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Abstract:	The design and generation of software test cases stand as critical steps in elevating the levels of 
automation and intelligence in software testing. Given the robust natural language understanding and code 
generation capabilities of ChatGPT, this paper, after extensive research on ChatGPT’s applications in the 
field of software testing in recent years, introduces a ChatGPT-based software test case auto-generation 
system named AutoTestGPT. This system leverages ChatGPT as its intelligent engine to conduct dialogue 
training. It extracts key information from structured testing requirements, leading to the formulation of 
comprehensive testing plans. Subsequently, it systematically generates corresponding test cases according 
to the devised plans. Finally, the system executes the generated test cases, conducts result verification, and 
generates detailed testing reports. Experimental results within the API testing framework and test case 
generation demonstrate that the API testing framework generated using AutoTestGPT exhibits high 
usability. In comparison to manually coding and constructing test frameworks, the time required for test 
framework generation is reduced by over 70%. AutoTestGPT demonstrates high efficiency in handling 
complex test case generation tasks, thereby enhancing the automation and intelligence levels in test case 
generation. This system lays a robust foundation for the establishment of intelligent systems in software 
testing for the future.	

Keywords:	automated test case generation, ChatGPT, intelligent testing. 

1. Introduction

Software testing plays a pivotal role in ensuring software quality and reliability, with the design and 

generation of test cases constituting its core and essence [1]. Traditional software testing often relies on 
manual efforts by testing personnel to write unit test cases, construct automated API testing frameworks, 

and perform manual Web UI testing. Manual testing is time-consuming, tedious, and repetitive. 
Conventional methods of test case design require significant human investment in terms of time and effort. 

The efficiency of test case generation is low, and the extent of test coverage often relies heavily on the 
experience of the test case designers. Despite the emergence of automated testing, which to some extent 

addresses these issues, it still necessitates manual coding of test scripts. The establishment of automated 
testing frameworks [2] also depends on the coding capabilities of testing personnel.  
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To surmount these challenges, researchers have been continuously exploring the combination of artificial 
intelligence algorithms and automation techniques to enhance the generation of software test cases [3, 4]. 

ChatGPT (Chat Generative Pre-trained Transformer) is a conversational large-scale language model [5] 
released by the artificial intelligence research company OpenAI. Through extensive pre-training(the model 
is trained on large amounts of data in advance to learn common features) and fine-tuning(fine-tune 

pre-trained models on small data sets for specific tasks to optimize performance) on vast text datasets, it is 
capable of generating coherent, grammatically sound text with a certain level of semantic understanding 

and robust code generation and interpretation capabilities[6, 7]. Recognizing the unique features of 
ChatGPT, this paper focuses on leveraging the ChatGPT model to elevate the level of software test case 

generation. Specifically, this paper introduces an AutoTestGPT system for automated software test case 
generation, utilizing the ChatGPT model as an intelligent engine. It engages in dialog training with prompts 

(users ask questions to large models) [8] used across different stages of the testing cycle and generates 
standardized conversation templates. Subsequently, it dissects testing requirements and specifications into 

test tasks, formulating comprehensive test plans. Based on these plans, it systematically generates test cases 
and finally validates the generated test cases’ results and produces testing reports. 

The proposed AutoTestGPT test case generation system in this paper is applicable to common testing 

types, such as unit testing, API testing and UI testing. This study focuses on the frequently encountered 
scenario of API testing and designs experiments. The AutoTestGPT system is utilized to generate automated 

API testing frameworks and corresponding test cases. The experimental results demonstrate that the 
AutoTestGPT system aligns with the requirements for test case design, including correctness and reusability 

of framework generation. Compared to manual framework composition, the efficiency of framework 
generation increases by over 70%, significantly alleviating the burden of test case and framework 

development for testing personnel. 

2. Related	Works	

Benefiting from the rapid advancement of artificial intelligence technology, researchers have extensively 

employed search based algorithms such as simulated annealing algorithm [9], genetic algorithm [10, 11], 
particle swarm optimization algorithm [12], AI algorithms such as machine learning [13–15] and deep 
learning methods to automatically generate software test cases. This approach helps to overcome 

limitations of traditional test case generation methods. For instance, Jana [16] introduced a test case 
generation method called DeepTest based on convolutional neural networks, which was applied to test deep 

neural networks in autonomous driving vehicles. Guo [17] proposed an automatic test case generation 
framework based on Generative Adversarial Networks (GAN). This novel framework was applied for 

generating test cases in the unit testing and integration testing phases. However, deep learning methods 
have a higher entry barrier and may not fulfill the requirement for convenient and rapid test case 

generation. Therefore, in recent years, the highly regarded ChatGPT conversational generative model has 
captured the attention of researchers as an alternative approach. 

ChatGPT is constructed upon the foundational architecture of the Transformer, a large-scale language 
model designed for dialogues, employing a pre-training and generative approach. Drawing upon ChatGPT’s 
formidable capabilities in natural language comprehension [18], error correction [19], and contextual 

learning [20, 21], researchers have extended its application across diverse domains, including education, 
healthcare, law, academic publishing, and software engineering [22]. In the context of software testing, 

ChatGPT is commonly employed for tasks such as automated program repair, resolution of programming 
bugs, identification of failing test cases, and education within the realm of software testing. For instance, 

Sobania et	 al. [23] applied ChatGPT to automated program repair techniques, assessing its repair 
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performance on a standard error repair benchmark. Surameery [24] investigated the utilization of ChatGPT 
for addressing programming bugs, emphasizing its potential as an integral component of a comprehensive 

debugging toolkit. T.-O. [25] employed ChatGPT for automated software fault detection. Jalil [26] explored 
the application of ChatGPT within the domain of software testing education.  

The current spectrum of ChatGPT’s applications encompasses various aspects of the software testing 

domain [27]. In terms of software test case generation, Zimmermann [28] studied the technology of using 
GPT-3 to generate test cases in the field of GUI testing, and realized the function of non-technical users 

easily entering test cases for desktop and mobile applications. However, for many types of test in the field of 
software testing, it is difficult to have a general system design idea for the field of test case generation. 

Building upon the aforementioned studies, this article introduces the AutoTestGPT test case generation 
system. This system adeptly employs large language models within the domain of software test case 

generation, effectively addressing the painstaking process of manual test case creation and bolstering the 
efficiency of constructing test cases and establishing testing frameworks. Through the iterative 

decomposition of intricate tasks and the employment of prompt-driven dialogue training templates, the 
system concurrently resolves the dilemma faced by testing personnel when embarking upon prompt 
engineering (a complete set of interactions between the user and the large model). This advancement offers 

a fresh perspective on how to more extensively integrate large-scale language models such as ChatGPT into 
the domain of software testing, thereby expediting the automation and intellectualization of software 

quality assurance processes. 

3. AutoTestGPT	

AutoTestGPT framework mainly includes three parts: test requirements information extraction, prompt 

word generation and test case generation and execution. The working process is as follows. First, for a given 
test requirement, AutoTestGPT extracts key information of the test requirement according to different test 

types such as unit test, API test, UI test, etc., including test type, programming language, test framework, 
objective function, precision requirement and other parameters to form structured requirement 

information. Then input the requirement information and the predefined prompt word template into the 
prompt word generation section to generate the key prompt words that meet the test requirements. After 
the prompt words are input to the ChatGPT intelligent engine, ChatGPT systematically interprets the 

information related to the test task, outlines a specific test plan, and gradually designs and generates test 
cases according to the test plan. Finally, AutoTestGPT extracts the test case code, dynamically assembles it 

into executable test case scripts, iteratively executes those test cases in the appropriate test environment, 
and evaluates the validity of the results. When the results do not meet the requirements, the evaluation 

results are fed back to the prompt word generation module, a new prompt word is generated and input 
again to the ChatGPT intelligent engine, and the generated results are further adjusted until the results meet 

the test requirements. Its structure is shown in Fig. 1. The details of how this works are described in 
Sections 3.1, 3.2, and 3.3. 

3.1. Test	Requirement	Information	Extraction	

Testing requirements often describe scenarios from a user perspective, making it challenging to precisely 
correspond to individual test cases. Structured requirement documents need only include three lines of 

content: (1) a concise description of the requirement, (2) the type of requirement, and (3) the coverage 
metrics specified in the requirement. Initially, these structured requirement documents are input into the 

AutoTestGPT system, which then extracts key information from them. The structural processing of 
requirement documents is completed by users before formal testing commences. 

Common test types include unit testing, API testing and UI testing. Unit testing requirements mainly focus 
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on programming languages, test frameworks, test coverage requirements and tested functions. API testing 
requirements focus on interface URLs, test frameworks, test reports and additional requirements. UI testing 

focuses on test frameworks, page elements, positioning methods and pages. The structured information of 
different types of requirements is shown in Table 1, in which we define the “{{}}” slot, in which the key 
information extracted from the requirements needs to be filled in. Obtain the information required to 

generate test cases for three different test types and store them into the requirements list. 

 
Fig. 1. Overview of AutoTestGPT. 

Table 1. Test Type and Requirements Structuralization Information 
Test type Requirements information 

Unit test 

Given examples are as follows: 
a) Requirements type: {{Unit test case generation}} 
b) Programming language: {{}} 
c) Test framework: {{}} 
d) Test coverage: {{}} 
e) Test function: {{}} 

API test 

a) Requirements type: {{API test framework generation}} 
b) Interface URL: {{}} 
c) Test framework: {{}} 
d) Report type: {{}} 
e) Additional requirements: {{}} 

UI test 

a) Requirements type: {{UI test case generation}} 
b) Test framework: {{}} 
c) Page elements: {{}} 
d) Positioning mode: {{}} 
e) Operation process: {{}} 

3.2. Prompt	Generation	

A ‘Prompt’ is a form of natural language input, akin to a command or instruction, designed to guide an AI 

model on the actions it should take or the output it should generate when performing a specific task. 
Throughout the entire test case generation cycle, we have devised and generated prompt examples for 
various stages, including test plan formulation, test case design, and test result evaluation, as illustrated in 

Table 2. These examples serve as the basis for training dialogues with large language models, aiding 
AutoTestGPT in better understanding and responding to user-provided instructions. This approach 

significantly enhances the model's reliability and effectiveness. The system automatically populates the 
extracted test requirements from Section 3.1 into the examples, thereby enabling the generation of 
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high-quality prompts.  

3.2.1.	Examples	of	prompts	at	each	stage	of	test	
Typically, a complete testing dialogue cycle consists of three stages: test plan formulation, test case 

generation, and test result evaluation. By analyzing the key steps in each stage, we have provided common 
prompt examples for each phase as shown in Table 2. The input for the test plan formulation stage is the 

textual description of the testing requirements, often selecting the most critical segment and placing it 
within the placeholder {{}}. The output encompasses test objects, test environment, test objectives, test 
functionality points, test methods, and test result evaluation. 

In the test case generation stage, critical information extracted from Section 3.1 is utilized to generate test 
case script code. For unit testing, the Test framework, programming language, test function, and test 

coverage are successively filled into placeholders. The prompt stipulates the coverage metric for the tested 
function. In API testing prompts, the test framework, interface URL, parameter lists, and report type are 

sequentially inserted into the placeholders. To enhance the extensibility of the testing framework, the 
prompt additionally requests the separation of test data and test cases. In UI testing prompts, the test 

framework, page elements, positioning mode, and operation process are progressively entered into 
placeholders. Following the description of the testing process, the generation of test case code is 

incrementally accomplished. 
The test result evaluation stage is employed to assess the usability and correctness of the test results. 

Three types of test results correspond to different evaluation methods and criteria, thus necessitating 

distinct prompts. In unit testing prompts, statistics are compiled for common coverage metrics, including 
statement coverage, branch coverage, and path coverage. For API testing prompts, the tested real interface 

is specified, and statistics are generated for interface functionality pass rate and API test case coverage. In 
UI testing prompts, coverage is calculated based on the proportion of executed test operations to the total 

number of operations. 

Table 2. Examples of Prompts 
Stage Prompt Examples 

Test Planning 

According to the requirement {{Requirements text}}, please list the detailed test plan. The test plan is 
carried out from the following aspects: 
a) Determine the test objectives. 
b) Build a test environment. 
c) Determine the scope of the test. 
d) List detailed function points. 
e) Determine the test method. 
f) Define the result acceptance criteria. 
g) Complete the dispatch plan. 

Test Case 
Designing 

Unit test: 
Use {{Framework}} in {{Programming language}} to write unit test cases for the {{Function}} in the code 
with coverage{{Coverage}} 
API test: 
Use {{Framework}} to write API automation testing framework. Interface URL is {{Interface URL}} and test 
parameters includes {{Parameter lists}}. Test report using tools {{Report type}}. Additional requirements: 
{{Test data should be separated from test cases}} 
UI test: 
Use {{Framework}} to write UI Test cases for the page elements {{Page elements}}. Page elements 
positioning mode {{Positioning mode}}. The test operation process is as follows {{Operation process}}. 

Result 
Evaluation 

Unit test: 
Prompt1: Please count the statement/branch/path coverage of the unit test cases generated above. 
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API test: 
Please verify correctness of the test framework with the actual interface. 
a) Actual interface URL: {{actual interface URL}}. 
b) Interface parameters: {{parameter lists}}. 
c) Expected output: {{expected output}}. 
d) Pass rate of result operation: {{Number of passed cases/Total number of cases}}. 
e) Please verify its integrity of the test framework with the actual interface. 
UI test: 
Please calculate the proportion of the passed operation steps to the total operation steps and record it as 
the UI test coverage. 

3.2.2.	Evaluation	Feedback	
Test case code generated by ChatGPT may exhibit certain deviations or bugs. To ensure system stability, 

we have designed an evaluation feedback module. This module, based on the assessment of test case results, 
allows AutoTestGPT to acquire execution outcomes and determine their correctness. If the results are 

deemed incorrect, detailed error information is retrieved and used as input for the prompt generation 
module. This process yields corrected test case scripts, which are then executed using the test case 
execution module from Section 3.3. This iterative cycle is repeated multiple times until the test cases pass 

completely. Prompt examples corresponding to the evaluation feedback stage are illustrated in Table 3. 

Table 3. Example of Prompt during the evaluation feedback stage 
Stage Prompt Examples 
Evaluation 
feedback 

After executing the above script, the following error message is displayed: {{Error messages}}. How 
should I correct the test script? 

 

3.3. Test	Case	Generation	and	Execution	

With prompts tailored for each stage of the testing cycle, inputting them into ChatGPT allows for the 

rapid generation of corresponding output results. Following the generation of detailed test plans and test 
cases, AutoTestGPT automatically extracts and assembles the generated test case code into executable 

scripts. These scripts are then executed for the respective test cases, producing the test results. 

3.3.1 Test	Case	Generation	
For unit testing, the generated test case code, code explanations, and the method or results of unit test 

coverage statistics are produced. At the end of the unit test case, a method for unit test coverage statistics is 
generated. In API testing, the directory structure of the testing framework is initially provided. Subsequently, 
detailed code for each part of the API testing framework, including framework initialization, test data, 

reading test data configurations, actual test cases, and handling test requests and responses, is generated 
along with accompanying code explanations. For UI testing, a common automation testing framework, such 

as Selenium in Python, is invoked. Test cases for UI automation are generated based on the page source 
code and positioning methods. 

3.3.2 Dynamic	Assembly	
The dynamic assembly process is a crucial step that connects the tested object with the test cases. It 

varies slightly for different types of testing, as outlined in Table 4. For unit testing, the dynamic assembly 

process begins by obtaining the source code under test and related dependencies. Subsequently, it acquires 
the test cases and the script for evaluating test results, ultimately completing the comprehensive assembly 

and generation of the test case script. In the case of API testing, following the explanation in Section 3.2, the 
framework for API testing is generated. Initially, the testing framework directory is established, followed by 

obtaining the code for each part of the testing framework. The code is then placed in script files located in 
different directory structures. Finally, the interface URL and parameters are obtained and filled into the 
testing framework configuration file, achieving the dynamic assembly of the API testing framework. For UI 
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testing, information about UI test cases is obtained and directly written into the test case execution file. 

Table 4. Dynamic Assembly Process 
Test type Dynamic assembly process 

Unit test 

a) Get the source program of the function under test and related dependencies.  
b) Get the test cases. 
c) Get the test evaluation scripts. 
d) Assemble into test case execution file. 

API test 
a) Build the test framework directory. 
b) Create a script file in the corresponding directory, and write the code into the script files. 
c) Get the tested interface URL and parameters and fill them in the configuration file. 

UI test 
a) Get the header file information and test case code. 
b) Assemble into test case execution file. 

3.3.3 Test	Execution	
Built upon commonly used means and frameworks for automated testing based on test cases, the 

AutoTestGPT system has preconfigured prevalent automated testing runtime environments. Once 
executable test case files are obtained, our system automatically executes the test cases, displaying the test 
case execution results on the output console. The AutoTestGPT system retrieves the execution results and 

further assesses whether the test scripts executed successfully. If there are no errors during execution, the 
system outputs the test results and a test report. In the case of execution errors, error information is 

obtained and used as input for Section 3.2.3, acquiring corrected test cases. This iterative loop continues 
until the test cases pass successfully. 

3.3.4 Test	Result	Evaluation	
For unit testing, we employ code coverage analysis methods to measure whether the test cases cover 

various parts of the tested code. AutoTestGPT will invoke commonly used coverage analysis tools such as 

the ‘coverage’ library in Python and the JaCoCo tool in Java to automatically generate scripts for calculating 
test case coverage metrics. 

In the case of API testing, evaluating the correctness of the generated API testing framework involves 
testing with real interfaces, such as a pre-established automated API testing framework. Initially, several 

test cases targeting real interfaces are generated. The testing framework is then invoked to automatically 
execute these test cases. Finally, the pass rate of the test cases is calculated to assess the correctness of the 
generated API testing framework.  

For UI testing, coverage metrics are designed in the prompts, primarily calculating the proportion of 
tested page functionalities to the total page functionalities and the proportion of correctly located elements 

to the total number of elements. 

4. Experiment	

The AutoTestGPT system is applicable to common testing types, such as unit testing, API testing, and UI 

testing. To validate the effectiveness of the test case generation by AutoTestGPT, we assess it using API 
testing as an example. As described in Section 3.2.2, evaluating the correctness of the generated API testing 

framework requires validation with real interfaces. To illustrate the advantages of the AutoTestGPT system 
in enhancing automated testing, we compared the overall time spent by five test engineers on writing and 

debugging an automated API testing framework with the time spent utilizing the framework generated by 
AutoTestGPT. This comparison serves to highlight the efficiency of the system in improving the generation 
of automated test cases. The ChatGPT model version chosen for this experiment is GPT-3.5. 

4.1 Settings	

An API testing framework serves to curtail the temporal costs associated with manual regression testing, 
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thereby expediting the testing cycle. The objective of this experiment is to utilize the AutoTestGPT system to 
invoke the widely-used API automation testing framework in Python, Pytest. The aim is to autonomously 

construct an API automation testing framework based on Pytest. Using a real-world interface as an 
exemplar, the effectiveness of the generated testing framework will be evaluated. 

4.2 Procedure	and	Results	

The experimental process for generating the API automation testing framework using the AutoTestGPT 
system is documented in Table 5, while the outcomes of the experiment are detailed in Table 6. Initially, the 

testing requirements were dissected in accordance with the provided examples, with the structured testing 
demands inserted into {{}} placeholders. The nature of the experiment pertains to the API Automation Test 

Framework, employing Python as the testing language, Pytest as the invoked testing framework, and Allure 
as the tool for generating testing reports. An additional stipulation entails the segregation of testing data 

from test cases. 

4.2.1.	Requirements	Extraction	
The original requirements for this experiment are as follows: 

Please design and generate an API automation test framework based on the Python language, and call the 
Pytest test framework. First, establish the test framework directory structure. Secondly, the test data needs 
to be separated from the test cases. The test data includes the interface URL, request method, request 

parameters, and expected output results. Finally, test reports are required to be generated using Allure 
tools. 

Following the testing requirement segmentation principles outlined in section 3.1, the aforementioned 
requirements are divided as follows: 

a) Requirements type: {{API test framework generation}} 
b) Interface URL: {{https://api.example.com/endpoint}} 

c) Test framework: {{Pytest}} 
d) Report type: {{Allure}} 

e) Additional requirements: {{the test data needs to be separated from the test cases}} 

4.2.2.	Prompt	Generation	
Following the prompt generation rules and examples in Section 3.2, fill the prompt sample with the API 

test requirements, resulting in a prompt set for the following three stages. 

Table 5. Prompt Set 
Test Stage Prompt 

Test Planning 

According to the requirement {{Please	design	and	generate	an	API	automation	test	framework	based	on	the	
Python	language,	and	call	the	Pytest	test	framework.}}, please list the detailed test plan. The test plan is 
carried out from the following aspects: 
a) Determine the test objectives. 
b) Build a test environment. 
c) Determine the scope of the test. 
d) List detailed function points. 
e) Determine the test method. 
f) Define the result acceptance criteria. 
g) Complete the dispatch plan. 

Test Case 
Generation 

Use {{Pytest}} to write API automation testing framework. Interface URL is 
{{https://api.example.com/endpoint}}. Test report using tools {{Allure}}. Additional requirements: {{Test 
data should be separated from test case}} 

Result 
Evaluation 

Please build an API automation test framework according to the above tips, and verify its correctness with 
the actual interface. 
a) Actual interface URL: {{https://api.example.com/endpoint}}. 
b) Interface parameters: {{param1	=	"value1",	param2	=	"value2"}}. 
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c) Expected output: {{status_code	=	200,	key1	=	"value1",	key2	=	"value2"}}. 
d) Pass rate of result operation: {{Number	of	passed	cases/Total	number	of	cases}}. 

4.2.3.	Test	Case	Generation	and	Execution	
Given the aforementioned prompt as input parameters, input into ChatGPT for the retrieval of a test plan, 

test framework, test case generation, and validation of test results on a real interface, the generated 

experimental results by AutoTestGPT are presented in Table 6. Initially, a comprehensive test plan is 
formulated as outlined in the Test Planning section. During the test case generation phase, AutoTestGPT 
proceeds as follows: First, it provides the overall design concept for the API automation test framework: 

(1) Define the format of data files. 
(2) Create test cases and retrieve test data from the TOML file. 

(3) Implement interface requests and response handling. 
(4) Generate test reports. 

Subsequently, AutoTestGPT presents the directory structure of the automation testing framework, 
illustrated in Fig. 2. Within this structure, the test_data directory is designated for storing test data, with the 

file named “example_test_data.toml”. In accordance with the TOML file format, ChatGPT specifies the 
request HOST, request method, request parameters, and expected response. The tests directory contains the 

test case configuration file “conftest.py”, which facilitates the retrieval of test data from the TOML file, and 
the test case file “test_interface.py”, encompassing the actual API test cases. The “api_client.py” file primarily 
executes the sending of interface requests and handling of responses. The “allure_report” directory is 

designated for storing result files from the test reports. The “pytest.ini” is the configuration file required for 
running pytest. Finally, the code for each section of the test framework is provided. In accordance with the 

output results, the construction of the API automation test framework is completed. Real API testing is 
conducted, and ultimately, the API test cases run successfully, validating the results. 

Table 6. Results 
Test Stage Result 

Test Planning 

Here's the detailed test plan based on the provided requirements splitting: 
Test Plan 
① Environment Setup Phase: 
 Install necessary Python packages (Pytest, Allure). 
 Set up the test environment on the chosen OS. 
② Framework Implementation Phase: 
 Create the directory structure for the test framework. 
 Implement test cases using Pytest and separated test data. 
 Integrate Allure for test report generation. 
③ Testing Phase: 
 Execute the test cases using Pytest. 
 Monitor and track test execution progress. 
④ Reporting Phase: 
 Generate Allure test reports. 
 Review and analyze test results. 
⑤ Completion Phase: 
 Ensure all test objectives are met. 
 Address any failed test cases or issues. 
Finalize the test framework documentation. 

Test Case 
Generation 

a) The design idea of the API automation testing framework is given. 
b) The project directory structure is shown in Fig. 2. 

Result Evaluation 

a) Build the automated test framework according to the design ideas given by AutoTestGPT. 
b) Correctness verification: All test cases passed the test for real interface. 
c) Integrity verification: All arguments contain valid equivalence classes and invalid equivalence 
classes. 
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AutoTestGPT gives the directory structure of the automated test framework: 

 
Fig. 2. Directory of the API automation testing framework generated by AutoTestGPT. 

 
AutoTestGPT, based on the results generated in Section 4.2.2, has successfully completed the construction 

of the API automation testing framework. Initially, the framework directory is established according to  
Fig. 2, and corresponding test script files are created in the respective directories. Subsequently, the 

relevant code is extracted and written into the test script files, assembling them into a comprehensive API 
automation testing framework. 

To validate the correctness of this framework, real API testing experiments are conducted by running the 
test framework. The experimental results indicate that the API testing framework generates a test case for 
each parameter, and all cases run successfully. Detection of no errors in the testing framework signifies the 

successful generation of a test report. The experimental outcomes affirm the practicality of the API 
automation testing framework generated through AutoTestGPT. 

4.3 Qualitative	Results	

The API automation testing framework stands as a pivotal tool in enhancing the efficiency of API testing. 

Leveraging AutoTestGPT, the complete process of testing requirement breakdown, test plan formulation, 
test framework and test case generation, and validation of test results is accomplished. The resultant API 

automation testing framework furnishes fundamental functionalities such as automated test case 
composition, automated test case execution, and automated test report generation. This framework serves 
as the foundation upon which we need only undertake the design and implementation of test cases closely 

aligned with the business domain. Based on statistical data from actual projects, it takes approximately 4 
hours for five experienced test development professionals to construct an API automation testing 

framework. In contrast, utilizing the AutoTestGPT system to build a testing framework with equivalent 
functionality takes about 1 hour, reducing the framework generation time by over 70%. This substantial 

reduction in time significantly shortens the upfront investment in the project.  

5. Discussion	and	Analysis	

The AutoTestGPT system represents a novel paradigm in the domain of software test case generation. It 

adeptly dissects intricate testing requisites, formulates structured prompts, fine-tunes extensive language 
models, and ultimately crafts test case code and frameworks of heightened utility. Its strengths encompass 

the following facets. 1) A salient advantage of the AutoTestGPT system resides in its amplification of test 
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case generation efficiency.  It significantly reduces the time invested in manually composing redundant 
code during test case generation and framework establishment. Efficiency gains in the realm of API test 

framework construction have even reached an impressive 70%, signifying a substantial enhancement in 
testing efficacy. 2) The dialogue training module within the AutoTestGPT system addresses the challenge 
that testing professionals encounter when effectively formulating prompts for substantial language models. 

The dialogue training module furnishes comprehensive prompt templates requisite throughout the testing 
lifecycle, spanning from the deconstruction of testing requisites and formulation of testing plans to test case 

generation, evaluation of test outcomes, and report generation.  
It is noteworthy that AutoTestGPT still exhibits certain limitations or areas for improvement. 1) The 

generation of test cases is heavily reliant on the ChatGPT intelligent engine model. The performance and 
stability of the ChatGPT model directly impact the performance and stability of the AutoTestGPT system. 

This dynamic can lead to fluctuations in the quality of code generated by the AutoTestGPT system. 2) 
Regarding the validation of test results, the current predominant approach involves executing the generated 

test cases, thereby representing a somewhat singular validation method. This deficiency underscores the 
need for an overarching evaluation framework to comprehensively assess outcomes, constituting a focal 
point for future research endeavors. 

6. Conclusion	

In this paper, we introduce a software test case generation system called AutoTestGPT, based on ChatGPT, 
to address the challenges of automated test case generation. The system extracts key information from 

structured test requirements, references dialogue training templates, uses ChatGPT intelligent engine to 
generate test plans, test cases or frameworks, then iteratively validates and automatically generates test 

reports. Experimental results on a typical case of API testing framework demonstrate the significant 
positive impact of the proposed AutoTestGPT system on improving the efficiency of test case generation and 

overall levels of test automation. 
Future investigations shall, on one hand, be rooted in the existing AutoTestGPT system, as we delve into 

the assessment of the trustworthiness metrics associated with the generated test cases. On the other hand, 
we shall consider the use or training of a more stable iteration of the ChatGPT intelligent engine model. 
Such an approach serves to ensure the precision and consistency of the testing framework's output.  
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