform it (i.e. message templates and
operation names). Interface mobility, indeed, allows
for the communication of the templates and the
operation names as usual information which are
exploited for characterizing an input or an output
primitive within a service at run-time. Thus, a human
designer can program an input or an output operation
without specifying its name and/or its templates
by considering the fact that they can be acquired
dynamically during the execution of the service. On
the contrary, if the interface mobility is not supported
the input/output operation templates and operation
names must be known at the design time.

1The Web Services Request-Response pattern raises an interesting
issue about an hidden location mobility which will be discussed in
section IV-C
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• Internal process mobility: Service functionalities are
expressed by the internal processes of a service. The
mobility of this component implies that a process can
be communicated within a message exchange and
executed by the service which receives it. In this case
the receiver can enrich its internal functionalities
by executing the received process. It is important
to highlight the fact that the receiver must be able
to execute the received process by exploiting the
specific formalism used for encoding it (the issues
related to this aspect are out of the scope of this
paper).

III. A SERVICE-BASED LANGUAGE WITH MOBILITY

MECHANISMS

This section is devoted to model the mobility mecha-
nisms discussed above. In particular, we proceed as it fol-
lows: i) we introduce a calculus for representing services
accordingly with the model discussed in the previous
section, ii) we formalize all the mobility mechanisms by
extending step by step the service-based calculus and we
describe how services are affected by them.

A. The service-based language

Here, we present a service-based calculus which
extendsOL, defined in our previous works, by means
of locations and operation templates. Such a language
allows us to describe systems where each participant is
a service2 and supplies a means for describing service
functionalities. For the sake of clarity, we do not take into
account asynchronous communication which has been
modeled in our previous work. On the other hand, this is
an orthogonal aspect which can be separately analyzed
w.r.t. mobility mechanisms. Formally, letSignal be a set
of signal names ranged over bys, let V ar be the set of
variables ranged over byx, y, z, u, k, j, we denote a tuple
of variables by means of the symbolx̃ = 〈x0, x1, ..., xn〉.
Let W be a finite ordered non-empty set of indexes,OL
is defined by the following grammar:

P,Q ::= 0 | x := e | ǫ | ǫ | χ?P : Q
| P ;P | P | P |

∑+
i∈W ǫi;Pi | χ ⇀↽ P

ǫ ::= s | o~t(x̃) | o~t,~t′(x̃, ỹ, P )
ǫ ::= s̄ | ō~t@l(x̃) | ō~t,~t′@l(x̃, ỹ)

PS := (P,S)
E ::= [PS ]l | E ‖ E

where a service-based systemE consists of the parallel
composition of services. A service[PS ]l is a couple of a
processP and a stateS identified by a locationl ∈ Loc.
The variables state of a service is described by a function
S : V ar → V al∪{⊥} from variables to the setV al∪{⊥}

2In our previous work we referred to this language as an orchestration
language. Usually the term orchestrator means a special service which,
in order to supply its functionalities, coordinates other services. Here, we
use the term service for denoting both orchestrators and simple services.

ranged over byw3. S(x) represents the value of variable
x in the stateS (S(x) = ⊥ means thatx is not yet
initialized), while S[w/x] denotes the stateS where x
holds valuew (we useS[w̃/x̃] when dealing with tuples
of variables), formally:

S[w/x] = S ′ S ′(x′) =

{
w if x′ = x
S(x′) otherwise

All the services are executed at different locations, thus
they can be composed by using only the parallel operator
(‖). Within a location, processes can be composed in
parallel (|), sequence (;) and with two different alternative
composition operators. The operator

∑+
i∈W ǫi;Pi ex-

presses a non-deterministic choice restricted to be guarded
on inputs. Such a restriction is due to the fact that we
are not interested to model internal non-determinism in
service processes. The operatorχ?P : Q is the if-then-
else process whereχ expresses a logic condition on the
variables (the syntax and the the satisfaction relation for
χ is reported in the Appendix).χ ⇀↽ P is the construct
for modelling guarded iterations.0 represents the null
process whereas the processesx := e deals with variable
assignment. Processess and s̄ represent processes syn-
chronizations on signals which are exploited to coordinate
the activities of processes running in parallel. As far as the
operations are concerned, the processo~t(x̃) represents a
One-Way operation whereo is the name of the operation,
~t is the template of the received message andx̃ is the tuple
of variables where the received information will be stored.
o~t,~t′(x̃, ỹ, P ) represents the Request-Response operation
whereo is the name of the operation,~t is the template
of the received message and~t′ is the template of the
sent message. The Request-Response receives a message,
stores the received information iñx, executes the process
P and, at the end, sends the information contained inỹ
as a response message to the invoker.ō~t@l(x̃) represents
the Notification operation whereo is the name of the
operation,~t is the template of the sent message,l is
the location of the invoked service and̃x is the tuple
of variables which contain the sent message. Finally,
ō~t,~t′@l(x̃, ỹ) represents the Solicit-Response operation,
whereo is the name of the operation,~t is the template
of the sent message,~t′ is the template of the received
message,l is the location of the invoked service. The
Solicit-Response sends the message contained within the
x̃ tuple, waits for the response and stores the received
information in the tuplẽy.

The semantics ofOL is defined in terms of a labelled
transition system which describes the evolution of a
service-based system. We define→⊆ OL × Act × OL
as the least relation which satisfies the axioms
and rules of Tables I, II and III whereAct =
{s̄, s, ō, o, ō~t@l(ṽ), o~t(ṽ), ōn

~t,~t′
(ṽ), on

~t
(ṽ), ō~t,~t′@l(ṽ, ỹ)(n),

o~t,~t′@l(ṽ, ỹ)(n), τ} is the set of actions ranged over
by γ. Table I deals with the rules which models
communication and synchronization mechanisms where

3We extend the order relation on the setV al to the setV al ∪ {⊥}
by considering⊥ < v, ∀v ∈ V al
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(IN)

(s,S)
s
→ (0,S)

(OUT)

(s̄,S)
s̄
→ (0,S)

(NOTIFICATION)
~t ⊢ S(x̃)

(ō~t@l(x̃),S)
ō~t

@l(S(x̃))
−→ (0,S)

(ONE-WAY )
~t ⊢ ṽ

(o~t(x̃),S)
o~t

(ṽ)
→ (0,S[ṽ/x̃])

(SOLICIT)
~t ⊢ S(x̃)

(ō~t,~t′@l(x̃, ỹ),S)
ō~t,~t′

@l(S(x̃),ỹ)(n)

−→ (on
~t,~t′

(ỹ),S)

(REQUEST)
~t ⊢ ṽ

(o~t,~t′ (x̃, ỹ, P ),S)
o~t,~t′

(ṽ,ỹ)(n)

→ (P ; on
~t,~t′

(ỹ),S[ṽ/x̃])

(RESPONSE-OUT)
~t′ ⊢ S(x̃)

(ōn
~t,~t′

(x̃),S)
ōn

~t,~t′
(S(x̃))

−→ (0,S)

(RESPONSE-IN)
~t′ ⊢ ṽ

(on
~t,~t′

(x̃),S)
on

~t,~t′
(ṽ)

→ (0,S[ṽ/x̃])

TABLE I.
COMMUNICATION RULES

we have introduced the processeson
~t,~t′

(x̃) and ōn
~t,~t′

(x̃)
in order to deal with Request-Response and Solicit-
Response operations. Each rule requires that a received
or a sent message must satisfy the current operation
template in order to be performed by means of the
satisfaction relation described in Section II-A. The most
interesting axiom is the REQUEST one which describes
that a Request-Response operation, when invoked,
behaves as the specified processP and, once having
completed such a process, performs an output that is
consumed by the invoking service. It is worth noting that
a fresh labeln allows us to couple the sender process
with the receiver one which are explicitly joint within
rules of Table III. Rules SOLICIT and RESPONSE-IN

deal with Solicit-Response behaviour where, initially, a
message is sent and then the service, by means of the
processon

~t,~t′
(x̃), waits for the response. Table II deals

with the rules overPS where the behaviour of a process
coupled with a state is expressed. Rule ASSIGN deals
with variable assignment within the services;e →֒S w
means that the evaluation process of the expressione
within stateS reduces tow. Rule INT-SYNC deals with
internal synchronization over signals and CONGRP with
internal structural congruence denoted by≡P . PAR-INT

and SEQ describe the behaviour of processes composed
in parallel and sequentially respectively, whereas

CHOICE and ITERATION 1/2 describe the behavior of
the non-deterministic choice and the guarded iteration
respectively. The former one non-deterministically selects
an input guarded process among the ones listed in the
choice operator, while the latter ones model iteration
behaviour. Finally, IF THEN and ELSE rules express the
if-the-else semantics. In Table III the rules at the level
of service-based systems are considered. Rule ONE-
WAY SYNC deals with the synchronization on a One-Way
operation between two services whereas rules REQ-
SYNC and RESP-SYNC deal with the request and the
response message exchanges between a Solicit-Response
operation and a Request-Response one. Rule REQ-SYNC

exploits a fresh labeln which is generated in order to
univocally link the response synchronization defined in
rule RESP-SYNC. PAR-EXT deals with external parallel
composition and CONGRE is for external structural
congruence denoted by≡. INT-EXT expresses the fact
that a service behaves in accordance with its internal
processes.

(ASSIGN)
e →֒S v

(x := e,S)
τ
→ (0,S[v/x])

(INT-SYNC)

(P,S)
s
→ (P ′,S) , (Q,S)

s̄
→ (Q′,S)

(P | Q,S)
τ
→ (P ′ | Q′,S)

(CONGRP)

P ≡P P ′ , (P ′,S)
γ
→ (Q′,S′), Q′ ≡P Q

(P,S)
γ
→ (Q,S′)

(PAR-INT)

(P,S)
γ
→ (P ′,S′)

(P | Q,S)
γ
→ (P ′ | Q,S′)

(SEQ)

(P,S)
γ
→ (P ′,S′)

(P ; Q,S)
γ
→ (P ′; Q,S′)

(CHOICE)

(ǫi; Pi,S)
γ
→ (P ′,S′) i ∈ W

(
∑+

i∈W
ǫi; Pi,S)

γ
→ (P ′,S′)

(ITERATION 1)
S ⊢ χ

(χ ⇀↽ P,S)
τ
→ (P ; χ ⇀↽ P,S)

(ITERATION 2)
S ⊢/χ

(χ ⇀↽ P,S)
τ
→ (0,S)

(IF THEN)
S ⊢ χ

(χ?P : Q,S)
τ
→ (P,S)

(ELSE)
S ⊢/χ

(χ?P : Q,S)
τ
→ (Q,S)

(STRUCTURAL CONGRUENGE OVERP )

P | 0 ≡P P 0; P ≡P P

(P | Q) ≡P (Q | P ) (P | Q) | R ≡P P | (Q | R)

TABLE II.
RULES OVERPS

Now, we remind the service formalization presented
in Section II where a service is represented by the tuple
(I,M, Pf , l) and we show how anOL service[P,S]l is
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(ONE-WAY SYNC)

[PS ]l
ō~t

@l′(ṽ)
→ [P ′

S
]l , [QS ]l′

o′

~t′
(ṽ)

→ [Q′
S
]l′ , ō~t ⊲⊳ o′

~t′

[PS ]l ‖ [QS ]l′
τ
→ [P ′

S
]l ‖ [Q′

S
]l′

(REQ-SYNC)

[PS ]l
σ

−→ [P ′
S
]l , [QS ]l′

σ′

−→ [Q′
S
]l′

[PS ]l ‖ [QS ]l′
τ

−→ [P ′
S
]l ‖ [Q′

S
]l′





n fresh
σ = ō~t,~t′@l′(ṽ, ỹ)(n)

σ′ = o′
~t′′,~t′′′

(ṽ, ỹ)(n)

ō~t,~t′ ⊲⊳ o′
~t′′,~t′′′

(RESP-SYNC)

[PS ]l

ōn
~t,~t′

(ṽ)

→ [P ′
S
]l , [QS ]l′

on
~t,~t′

(ṽ)

→ [Q′
S
]l′

[PS ]l ‖ [QS ]l′
τ
→ [P ′

S
]l ‖ [Q′

S
]l′

(CONGRE)

E1 ≡ E′
1 , E′

1

γ
→ E′

2, E′
2 ≡ E2

E1
γ
→ E2

(PAR-EXT)

E1
γ
→ E′

1

E1 ‖ E2
γ
→ E′

1 ‖ E2

(INT-EXT)

PS
γ
→ P ′

S

[PS ]l
γ
→

[
P ′

S

]
l

(STRUCTURAL CONGRUENCE OVERE)

P ≡P Q

[P,S]l ≡ [Q,S]l

E1 ‖ E2 ≡ E2 ‖ E1 E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3

TABLE III.
RULES OVERE

related to it:

• M is modeled byS.
• l represents the location within both the service

model and theOL language.
• Pf is represented by a processP in OL where the

formalismf corresponds toOL.
• I represents the interface of a service and it is not

explicitly modeled inOL but it can be extracted
from the processP . Indeed, by considering a
service [P,S]l, its interface I is defined by the
function Θ(P ) where Θ is inductively defined by
the following rules:

1. Θ(0) = φ
2. Θ(x := e) = φ
3. Θ(s) = φ
4. Θ(s) = φ

5. Θ(ō~t@l(x̃)) = {(o, n,~t)}

6. Θ(ō~t,~t′@l(x̃, ỹ)) = {(o, sr,~t,~t′)}

7. Θ(o~t(x̃)) = {(o, ow,~t)}

8. Θ(o~t,~t′(x̃, ỹ, P )) = {(o, rr,~t,~t′)} ∪ Θ(P )

9. Θ(on
~t,~t′

(x̃)) = φ

10. Θ(on
~t,~t′

(x̃)) = φ

11. Θ(P ;P ′) = Θ(P ) ∪ Θ(P ′)
12. Θ(P | P ′) = Θ(P ) ∪ Θ(P ′)

13. Θ(
∑+

i∈W ǫi;Pi) =
⋃

i∈W Θ(ǫi;Pi)
14. Θ(χ?P : Q) = Θ(P ) ∪ Θ(Q)
15. Θ(χ ⇀↽ P ) = Θ(P )

It is worth noting that the interfaceΘ(P ), during the
evolution of a service[P,S]l, is monotonically reduced
dependently on the consumption ofP . Indeed, let us
consider the following example:

[ā~t(x),S[4/x]]l ‖ [a~t(y),S ′]l′
τ

−→
[0,S[4/x]]l ‖ [0,S ′[4/y]]l′

Before the synchronization the interfaces of the two
services areIl = {(a, n,~t)} and Il′ = {(a, ow,~t)}
respectively, whereas after the synchronization they are
Il = φ andIl′=φ.

B. Internal state mobility

As we have noticed in Section II the internal state
mobility is strongly related to the message passing com-
munication mechanism. Considering Table I and Table
III, such a kind of mobility is expressed by the rules
which deal with operation processes. In particular, let us
consider rules NOTIFICATION and ONE-WAY of Table I
in order to clarify how it works. In the former the internal
state informatioñv contained within the variables̃x are
sent by exploiting a message whereas in the latter the
received informationṽ are stored into the variables̃x
contained within the internal state of the receiver. Rule
ONE-WAY SYNC of Table III couples the two rules by
correlating the receiver location to that explicited within
the notification process. In this case the message content
is represented by the tuple of valuesṽ. Summarizing,
internal state mobility is modeled as an information
exchange between the internal state of the sender and the
internal state of the receiver. Such a mobility mechanism
is the cornerstone of service-based systems and supplies
the basic layer on which the other mobility mechanisms
can be implemented.

C. Location mobility

So far, OL does not deal with location mobility.
Locations, indeed, are statically explicited within the
Notification and the Solicit-Response primitives. In order
to deal with location mobility we modify the syntax of
OL by introducing the possibility to express the location
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as the content of a variable. To this end we add two new
primitives for the Notification and the Solicit-Response
wherez is a variable:

P ::= . . . | ō~t@z(x̃) | ō~t,~t′@z(x̃, ỹ) | . . .

These new primitives allow us to dynamically bind the
receiver location when performing the Notification and
Solicit-Response operations by evaluating the content of
variablez. Since locations will be acquired by means of
an input operation we introduce a new data type, we call
loc, representing the type used for locations. The function
used to test the conformance between tuples of values
and templates will be enriched by considering that, given
v ∈ V al, T (v) = loc if v ∈ Loc (we assume that the set
of values of each type is disjunct with each other).

The semantics follows:

(NOTIFICATION WITH LOCATION MOBILITY )

~t ⊢ S(x̃), T (S(z)) = loc

(ō~t@z(x̃),S)
ō~t@S(z)(S(x̃))

−→ (0,S)

(SOLICIT WITH LOCATION MOBILITY )

~t ⊢ S(x̃), T (S(z)) = loc

(ō~t,~t′@z(x̃, ỹ),S)
ō~t,~t′@S(z)(S(x̃),ỹ)(n)

−→ (on
~t,~t′

(ỹ),S)

Variablez is evaluated when the processes are executed.
In that phase we exploit types in order to prevent the
execution of bad processes: in the casez does not hold
a location value, the primitive is not performed. This
mechanism allows us to design a service which does
not know a priori the locations of the services to be
invoked that can be acquired during the execution. In
order to clarify such a behaviour let us consider the
business scenario example depicted in Fig. 1 where a cus-
tomer purchases a good invoking a shopping service, the
shopping service invokes a bank service for performing
the payment and the bank service invokes the customer
for sending the invoice. In Fig. 1 we have exploited
an informal graphical representation where services are
represented by circles, the symbol@uri expresses the
fact that the service is available at the locationuri, the
input operations exhibited by a service are represented by
a black line whose name is shown within a rectangle and
the arrows represent a message exchange. The shopping
service exhibits the One-Way BUY, the Bank service
exhibits the One-Way PAY and the Customer service
exhibits the One-Way REC.
In the following we formalize such a scenario by
supposing that the bank service does not know the
location of the customer:

~t = 〈loc〉 ~t′ = 〈inf〉

C ::= [add := uri1; inv := ⊥
; BUY~t@uri2(add); REC~t′(inv),Sc]uri1

SH ::= [fwadd := ⊥

Figure 1. Business scenario example

; BUY~t(fwadd); PAY~t@uri3(fwadd),Ss]uri2

B ::= [z3 := ⊥; invoice := msg
; PAY~t(z3); REC~t′@z3(invoice),Sb]uri3

System ::= C ‖ SH ‖ B

The shopping serviceSH located aturi2 receives on the
One-Way operation BUY the location of the customerC
(uri1) and stores it within the variablefwadd. Moreover,
it forwards it to the bank serviceB (aturi3) by exploiting
the Notification operationPAY. The bank service receives
on PAY the customer location and then exploits it for
invoking the REC operation of the customer sending
the invoice here represented by the valuemsg. Finally,
the customer receives the invoice on REC and stores the
message content within the variableinv.

Location mobility introduces a powerful mechanism
for designing services in a flexible way. If we consider
the Bank service of the example indeed, it exploits the
operationREC~t′@z3(invoice) in order to be independent
from the customer address. The Bank service can send
invoices to all the customers which exhibit a One-Way
whose name is REC and has a template~t′. On the contrary,
if we do not exploit location mobility the Bank service
should know the customer address before its execution
binding the service to interact to a specific customer. This
is the case of the shopping service that, by exploiting the
operationPAY~t@uri3(fwadd), is designed for sending
the payment request always to the same Bank service.
Furthermore, the example shows that location mobility
is built on top of the internal state mobility because the
acquired locations are stored within the internal state.

D. Interface mobility

Interface mobility deals with the mobility of all the
information related to an operation that is the name of
the operation and the templates joint to it. In general,
all these information can be acquired dynamically. We
model interface mobility inOL by introducing the
following primitives wherez, u, k and j are variables:
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P ::= . . . | ū~k
@z(x̃) | u~k

(x̃)
| ū~k,~j

@z(x̃, ỹ) | u~k,~j
(x̃, ỹ, P ) | . . .

The name of the operations and the templates are
evaluated at run-time by reading them from the state. To
this end we introduce two new data typesop andt which
are used to represent the type of operation names and of
templates, respectively. Letv ∈ V alue, the functionT is
extended by defining the following cases: i)T (v) = op if
v ∈ Op, ii) T (v) = t if v ∈ T . We will exploit this data
types to test that the values stored in the variables are in
accordance with the expected data types. The semantics
follows:

(NOTIFICATION WITH INTERFACEMOBILITY )

T (S(k)) = t, T (S(u)) = op,
−→

S(k)⊢ S(x̃), T (S(z)) = loc

(ū~k
@z(x̃),S)

S(u) −→

S(k)

@S(z)(S(x̃))

−→ (0,S)

(ONE-WAY WITH INTERFACEMOBILITY )

T (S(k)) = t, T (S(u)) = op,
−→

S(k)⊢ S(x̃)

(u~k
(x̃),S)

S(u) −→

S(k)

(S(x̃))

−→ (0,S)

(SOLICIT WITH INTERFACEMOBILITY )

T (S(k)) = T (S(j)) = t, T (S(u)) = op,
−→

S(k)⊢ S(x̃), T (S(z)) = loc

(ū~k,~j
@z(x̃, ỹ),S)

α
−→ (S(u)n

−→

S(k),
−→

S(j)
(ỹ),S)

α = S(u) −→

S(k),
−→

S(j)
@S(z)(S(x̃), ỹ)(n)

(REQUEST WITH INTERFACEMOBILITY )

T (S(k)) = T (S(j)) = t, T (S(u)) = op,
−→

S(k)⊢ S(x̃)

(u~k,~j
(x̃, ỹ, P ),S)

α
−→ (P ;S(u)

n
−→

S(k),
−→

S(j)
(ỹ),S)

α = S(u) −→

S(k),
−→

S(j)
(S(x̃), ỹ)(n)

It is worth noting that the introduction of the interface
mobility allows us to distinguish the concept of oper-
ation programming from that of the information which
characterize it. The former expresses the service capa-
bility to perform a One-Way, a Notification, a Request-
Response or a Solicit-Response operations represented
by the processesu~k

(x̃), ū~k
@z(x̃) u~k,~j

(x̃, ỹ, P ) and
ū~k,~j

@z(x̃, ỹ) respectively, whereas the latter deals only
with the information that are necessary for performing an
operation represented by the content of the variablesu, k
and j.

In this case the interface can change during the
evolution of the service, thus we need to modify some
rules of the inductive definition ofΘ. To this end we
first introduce the functionstN : V al → V al ∪ {?} and
tT : V al → V al ∪ {?} for testing if the content of a

variable is an operation name or a template respectively.
We exploit the symbol? for expressing the fact that
an information related to an operation is unknown. The
definition of the functions follows:

tN(v) =

{
v if v ∈ O
? otherwise

tT (v) =

{
v if v ∈ T
? otherwise

For the sake of brevity we report below only the rules
that change w.r.t. the original definition ofΘ that are the
5, 6, 7 and 8 ones. It is worth noting that here we extend
the domain ofΘ by considering also the internal state.
This is due to the fact that now the interface depends on
the contents of the variables.

5. Θ(ū~k
@z(x̃),S) = {tN(S(u)), n, tT (S(k))}

6. Θ(ū~k,~j
@z(x̃, ỹ),S) =

{tN(S(u)), sr, tT (S(k), tT (S(j))}
7. Θ(u~k

(x̃),S) = {tN(S(u)), ow, tT (S(k))}
8. Θ(u~k,~j

(x̃, ỹ, P ),S) =
{tN(S(u)), rr, tT (S(k), tT (S(j))} ∪ Θ(P )

Example 3.1: Let us consider the example of Fig. 1
where we suppose that the Bank service does not know
a priori both the location and the One-Way operation of
the customer:

~t = 〈loc, op, t〉 ~t′ = 〈inf〉

C ::= [add := uri1; opN := REC; opT := ~t′; inv := ⊥
; BUY~t@uri2(add, opN, opT ); REC~t′(inv),Sc]uri1

SH ::= [fwadd := ⊥; fwopN := ⊥; fwopT := ⊥;
; BUY~t(fwadd, fwopN, fwopT )
; PAY~t@uri3(fwadd, fwopN, fwopT ),Ss]uri2

B ::= [z3 := ⊥; op := ⊥; tp := ⊥; invoice = msg
; PAY~t(z3, op, tp); op~tp@z3(invoice),Sb]uri3

System ::= C ‖ SH ‖ B

The customer sends, by means of the variableopN
and opT , the operation name (REC) and the operation
template (~t) on which it will wait for receiving the
invoice. The bank service receives from the shopping
service the location, the name of the operation and the
template of the operation of the customer and stores
them inz3, op and tp respectively.

The example shows how is possible to design a service
(in this case the bank one) with a functionality which
deals with an output operation without statically knowing
its interface. In general, it is possible to have scenarios
where a service partially knows the interface information
that is, for example, it knows the name of the operation
but it does not know the template or, viceversa, it knows
the template but it does not know the name of the opera-
tion. In particular, the mobility of the information related
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only to the templates raise some interesting designing
issues. A designer that does not know the template of
an operation is able to program an input or an output
operation but he is not able to predict the structure of the
received (or sent) data and, as a consequence, he cannot
exactly specify the variables related to the received (sent)
data. Let us consider, for example, the output operation
of the bank service:

op~tp@z3(invoice)

in this case, even if the content of the variabletp is
unkwon, there is an implicit knowledge of the template
because it can be indirectly extracted by considering the
variable invoice which is programmed as the variable
that contain the data to send. In general, a full interface
mobility cannot be supported without considering a mech-
anism which allows a designer to formulate some kinds of
predictions about the received (sent) data. We can imagine
indeed, that the designer could be able to program some
kinds of specifications about the variables from which it
should be possible to build a sort of dynamicadaptor
for binding the variables with the received template.
The discussion and the formalization of such a kind of
machinery is out of the scope of this paper and, at the best
of our knowledge, it is an open issue. As a first attempt
towards this direction, works on component adaption
can be taken into consideration. For example, in [8]
Brogi et al. discuss the problem of the adaption between
Web Services interfaces where adator specifications are
discussed for composing different services with different
interfaces.

E. Internal process mobility

In order to deal with internal process mobility we
extend theOL language by introducing the following
process:

P ::= . . . | run(x)

run(x) allows us to execute the code contained within
the variablex. As previosly done for the other kinds
of mobility we introduce a new data type representing
processes. Letproc be the data type denoting processes,
v ∈ V al: T (v) = proc if proc is defined by the term
P presented in Section III-A. The semantics of such a
primitive is expressed by a new rule that must be added
to those presented in Table II:

(RUN)

T (S(x)) = proc

(run(x),S)
τ
→ (S(x),S)

Since the received code can be formed by operation
processes, we add a new rule for inductively defining
the functionΘ which allows us to extract the interface
of the service:

13. Θ(run(x),S) =

{
Θ(S(x)) if S(x) 6= ⊥

φ otherwise

Service functionality mobility directly deals with code
mobility. In particular it allows us to design services
where a specific part of its functionalities are unknown at
design time and they are acquired during the execution of
the service. In order to clarify this aspect let us consider
the example of the shopping service again where we
suppose that the customer, that wants to interact with the
shopping service, does not knowa priori the conversation
rules to follow. In other words, the customer does not
know that it has to exhibit the REC operation in order
to receive the invoice from the bank service.

~t = 〈loc, proc〉 ~t′ = 〈inf〉 ~t′′ = 〈loc〉

C ::= [add := uri1; code1 := ⊥
; BUY~t@uri2(add, code1);run(code1),Sc]uri1

SH ::= [fwadd := ⊥; code2 :=“ inv := ⊥; REC~t′ (inv)”

; BUY~t(fwadd, code2)
; PAY~t′′@uri3(fwadd),Ss]uri2

B ::= [z3 := ⊥; invoice = msg
; PAY~t′′(z3); REC~t′@z3(invoice),Sb]uri3

System ::= C ‖ SH ‖ B

Here, the customer invokes the operation BUY of the
shopping service which is modeled as a Request-Response
operation. The customer receives as a response a piece
of code and stores it within the variablecode1, then it
executes it by exploiting the primitiverun(code1). After
the execution of the code stored withincode1 the system
behaves as the example presented in the location mobility
section. It is worth noting that the customer receives
the input operation REC which enriches at run-time its
interface similarly to the case of the interface mobility.
Even if the two kind of mobility could appear similar
w.r.t. the effects on the interface, they are different from
a system design point of view. In the case of interface
mobility the designer must specify that an input or an
output operation has to be performed without knowing
its name and its templates on the contrary, in the case of
internal process mobility, the designer does not know the
process which will be executed at all.

Some considerations about code mobility issues are
necessary. On the one hand when a service executes a
process which has been acquired at run-time, it does
not know how it behaves. On the other hand, when
programming a process which will be executed by another
service the internal behavior of such a service is not
known. This fact implies a number of issues. First of
all, internal processes share the variables state thus the
acquired process could interfere with the behavior of the
other ones. Moreover, an acquired process could exploit
a certain names to perform internal synchronizations but
the same name could be already used by other internal
processes, thus alterating also in this case the behavior
of the other processes. A formal analysis of these issues
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is out of the scope of this paper but we consider that,
to avoid at least the issues listed above, a mechanisms
which syntactically renames all the variables and names
of the acquired process which interferes with the ones of
the internal processes is necessary before executing it.

IV. W EB SERVICE TECHNOLOGY

In this section we briefly present the Web Service
technology and we discuss the mobility mechanisms
presented in the previous sections w.r.t. it. Furthermore,
we discuss a an hidden form of mobility related to the
Request-Response pattern.

A. Web Service technology

Web Service technology is a service oriented architec-
ture which achieves interoperability by exploiting XML
dialects. It is born from the simple concept of the remote
procedure call wrapped by a standardized interface and
it is defined up to three basic specifications: WSDL [9],
SOAP [10] and UDDI [11]. WSDL is an XML-based lan-
guage which allows for the specification of the operations
(One-Way, Request-Response, Notification and Solicit-
Response) exhibited by a service, SOAP defines the mes-
sage exchange protocol between two services and UDDI
is a specification that deals with discovery Web Service
registers. Stalelessness, loosely coupling, open endedness
and compositionality are the most important features Web
Service technology is characterized by. Statelessness deals
with the fact that Web services do not mantain the state of
a conversation. Each message exchange is a new message
exchange completely separated from the previous one.
Loosely coupling is intrinsically linked to the concept of
business activity which can be intended as a distribuited
software application where multiple entities interact each
other in order to achieve a specific goal. In this context,
since applications can run for a long period of time
and resources cannot be blocked because of the risk of
deadlock, long running transactions and compensation
mechanisms play a fundamental role. In Web Service
technology open endedness is achieved by exploiting
particular web services which work as service registers
mantaining service descriptions and locations. On the
contrary, compositionality is addressed by different kind
of languages: choreography languages and orchestration
languages. The former supply a local description of the
web services and deal with the design of the so called
orchestrator engines which are web services with the
peculiarity to be able to invoke other ones. On the other
hand, the latter aims at describing a web service system
by supplying a global system view where it is possible
to design the interaction among the involved participants.
The most credited orchestration language is WS-BPEL
[1] which supports compositional operators as parallel,
sequence and choice and it has specific primitives to
interact with other web services which resemble the input
and output operation processes of theOL calculus. As
far as choreography languages are concerned the most
credited proposal in Web Service technology is WS-CDL

[12]. Such a kind of language allows for the designing of
the interactions between system participants, the so called
roles, by means of compositional operators as sequence,
parallel and choice.

B. Web Service mobility mechanisms

• Internal state mobility: Since Web Services are a
message passing technology, they fully support the
internal state mobility as we have formalized it in
Section 3. In particular, an information exchange
between two services is an XML document whose
schema is defined within the SOAP specification.

• Location mobility: As we have shown in Section
3 location mobility is strictly related to the com-
munication mechanisms of the internal process that
we have formalized by exploitingOL. Although
that Web Services are platform independent and
there is not a standard formalism for describing
the internal process, here we consider orchestration
languages as a class of languages which can be
used for expressing it. Indeed, they deal with service
coordination aspects which are fundamental to the
end of location mobility. In particular, WS-BPEL
supports location mobility by managing endpoints
within its internal variables. An endpoint, which is
defined within WS-Addressing [13] specification, is
a data structure which contains all the information
required for invoking a service, that is the operation
and the location.

• Interface mobility: The interface mobility that we
have formalized in Section 3 is strictly related to the
communication mechanisms of the internal process.
Following the same approach of location mobility we
consider WS-BPEL. As previously mentioned, WS-
BPEL is able to manage endpoints which contain
the information related to the operations. However
it does not support interface mobility because the
operations it exploits for invoking and receiving
messages are defined statically at design time and
they cannot be bound at run-time. To the best of
our knowledge interface mobility is not supported
by the Web Services technology even if it is possible
to consider other solutions that indirectly allows us
to partially achieve it. Several programming lan-
guages, at a low-level w.r.t. the orchestration ones,
are equipped of libraries which permit to simplify
the service composition. In particular, there exist
libraries in Java [14]–[16] that, given a WSDL
document4, automatically produce the corresponding
classes which allow for the invocation of all the
operations supplied by the Web service described in
that document. Such a kind of libraries allows us to

4A WSDL interface could be modeled by exploiting the service
interfaceI defined in section 2 but there are some relevant issues to
take into account: a WSDL document is statically defined and cannot
change dynamically during the evolution of the service by adding or
removing some of the exhibited operations and, generally, Notification
and Solicit-Response operations are unused
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partially achieve interface mobility. The interfaces
indeed are not communicated as information but
extracted from a WSDL document. Furthermore,
they cannot be joint automatically with the service
internal variables but, at the state of the art, they
require to be joint by considering the presence of a
human designer.

• Internal process mobility: To the best of our knowl-
edge Web Services technology does not explicitly
support such a kind of mobility. Nevertheless we
trace a comparison between service functionality
mobility and some languages for describing conver-
sational behaviours of service-based systems as, for
instance, choreography languages. As we have said,
such a kind of languages are exploited for describing
the communication protocols services have to follow
in order to participate to a given service-based sys-
tem. We can imagine that a service which is willing
to access that system could download the related
choreography document and extracts a piece of code
which allows it to follows the protocol.

(SOLICIT)
~t ⊢ S(x̃)

(ō~t,~t′@l(x̃, ỹ),S)
ō~t,~t′

@l(S(x̃),ỹ)

−→ (o~t,~t′@l(ỹ),S)

(REQUEST)
~t ⊢ ṽ

(o~t,~t′ (x̃, ỹ, P ),S)
o~t,~t′

@l(ṽ,ỹ)

→ (P ; o~t,~t′@l(ỹ),S[ṽ/x̃])

(RESPONSE-OUT)
~t′ ⊢ S(x̃)

(ō~t,~t′@l(x̃),S)
ō~t,~t′

@l(S(x̃))

−→ (0,S)

(RESPONSE-IN)
~t′ ⊢ ṽ

(o~t,~t′@l(x̃),S)
o~t,~t′

@l(ṽ)

→ (0,S[ṽ/x̃])

(REQ-SYNC)

[PS ]l
σ

−→ [P ′
S
]l , [QS ]l′

σ′

−→ [Q′
S
]l′

[PS ]l ‖ [QS ]l′
τ

−→ [P ′
S
]l ‖ [Q′

S
]l′





σ = ō~t,~t′@l′(ṽ, ỹ)

σ′ = o′
~t′′,~t′′′

@l(ṽ, ỹ)

ō~t,~t′ ⊲⊳ o′
~t′′,~t′′′

(RESP-SYNC)

[PS ]l
ō~t,~t′

@l′(ṽ)

→ [P ′
S
]l , [QS ]l′

o~t,~t′
@l(ṽ)

→ [Q′
S
]l′

[PS ]l ‖ [QS ]l′
τ
→ [P ′

S
]l ‖ [Q′

S
]l′

TABLE IV.
REQUEST-RESPONSE PATTERN RULEŚA LA WEB SERVICE

C. The hidden mobility of the Request-Response

In this section we discuss the Request-Response inter-
action pattern and in particular we compare the one we
propose with the one supported by the Web Service tech-
nology. Usually the Request-Response interaction pattern

has been intended as a powerful mechanism which is
able to relate the two message exchanges involved within
a Request-Response as modeled in our calculus and in
[17], [18]. In particular, these proposals formalize the
Request-Response behaviour by joining the output oper-
ation process with the input one. As far as our proposal
is concerned, in Table 3 we have exploited a fresh label
n in order to couple the sender operation processes and
the receiver one.

In the Web Services technology the Request-Response
interaction is not supported at the service application
level but, as specified by the WSDL recommendation, it
has to be supplied by the communication infrastructure
(e.g. HTTP) which exploits the service locations and
the operation names to bind the two message exchanges
instead of a reference of the service processes involved
in the interactions as in our calculus. Table IV reports
the semantics rules governing the Request-Response
interaction patterńa la Web Services. Such a semantics,
that we consider faithful w.r.t. the Web Services
technology, represents a meaningful contribute towards
the formal reasoning of the current technology features
and lacks. As it emerges by rules REQUEST and REQ-
SYNC, there exists a hidden form of location mobility
that is used by the infrastructure to support the response
phase. Indeed, the infrastrure keeps the location of
the invoker and exploits it for sending the response. It
is worth noting that, in this case, the only references
for coupling the sender and the receiver during the
response phase are the service location and the operation
name. This means that if a service invokes two times a
Request-Response operation at the same service location
the two responses could be swapped each other. Example
4.1, which follows, reveals that the Request-Response
pattern supported by the Web Service technology is
weaker than the one previously proposed.

Example 4.1: Let us consider the following example
where a service, sayA, provides a functionality which
computes, given two numbersa and b, |a| − |b|.
Such a service exploits another service, located atl,
which supplies the absolute value and the subtraction
functionality supplied by means of the Request-Response
operationsABS and SUB, respectively. LetOP be
the Request-Response operationA uses to supply its
functionality, the service could be programmed as it
follows (we do not describe the variables state since its
initial configuration does not alterate the behaviour):

~t = 〈inf inf〉 ~t′ = 〈inf〉

A ::= OP~t,~t′(〈a, b〉, res, P )

P ::= (ABS~t′,~t′@l(a, absA) | ABS~t′,~t′@l(b, absB));

SUB~t,~t′@l(〈absA, absB〉, res)

In the case the Request-Response mechanisms is the one
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modeled by rules of Table IV, there exists an execution
path where the responses of the twoABS invocations
can be swapped and then, in this case, theOP response
is |b| − |a| instead of the expected value|a| − |b|. On the
contrary, in the case the Request-Response mechanism is
modeled as in section 3 such a behavior is not allowed.

V. CONCLUSION

In this work we have discussed the mobility aspects of
service-oriented computing. We have caught the essence
of a service by modeling it as a tuple of four basic com-
ponents (state, location, interface, process) and we have
discussed a specific form of mobility for each of them.
Namely, we have modeled such a tuple by extending a
formal language defined in our previous works that has
been exploited as a formal workbench for highlighting
the peculiarities of each kind of mobility. Finally, we
have analyzed the Web Service technology in order to
show which kinds of mobility are actually supported.
The discussion about Web Service shows that only the
internal state and the location mobility are supported by
this technology. On the other hand, interface mobility
and internal process mobility raise some interesting issues
from the system design point of view. In this sense our
formal framework could help on the one hand designers
to investigate about the issues related with these kinds
of mobility that, as shown by the examples we discuss,
provide a mean to design real business applications and,
on the other hand, to enrich current tecnologies with new
mobility mechanisms. Moreover, we have modeled the
behavior of the Request-Response interactions supported
by the Web Service by discussing how it seems to be
weaker than the common acceptation, supported also by
ORC [19], that is the one we propose in our model.

The contribute of this paper is twofold, on the one
hand we have formalized the mobility aspects of service
oriented computing and on the other hand we have
discussed them by analyzing the current technology state
of the art. To the best of our knowledge this is the
first attempt to strictly formalize mobility aspects of the
service oriented computing paradigm. There are several
works which exploit other formalisms like pi-calculus
[17], [20] and Petri-nets [21] for dealing with service-
based composition but a comprehensive investigation on
mobility does not exist.

In our previous work we have defined a formal frame-
work devoted to represent the peculiarities of chore-
ography and orchestration languages and their interde-
pendencies. It emerges that orchestration is a further
developement step w.r.t. the choreography which defines
the conversation rules among participants. A conformance
notion captures such a relationship and permits to verify
whether an orchestrated system behaves accordingly with
a given choreography. In this paper we have enriched
the orchestration language (here called service-based lan-
guage) with mobility aspects and, as a future work,
we plan on the one hand to rephrase the choreography
language and the conformance notion by considering

the issues raised by mobility mechanisms and, on the
other hand, we intend to enrich our formal framework
by introducing other fundamental aspects like sessions.
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APPENDIX

The syntax ofχ is

χ ::= x ≤ e | e ≤ x | ¬χ | χ ∧ χ

where e denotes an expression which can contain
variables references and which can be evaluated into a
value v or, when some variables within the expression
are not instantiated, into the symbol⊥.

The satisfaction relation for⊢ is defined by the follow-
ing rules:

1) S(x) = ⊥ ⇒ S ⊢ (x ≤ ⊥ ∧⊥ ≤ x)
2) e →֒S v,S(x) ≤ v ⇒ S ⊢ x ≤ e
3) e →֒S v, v ≤ S(x) ⇒ S ⊢ e ≤ x
4) S ⊢ χ′ ∧ S ⊢ χ′′ ⇒ S ⊢ χ′ ∧ χ′′

5) ¬(S ⊢ χ) ⇒ S ⊢ ¬χ

We highlight the fact that rule 1 states that when a
variable x is defined with value⊥ the only condition
which can be satisfied on such a state isx = ⊥.
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