

Development	of	Backend	REST	API	for	Auto	Chess	
Multiplayer	Game	with	Multi‐Historical	Setting	

Ayman Aljarbouh*, Dmytro Zubov, Aktan Tursunbaev

Department of Computer Science, University of Central Asia, 722918 Naryn, Kyrgyzstan.

* Corresponding author. Tel.: +996 770 822 972; email: ayman.aljarbouh@ucentralasia.org (A.A.)
Manuscript submitted February 18, 2023; revised May 8, 2023; accepted June 10, 2023; published January
12, 2024.
doi: 10.17706/jsw.19.1.9-18

	
Abstract:	In this paper, a new technique for better management of winning conditions in online auto chess
multi-player games is proposed. This technique is based on the development of a dynamic API that
communicates with the server’s database in real-time with minimum user intervention. Many existing
mechanisms for auto-gaming rely on HTTP, which needs constant update requests from the client/player. To
handle this problem, web sockets are employed that allow real-time communication between the
client/player and the server, so the updates are sent immediately over the network whenever they are
available. The proposed methods were validated by the practical implementation and a set of experimental
tests. The web application uses Python Django REST Framework, allowing the extension of the web
application to API. The database is implemented employing the PostgreSQL database management system. 	

Keywords:	API, auto chess, backend REST, multiplayer game, web application.

1. Introduction	

The auto chess genre is a tactical survival strategy, where the hero units (chess-like pieces) are placed on
a grid board against the opponent’s set of hero units. The match consists of several rounds, players are
randomly divided into pairs. The main concept of the game is that players have to arrange their units

efficiently using strategic and tactical thinking skills. The player may get a random set of hero units from the
predefined pool. The winner of the round is the player whose units defeat the opponent’s whole squad. The

match ends when there is only one player left with a non-empty health bar [16].

Typically, a multiplayer game implies that the players need in-game interaction with each other, as well as

a server and a database are required both. Web Application Programming Interface (API) is an interface

that provides server-client communication [79]. API grants permission to register and authorize players,

find a match, view the leaderboard, etc. All these actions are executed as the Hyper Text Transfer Protocol
(HTTP) requests to the API that handles them accordingly. The development of API is crucial since it allows
the clients to communicate with the database in a simple way. However, one of the main disadvantages of

using the HTTP protocol in auto-gaming is that does not provide real-time server-client communication
[10]. One possible solution to deal with this issue is to use web sockets. The web socket is the event-driven

protocol that holds a persistent connection, allowing real-time communication [10, 11]. For instance, in
matchmaking, whenever a player sends a request to find a match, the web socket connection is built to

provide information to the waiting player about the actual status of the search for a match in real-time. To

Volume 19, Number 1, 20249

Journal of Software

the extent of making the web application of the game accessible for the clients/players, it is necessary to
deploy it. Moreover, the server needs to know how to redirect incoming requests to the web application.

One of the methods to achieve this is to use the Asynchronous Server Gateway Interface (ASGI) and Daphne
platforms [12]. ASGI is a descendant of Web Server Gateway Interface, which is a standard for asynchronous
server communication with Python web applications employing web sockets. Daphne is a Python ASGI

server that allows running multiple instances of web applications using incoming requests [13]. This paper
introduces a new technique and application for better management of winning conditions in online auto

chess multi-player games.
The contribution of this paper could be divided into three parts: (1) the development of Web API that

provides better communication between the clients and database, (2) the implementation of an online
matchmaking system and playing process handling, and (3) the deployment of the application to the server.

Python and Django programming platforms are used in this work as they both have powerful and flexible
web API features with built-in authentication options. The Django Channels library is also considered to

handle web sockets and can be easily integrated into the existing Django application. An efficient
search-and-find matching algorithm is implemented taking into consideration many factors for
auto-matching such as the player’s rating. The web application is deployed using the Heroku server, because

it satisfies the minimal conditions to run the application for testing purposes. Also, the Heroku server has a
built-in pack for Python applications that allows an automatic rebuild if the application is modified.

The paper is organized as follows: Section II presents the methodology and implementation; Section III
discusses the conclusion and perspectives.

2. Methodology	and	Implementation	

2.1. Development	of	the	Web	API	

To develop the Web API, the Django framework is employed because it is a high-level Python web

framework for reliable development. PostgreSQL is used as a database management system (DBMS)
because it is an open-source powerful relational DBMS with high performance. Django uses the
Model–View–Template (MVT) pattern to design applications, which is actually a modification of a classic

Model–View–Controller (MVC) pattern. MVT pattern implies that the application is represented by three
components: model, view, and template. First, the model component represents a simplified and more

abstract view of the database. Each model corresponds to a particular database table, where models are
defined as Python classes containing attributes and serve as the database table fields. Second, the view

component stands for wrapping the logic of dealing with incoming requests from the client and sending
responses. Views can be implemented in Python as functions accepting a request as a parameter and

returning the HTTP response, or classes containing methods that perform the same way as function-based
views. Third, HTML files combined with specific Django code files represent the template component. This

code is run by the Django framework to render a classical HTML file and sends it back as the HTTP response.
Fig. 1 shows the MVT pattern visualization.

Fig. 1. MVT pattern visualization.

Volume 19, Number 1, 202410

Journal of Software

Instead of returning HTML files, we reconfigure the API so that the data is returned in the JavaScript
Object Notation (JSON) format with the help of the Django Representational State Transfer (REST)

Framework (DRF). The API resulting architecture is presented in Fig. 2.

Fig. 2. Modified MVT pattern visualization with the JSON data formatting.

2.1.1. Designing	the	database	
Designing a well-structured database schema makes the development simple throughout the whole

process. As was mentioned above, the Django models help to work with the database. For instance, since
this is a multiplayer game, the first model is the Player model. This model was created using the default User

model of the DRF, i.e., there is a one-to-one relationship between the Player model and the User model. The
default User model includes vital fields necessary for any user and already has the authentication features

ready for that. The Player model is extending the default User model by adding the rating, status, opponent,
health, and channel_name fields. The rating field serves as an indicator of the player’s skill level. The status,
opponent, health, and channel_name fields are helper fields that are employed in the matching processing.

Fig. 3 shows the code snippet from the implementation of the database. The model is a Python class
inherited from the calss django.db.models.Model representing the database table. This class contains the

attributes that use the table field representations provided by the class django.db.models.

Fig. 3. Code snippet from the implementation of the database.

2.1.2. Implementing	the	API	
Serializers are important in the implementation of the API since they help in the conversion of an

instance of a model to JSON format and vice versa. Fig. 4 shows the code snippet for the implementation of
serializers for the User and Player models.

Volume 19, Number 1, 202411

Journal of Software

Fig. 4. Code snippet for the implementation of serializers for the User and Player models.

Serializers are Python classes inheriting rest_framework.serializers.ModelSerializer which allows the

creation of a serializer for a specific model. UserSerializer is a serializer for the default DRF User	model that
allows interaction with username, email, password, last_login and date_joined fields, where last_login, and

date_joined are read-only fields meaning that they cannot be changed, and password is a write-only field
meaning that it cannot be read but can be changed. It is used in PlayerSerializer because of the one-to-one
relationship in the database (see Fig. 5).

Fig. 5. Code snippet for the implementation of Playerserializer.

PlayerSerializer allows to interact the client with related user and rating fields, where the rating is a
read-only field because it needs to be changed only by the system. Additionally, the serializer does not show

other Player fields since they are used in match processing. Also, the default create method of
ModelSerializer was overwritten because it cannot automatically handle nested structures. In this case, the

related user is a nested structure that needs to be manually unpacked and properly saved to the database.

Volume 19, Number 1, 202412

Journal of Software

Before implementing the API endpoints, the project was configured to use Token Authentication. The
token is granted when the user logs into the system by providing a username and password so that the user

does not need to send the credentials again. For further requests, the token is stored on the client side, e.g.,
browser cookies, mobile device, etc. DRF provides built-in token-based authentication that is easily
configured. API endpoints are created using the DRF because it simplifies the whole process by providing

generic classes that can work with existing models and automatically generates the four basic operations of
persistent storage (Create, Read, Update, and Delete). Classes provided by DRF can be modified to alter

their behavior. For instance, the handling of specific HTTP methods can be easily defined. For further
explanation, the class PlayerList (see Fig. 6) was created for two endpoints that allow the creation of a

player and retrieve the list of all players.

Fig. 6. Code snippet for the implementation of PlayerList.

Class PlayerList	 is inheriting rest_framework.generics.ListCreateAPIView, which is a class that already

implements the basic logic for creating and listing some objects; in our case these objects are players. The
class was extended by defining two class attributes: queryset, which defines what objects to list,	 and
serializer_class, which defines the serializer to use when converting an object to or from JSON. As a queryset,

Volume 19, Number 1, 202413

Journal of Software

all players stored in the database were passed taking into consideration the class PlayerSerializer. Also, the
method that handles the creation of the player was overwritten in a way that creates User	object and then

creates Player object using, but, most importantly, it creates a token for the user that is returned as a
response together with the Player object serialized by the implemented serializer.

2.2. Matchmaking	System	and	Playing	Process	Handling	

To implement the matchmaking system and playing process handling, the Django Channels library is
employed because it allows embedding the web sockets into the Django application. Django Channels use

two components to describe incoming connections employing web sockets Scope and Events. The Scope
component represents the details of one incoming connection. These details include the information about

the request and the client that sends it. The scope stays during the whole connection until the socket is
closed. In this application, the scope is instantiated when a player decides to find a match. The Events

component represents the desired actions on the client side which can be received throughout the whole
connection. In the case of matchmaking, an event that might be received is to stop looking for a match. So,
when there is an incoming connection, the scope is created, and until the connection is closed, there can be

multiple events coming to the application whenever the client wants to interact.

Fig. 7. The flowchart of the matchmaking algorithm.

Volume 19, Number 1, 202414

Journal of Software

2.2.1. Designing	the	algorithm	for	matchmaking	system	
To design an algorithm for the matchmaking system, two significant factors are considered: (1) the

waiting time that is necessary to find a match, and (2) the difference between players’ ratings. These factors

affect the level of satisfaction of players because the player does not want to wait too much time to start
playing, and every player wants to play against those who have approximately the same level of playing skill

since this makes the match intriguing and fair. Fig. 7 shows the flowchart of the algorithm used in this
project. The algorithm considers adding players looking for a match to a queue until there is a group of
players with the same ratings, so the difference between the players is as small as possible. The main

configuration variable is the difference between ratings. Other configuration variables include, the rating
difference expansion, time between expansions, the maximum difference between ratings, and a timeout for

any group of two matching players looking for a match.

2.2.2. Implementing	the	algorithm	for	matchmaking	system	
The matchmaking system was implemented using the Django Channels. Since web sockets work

asynchronously, default Django views cannot be applied here. So, the first stage was to implement
Consumers - an abstraction provided by the Django Channels that allows the creation of ASGI applications.
Django Channels allow the implementation of regular series of functions. Moreover, they handle threads

and handoffs. For any web socket, there are three methods to be implemented: Connect, Receive, and
Disconnect. The Connect method is called whenever there is a request to create a connection between the

client and server. When there are incoming requests during the connection, the Receive method is called.
These requests are represented in Django Channels as events. The Disconnect method is called when there

is a request to close the connection.

Fig. 8. The flowchart of the match process handling algorithm.

Volume 19, Number 1, 202415

Journal of Software

The process of finding a match is implemented as a task which is called every two seconds, that
implements the matchmaking algorithm after adding a player to a queue. To accomplish this task, Django

Celery was embedded into the application, which is a simple and flexible system that allows processing
tasks in the background [14]. Django Celery provides an extension named Django Celery Beat that allows
the creation of scheduled tasks that are run after some time. So, the task for matchmaking was set to run

every two seconds.

Fig. 9. The flowchart of the entire process of the match process handling.

2.2.3. Implementing	the	match	process	handling	
When a player connects to the web socket, the status is set to “connected” and the health bar is set to

Volume 19, Number 1, 202416

Journal of Software

maximum. Opponents are assigned using an algorithm that generates all possible distribution of players
into pairs. If the number of players is odd, then the player without an opponent is assigned to a clone of a

randomly picked player except itself. Fig 8 shows the flowchart of the match process handling algorithm.
When all players are connected and have assigned opponents, the round phase starts. It consists of two

parts: preparation and battle. During the preparation, players arrange the hero units on the board.

Whenever there is an action done by a player, the opponent should know about it. So, for every such action,
there is a message sent through the web socket. After the preparation, the second part of the round phase

starts. This part is processed only on the client side. Fig. 9 shows the flowchart of the entire process of the
match process handling.

2.3. Deployment	of	the	Application	on	the	Server	

The application was deployed on the Heroku cloud platform. DRF includes a comfortable ready web

server that can be run; however, it is not used for production purposes because it does not handle requests
in parallel. Therefore, the Daphne platform was used, which is a Python HTTP and Web Socket protocol
server used for ASGI applications. Unlike Django's built-in web server, Daphne provides the concurrent

handling of incoming requests by running several Python processes. Heroku server needs Procfile - a set of
all commands that run on the startup of the application. The following code specifies Procfile as follows:

release: python manage.py migrate

web: daphne -b 0.0.0.0 -p $PORT auto_chess.asgi:application

worker: celery -A auto_chess worker --beat --scheduler django --loglevel=info

This allows to apply new database changes before running the server. The application was also

configured by adding both PostgreSQL and Redis to the Heroku server as add-ons.

3. Conclusion	and	Perspectives	

In this paper, a new technique for better management of conditions in online auto chess multi-player

games is proposed. To implement the matchmaking system and match process handling, the Django
Channels library is used together with web sockets. In addition, Django Celery Beat and Celery are used for

background processing of the matchmaking system. The application uses PostgreSQL DBMS. The
application is deployed in the Heroku cloud platform. Since this application is a web API, DRF is considered

the most effective toolkit that was embedded in the main Django application. To implement the
matchmaking system and match processing in the game, the Django Channels library is employed because it
allows using web sockets technology together with Django. The successful testing of all HTTP and Web

Socket endpoints shows the final application is working correctly. A good database schema is a consequence
of the easy implementation of the whole application. The designed algorithm for the matchmaking system is

working fast enough to find a match with players of the approximately same skill level.
Further possible improvements would be the exploration of more non-crucial additional endpoints and

the extension of the application with a website that provides the functionality of registration and a wiki for
the game.

Abbreviations

The table lists the abbreviations and acronyms used in the paper:
API Application Programming Interface
ASGI Asynchronous Server Gateway Interface

Volume 19, Number 1, 202417

Journal of Software

DBMS Database Management System
DRF Django REST Framework
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
JSON JavaScript Object Notation
MVC Model–View–Controller
MVT Model–View–Template
REST Representational State Transfer

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

AA and AT conducted the research; AA, AT, and DZ analyzed and validated the design; AA wrote the paper;
AA, AT, and DZ revised the paper; all authors had approved the final version.

References

[1] Viana, B. (2020, June 6). What is an autobattler? CNN. Retrieved from:
https://dotesports.com/news/what-is-an-autobattler

[2] Goslin, A. (2019). Blizzard announces hearthstone battlegrounds, a new autobattler set in the warcraft

universe. Polygon.
[3] Grayson, N. (2019). A guide to auto chess, 2019's most popular new game genre. Kotaku.

[4] Goslin, A. (2019). Which auto battler should you play: Teamfight Tactics, Underlords, or dota 2 auto
chess. Polygon.

[5] Gilliam, R. (2019). Riot games is making its own league of legends auto chess game. Polygon.
[6] Gilliam, R. (2019). Auto chess creators bringing stand-alone game to PC later this year.	Polygon.

[7] Meng, M., Steinhardt, S., & Schubert, A. (2018). Application programming interface documentation:
what do software developers want? Journal	of	Technical	Writing	and	Communication, 48(3), 295–330.

[8] IBM Cloud Education. (2020, August 19). Application	 Programming	 Interface	 (API). Retrieved from:
https://www.ibm.com/cloud/learn/api

[9] Hou, D., & Li, L. (2011). Obstacles in using frameworks and apis: An exploratory study of programmers'

newsgroup discussions. Proceedings	 of	 the	 2011	 IEEE	 19th	 International	 Conference	 on	 Program	
Comprehension.

[10] Liu, Q., & Sun, X. (2012). Research of web real-time communication based on web socket. International	
Journal	of	Communications,	Network	and	System	Sciences, 5(12).

[11] Fietkiewicz, M. (2021, July 6). WebSockets	 vs.	 HTTP. Retrieved from:
https://ably.com/topic/websockets-vs-http

[12] ASGI. (n.d.). ASGI	Documentation. Retrieved from:	https://asgi.readthedocs.io/en/latest/
[13] Daphne. (n.d.). Daphne.	Retrieved from: Retrieved from: https://docs.celeryq.dev/en/stable/.

Copyright © 2024 by the authors. This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited (CC BY 4.0)

Volume 19, Number 1, 202418

Journal of Software

