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Abstract: The COVID-19 pandemic has caused a significant negative impact on countries around the world, and 

there appears to be an observable difference in severity among nations. This study aims to provide an insight into 

the roles many social and economic factors played in contributing to this variation. By investigating potential 

patterns through exploratory data analysis, followed by constructing models using several popular machine 

learning techniques, we examine the validity of the underlying assumptions and identifying any potential 

limitations. Total deaths per million population is used as dependent variable with log transformation to remove 

outliers. A set of factors such as life expectancy, unemployment rate and population are available in the dataset. 

After removing and transforming outliers, various machine learning methods with cross validation are 

implemented and the optimal model is determined by predefined metrics such as root-mean-squared-error (RMSE) 

and mean-squared-error (MAE). The results show that the Gradient Boost Machine (GBM) technique achieves the 

most optimal results in terms of minimum RMSE and MAE. The RMSE and MAE values indicate no over fitting 

issues and the GBM algorithm captures the most influential factors such as life expectancy, healthcare expense per 

Gross Domestic Product (GDP) and GDP per capita, which are clearly critical explanatory variables for predicting 

total deaths per million population. 
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1. Introduction 

First identified at the end of 2019, COVID-19 has inflicted immense destruction upon the global population. 

According to data published by the World Health Organization (WHO), as of September 18th, 2020, there 

have been more than 30 million confirmed cases worldwide including more than 900 thousand deaths 

reported [1]. The nature of the COVID-19 virus makes it significantly more infectious and persistent than any 

other infectious diseases seen in recent history [2]. There have been repeated occurrences of pandemic 

outbreaks documented in human history, and existing research suggests that new pandemics will likely occur 

in roughly 10-50 years intervals [3]. With an expanding world population and increasing disturbances of the 

ecological systems through human activities, it is likely that global pandemics will occur again in the future. 

By developing a deep understanding of the factors that contribute to the spread of COVID-19, effective policies 

and preventative measures can be designed to attenuate not only the continuing crisis of COVID-19 itself, but 
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also other negative effects of highly infectious diseases that may occur in the future. 

Though the outbreak of COVID-19 started only months ago, there have been numerous articles published 

on COVID-19 related topics. For example, Matthew conducted a research to study the key epidemiologic 

parameter estimates for coronavirus disease identified in peer-reviewed publications, preprint articles, and 

online reports. The study findings are based on 101,927 cases and 3,486 deaths in 94 countries spanning 6 

continents and reveal that the range estimates for incubation period are 1.8–6.9 days, serial interval 4.0–7.5 

days, and doubling time 2.3–7.4 days. The research concludes that case burden and infection fatality ratios 

increase with patient age. Moreover, the implementation of combined interventions can reduce cases and 

delay epidemic peak up to 1 month [4].  

Nussbaumer conducted a review on the effectiveness of quarantine during severe coronavirus outbreaks 

[5]. The review provides summary and analysis of 51 studies: 1) 4 observational studies, 2) 28 modelling 

studies on COVID-19, 3) 1 observational and one modelling study on MERS, 4) 3 observational and 11 

modelling studies on SARS, and 5) 3 modelling studies on SARS and other infectious diseases. The paper 

reports a benefit of the simulated quarantine measures to avert 44% to 96% of incident cases and 31% to 

76% of deaths compared to no measures based on different scenarios [5]. 

In addition, Liu conducted a systematic review and meta-analysis to study the children with COVID-19 

symptoms. The dataset is collected and built from 20 studies with 4300 pediatric patients sourcing from 

PubMed, Google Scholar, and Web of Science. It concludes that, while children’s COVID-19 symptoms are 

characteristic by mild presentation, they may become the main spreader in the pandemic, if government loose 

the strict managements like school closures [6].  

Overall, research completed so far has mainly focused on transmission rates, death rates and effectiveness 

of quarantine policy, however, most studies ignore important long-term social and economic factors like, GDP 

per capita, hospital beds per thousands, life expectancy and society median age. Therefore, our research uses 

data from worldindata.org, tradingeconomics.com and the World Bank, seeking to provide an insight into the 

vital roles these social and economic factors can play in influencing the severity of the pandemic in a specific 

country. 

After conducting data collection, clean and examination, we were left with data from around 120 countries. 

We chose to analyze data as of May 31, 2020, which specify the first wave of COVID-19. We began by 

conducting exploratory data analysis to gain a basic understanding of our data, noting any potential flaws 

along the way. Then, we performed clustering to identify potential subgroups within the country-level data. 

Afterwards, we ran a regression analysis to determine which predictors have significant effects on a country’s 

coronavirus death rate. We also looked for potential non-linear relationships. Finally, we ran a decision tree 

on the analysis and compared its performance against our regression model. We conducted this analysis with 

the aim of understanding the differences in the severity level of COVID-19 between countries.  Finally, we 

concluded that life expectancy, healthcare expense per GDP and GDP per capita are the most influential social 

and economic factors, which are critical in determining COVID-19 severity difference among countries. 

2. Exploratory Data Preprocess and Analysis 

Data used in this study was published by “Our World In Data” (https://ourworldindata.org) a part of their 

“research and data to make progress against the world’s largest problems” initiative. Total death per million 

caused by COVID-19 in 210 geographical regions as of May 31th, 2020 and other COVID-19 related data were 

obtained from the “Our World in Data Covid-19 Dataset”. The respective social economic factors, including 

stringency index, population, population age distribution, unemployment rate, balance of trade, hospital beds 

per thousand, life expectancy, health care expenditure as a percentage of GDP, diabetes prevalence and 

population density were also extracted from “Our World in Data” website. 
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2.1. Exploratory Data Preprocess 

There exists a considerable portion of missing entries in the raw data as displayed in Fig. 1. This is 

particularly true for the variables related to new COVID-19 tests administered. The reasons behind this is 

that many countries have limited test capacities for detecting patients actively infected with the virus or chose 

not to report. Since there is no sensible way of filling in the missing data, variables with more than 30% of 

missing values, these are mainly variables related to new tests, were excluded from the analysis. Variables 

that exhibit high levels of multicollinearity with others, such as death rates per day and new deaths per 

million were also excluded. Geographical regions where data on various social and economic factors are 

scarce for reasons unrelated to the virus, such as Andorra, were removed in the data cleaning process. At last, 

we conclude the data of 124 geographical regions. 

 

 
Fig. 1. Features against missing rows. 

 

2.2. Data Transformation 

Jack’s research proposed that usually healthcare expenditure, unemployment rate, life expectancy, and 

stringency index are considered close to a normal distribution [2] and Fig. 2 below validates his view. Punn’s 

research proposes that the population, population density, total COVID-19 cases, and total COVID-19 deaths 

pers million often show a strong right skewness [7], which can also be observed in our chart. Since it is not 

necessary that all predictors have a normal distribution, we choose to log transform the response variable, 

i.e. total deaths per million. Fig. 2 shows side-by-side histograms of each variable. Total deaths per million 

show a strong right skewness, indicating that a log transformation would be helpful. 
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Fig. 2. Side-by-side histograms of each variable. 

 

2.3. Pairwise Correlations 

Next, we plot pairwise correlations and check for potential remaining multicollinearity between our 

predictors. Lauer’s research proposes that 0.85 correlation coefficient could be viewed as a threshold for 

determining multicollinearity in COVID- 19 related civilian data [8]. From Fig. 3, it seems that the level of 

pairwise correlations is not an issue concerned in our data. No two predictors with a correlation greater than 

0.85 were displayed. Therefore, we do not expect multicollinearity to be able to significantly reduce the 

precision of our estimates of the regression coefficients. 

Fig. 3 is the Pairwise Correlation Plot. There does not seem to be evidence of significantly high 

multicollinearity in the data. 

 

   
Fig. 3. Pairwise correlation plot. 
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In Fig. 4, we plot the scatterplots of total deaths per million with continent. We note that the continents of 

Africa, Asia, and Oceania have countries with relatively low death rates, while Europe has a number of 

countries with a death rate of over 400 per million. 

 

 
Fig. 4. Scatterplots of predictor variables against the response variable. 

 

3. Methods 

We apply both unsupervised and supervised learning methods to discover the association between total 

deaths per millions and the predictors and predict total deaths per million, respectively. 

In unsupervised learning, we choose K-means clustering as it is a widely-known clustering method and 

well-implemented in R. Additionally, this algorithm runs faster than other clustering algorithms because only 

“k” distances are needed to compute per iteration. The purpose of implementing K-means clustering 

algorithm is to uncover association between dependent variable and predictors. For example, we want to see 

if high total deaths per million is associated with low GDP per capita. 

For the supervised learning methods, we start with linear regression as it is the most well-known method 

and relatively easy to interpret. Due to relatively small sample size with 124 observations and 11 features 

with moderate signs of multicollinearity from the variation inflation index table, we decide to try forward / 

backward selection method and regularization method such as LASSO in order to eliminate model overfitting 

problem. 

Linear regression is only limited to linear relationships between dependent variable and predictors. 

Therefore, we also implement ensemble (random forest) and boosting (gradient boosting) methods to 

uncover potential non-linear relationships between dependent variable and the predictors. Further, Cross 

validation technique is used to select the best set of hyper-parameters and eliminate model overfitting. 

3.1. K-Means Clustering  

K-means clustering partitions data into groups such that between groups variations are maximized (groups 

do not share many common similarities) and within group variations are minimized (samples within group 

are homogeneous). K-means clustering provides an important insight into the features that contribute to the 

variations in death rates among different countries. Here we use three clusters with the intention to mimic 

groups with high, medium and low levels of average death rates. The clustering was done based on scaled 
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variables. As can be seen in Fig. 5 , these variables appear to have the ability to split total deaths into the 

desired groups, namely, high (shown in red), medium(shown in green) and low(shown in blue), with 

relatively few number of outliers.  

It can also be observed from the scatter plots in Fig. 6.1, 6.2 that certain social and economic variables, such 

as GDP per capita, stringency index and life expectancy, exhibit considerable power in categorizing severity 

of the crisis into the three different groups. Higher values of the stringency index are correlated with a lower 

death rate. This correlation is expected as the stringency index measures the extent of the restrictions placed 

by governments in response to the pandemic; tougher measures, such as strict social distancing policies, are 

expected to have a positive impact. 

Higher and lower income countries, as measured by GDP per capita, tend to experience lower death rates 

than middle income countries. One possible explanation for richer nations to have lower death rates is that 

these countries tend to have well established health systems that have a lower likelihood of collapsing and 

can function better under pressure. Studies have shown that older people are at much higher risk of suffering 

severe consequences from COVID-19 [9] and we can see from the scatter plot countries with the highest life 

expectancy tend to have higher death rates as well.  

 

 
Fig. 5. Boxplot of total deaths per million by cluster. 

 

 
Fig. 6.1 Scatter plot of explanatory variables and deaths per million. 
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Fig. 6.2. Scatter plot of explanatory variables and deaths per million. 

 

3.2. Regression Analysis 

While the k-means method gives us an intuitive illustration of the relationship between factors and death 

rate, it cannot provide quantitative results.  To get more detailed results, we move on to explain the severity 

of COVID-19’s impact on a country by means of a regression model.  

3.2.1. Multivariate linear regression 

The predictors of linear regression model are continent (multi-level), stringency index, GDP per capita, 

health care as percentage of GDP, life expectancy and unemployment rate and they are chosen based on 

common sense and expert judgement.  The result of the linear regression model shows that adjusted R-

squared is 45.14% but important variables such as healthcare expense of GDP and unemployment rate were 

not significant, which implies that multicollinearity might be present. Fig 7.2 shows the output of variance 

inflation index and the result indicates some moderate multicollinearity and model overfitting become a 

concern given the small number of observations in the dataset. In addition, Fig. 7.3 shows that the model 

residuals are not normally distributed and there are only 124 data points in the dataset. Therefore, the p-

value and confidence interval derived from the model might have issues. Hence, even though the linear 

regression model does not exhibit serial correlation (Ljung-Box test) and heteroskedasticity (Breusch-Pagan 

test), we decide to conduct automatic feature selection and use methods such as Lasso regression in the 

subsequent sections of the regression analysis for the next step. 

 
Fig. 7.1 Results from multivariate linear regression. 
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Fig. 7.2 Results from model variance inflation index. 

 
Fig. 7.3 Results from residual Q-Q plot. 

 
Fig. 8. Forward stepwise regression. 

 

3.2.2. Forward stepwise selection 

Due to the fact that our cleaned and transformed dataset only has 124 observations and there are 11 

features, model overfitting and multicollinearity are possible and should be avoided. We use automatic model 

selection techniques such as forward and backward stepwise regression. The chosen forward stepwise 

regression model specification is the one which maximizes adjusted R-squared (45.42%) or minimizes 

Mallow’s Cp (8.84). We hope to arrive at a regression model that does an adequate job of fitting a country’s 

total death rate.  

We begin with forwards and backwards stepwise regression to perform variable selection and select a 6-

variable model as a reasonable choice in terms of Mallow’s Cp, BIC, and Adjusted R-squared. 
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Table 1. Results from Forward Stepwise Regression 

 Coefficients 

(Intercept) -14.0467 

Continent Asia -1.5573 

Continent Oceania -5.1537 

GDP_per_capita 0.0000 

Life_expectancy 0.1774 

Healthcare_exp_percent_GDP 0.2622 

Unemployement_rate 0.0663 

 

3.2.3. Backward stepwise regression 

We repeat the above process, this time using backward selection. The final model specification has 8 

predictors, which performed the best in both Mallow’s Cp (4.81) and Adjusted R-squared (46.12%). As one 

can see, there is a slight difference in terms of predictors selected between backward and forward regression.  

 
Table 2. Results from Backward Stepwise Regression 

 Coefficients 

(Intercept) -3.1234 

Continent Europe 2.919 

Continent North America 2.407 

Continent Oceania -2.786 

Continent South America 2.7630 

Population 1.9776E-09 

GDP_per_capita 5.48009E-05 

Healthcare_exp_percent_GDP 0.2428 

Unemplyment_rate 0.0739 

 

 
Fig. 9.  Results from backward stepwise regression. 
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3.2.4.  Lasso selection 

Variable selection can also be made via LASSO regression, through selecting a shrinkage penalty parameter 

and then determining which variables to exclude by identifying which coefficients are coerced to zero [10]. 

Fig. 10 shows how the shrinkage penalty parameter lambda is selected using cross-validation against a grid 

of values based on minimum Mean-Squared Error (MSE). As the lambda increases, the coefficients of some 

predictors approach exactly zero. The LASSO identified a 6-predictors model specification, in which three of 

the predictors are dummy variables for the continent and another three predictors are GDP per capita, life 

expectancy and health care as percentage of GDP. The chosen model specification is a little bit different from 

that of forward and backward stepwise regression because different criteria is used to select the most optimal 

model (MSE in LASSO and adjusted R-squared and Mallow’s Cp in the stepwise regression). 

 
                                                       Fig. 10. Lambda selected by cross-validation. 
 

      
Fig. 11. Predictors selected by LASSO regression. 

 
Fig. 11 shows the predictors selected by LASSO regression. These are the variables selected from forward 

stepwise regression (considering continent as one predictor). Variables such as continent, GDP per capita, 

life expectancy and health care expense as percentage of GDP. 

3.2.5. Final predictors for linear regression model 

After examining forward and backward stepwise regression, in addition to the LASSO regression, we arrive 

at a 6-predictor linear model. Based on Table 4, the predictors are: stringency index, continent, GDP per capita, 

diabetes prevalence, hospital beds per thousand, and all the funds spent on healthcare of GDP. The adjusted 
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R-squared for the model is around 0.44.  The variables continent of Europe, Oceania, GDP per capita, as well 

as healthcare expenditure, are statistically significant, holding the other predictors fixed. We then test the 

performance of the 6-predictor model by using K-fold cross-validation with 10 folds to estimate the mean 

squared prediction error. We finally gain a prediction error of around 8.85. 

 
Table 3. Summary of final Linear Regression Model 

Residual standard error: 2.638 on 113 degrees of freedom  

Multiple R-squared: 0.4773 Adjusted R-squared: 0.4409 

F-statistic: 13.12 on 8 and 113 DF p-value: 5.06e-13 

 
Table 4. Results from Linear Regression Model 

 Estimate Std.Error t value Pr (> | t |) 

(Intercept) -7.2828 4.4689 -1.630 0.1059 

Continent Asia -0.2591 0.8351 -0.310 0.7569 

Continent Europe 2.3201 1.0282 2.257 0.0259 

Continent North America 1.873 1.0191 1.838 0.0687 

Continent Oceania -3.527 1.7286 -2.040 0.0436 

Continent South America 2.3548 1.1027 2.135 0.0348 

GDP_per_capita 0.0000 0.0000 2.318 0.0222 

Life_expectancy 0.0743 0.0670 1.063 0.2902 

Healthcare_exp_per_GDP 0.2446 0.1190 2.056 0.0420 

 

3.3.  Random Forest 

 
Fig. 12. Variable importance plots for a random forest model fitted to the full dataset. 

 

A random forest model is fitted using stringency index, population, population density, median age, GDP 

per capita, diabetes prevalence, hospital beds per thousand, life expectancy, healthcare expenditures, 
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unemployment, and balance of trade to predict total deaths per million from COVID-19. Five-fold cross-

validation on 500 random sets of folds is used to optimize model parameters. For the final model, the number 

of trees to construct is 10,000, and we set the number of variables to try at each split to 2. 

Five-fold cross-validation using optimized parameters results in a five-fold cross-validation RMSE of 3.551, 

which is lower than that we’ve found using the linear regression model. The most important variables, as 

shown in Fig. 12, are health-related variables (life expectancy, hospital beds per thousand, and healthcare 

expenditures) and one economic variable (GDP per capita). Life expectancy and GDP per capita increased the 

error the most when removed from the model, and these three also cause the cleanest node splits. 

Overall, training and test accuracy highly vary across models. As shown in Fig. 13, the full dataset shows 

many countries with few deaths and a few countries with many deaths. Therefore, training accuracy for 

countries with few deaths is higher than training accuracy for countries with many deaths. A similar pattern 

can be seen in one case study of prediction accuracy (shown in Fig. 14) – prediction accuracy is much higher 

for countries with few deaths compared to countries with many deaths. 

 

 
Fig. 13. Random forest model train accuracy for the full dataset (RMSE= 2.833). The red line is the 

identity, x=y, and represents perfect agreement between observed and predicted values. 
 

Due to the small size of the data set and heterogeneity of number of deaths, prediction RMSE tends to be 

highly dependent on the exact cases used for fitting and prediction (shown in Figure. 15).  Five-fold cross-

validation RMSE values show variability across different fold sets, and within fold sets, RMSE varies widely.  

For some fold sets (Sets 6, 8, and 9) the largest and smallest RMSE values differ significantly.  Other fold sets 

(Sets 2 and 3) show much smaller ranges.  The variability in model fits and predictive capabilities emphasizes 

that a larger dataset with more balanced representation of cases across the full range of total death values 

would improve fit and prediction for the random forest model. 

 

 
Fig. 14. Random forest model test accuracy for one random test set (RMSE= 3.551).  Red line is the 

identity, x=y, and represents perfect agreement between observed and predicted values. 
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Fig. 15. Consistency in test error across different sets of random train/test folds.  Red points are 5-fold 

cross-validation RMSE values for each fold set, and boxes show RMSE values for individual folds within a 

set. 

 

3.4. Gradient Boost 

  A gradient boost model is constructed to predict “log of total deaths per million” using all predictors except 

for “total deaths per million”. Gradient boost is a powerful method in which a sequence of regression trees is 

built based on the residuals of previous trees and predictions gradually move toward the true values driven 

by optimized loss function in each tree. Using the caret package in R and setting the method to “GBM”, we 

obtain the variance importance of gradient boost method (see Fig. 16 below). 

 

 
Fig. 16. Variance importance chart of gradient boost model 

               
Fig. 16 showed that “life expectancy”, “Healthcare expense as percentage of GDP” and “GDP per capita” are 

the top 3 most influential factors in determining “log of total deaths per millions”. 

Boosting algorithm in general is known to reduce model bias by adjusting sample weights based on the 

residuals from previous steps. Although model overfitting could be a potential issue, 10-fold cross validation 

with 10 repeats is implemented to address model overfitting. Table 5 shows the performance metrics of 10-
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fold cross validations using different combinations of hyper-parameters. The most optimal model based on 

minimized error metrics have an RMSE and MAE of 2.8174 and 2.11, respectively. Based on the optimal model 

specification selected in Table. 5, prediction on test set and its error metrics are also calculated, as shown in 

Table 6. Table 6 shows RMSE and MAE results are similar between training and test set, indicating that the 

gradient boost model has no model overfitting and the error rates are better than those of other models. 

 
Table 5. Performance Metrics with Combination of Hyper-Parameters 

Shrinkage Interaction.depth N.Minobsinno
de 

N.Trees RMSE MAE 

0.1 1 10 50 2.8174 2.1100 

0.1 2 10 50 2.8346 2.1279 

0.1 3 10 50 2.8638 2.1553 

0.1 1 10 100 2.9265 2.2316 

0.1 2 10 100 3.0029 2.2853 

0.1 3 10 100 2.9887 2.2840 

0.1 1 10 150 3.0137 2.3100 

0.1 2 10 150 3.1014 2.3659 

0.1 3 10 150 3.0737 2.3508 

 
Table 6. Train vs. Test 

Dataset RMSE MAE 

Training 2.8174 2.1100 

Testing 2.8885 1.9453 

4. Conclusion 

In the current study, statistical learning methods were applied to understand differences in the severity 

level of COVID-19 among countries. We selected the coronavirus death rate (deaths per one-million people) 

as the measurement variable of severity and ran a statistical analysis against several variables of interest. 

Data of 120 countries were collected. The aim of the study is to understand differences in the severity level 

of COVID-19 between countries using statistical methods. Our findings show that the healthcare expenditure, 

unemployment rate, life expectancy, and stringency index are somewhat close to a normal distribution. We 

note that the continents of Africa, Asia, and Oceania have countries with relatively low death rates caused by 

COVID-19, while Europe has a number of countries with a death rate of over 400 per million. We also note 

that predictions are relatively unreliable for those countries with a total death rate of zero. To alleviate this, 

it would be beneficial for future analysis to take into account the reliability of the death rate estimates, as 

some countries may deny to expose the true data to the public. Some of these countries may also have a death 

rate of zero due to unique circumstances, such as having little connection with other countries.  

After modeling the cleaned and transforming data using various modeling techniques with cross validation, 

we reach a conclusion that Gradient Boost Machine (GBM) is the most optimal model in terms of minimum 

RMSE and MAE; also, the GBM model does not exhibit high model variance given the comparable RMSE and 

MAE between training and testing datasets. In addition, the algorithm selected the most influential predictors 
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such as life expectancy (41.26%), healthcare expense as a percentage of GDP (18.06%) and GDP_per_capita 

(13.58%), which made intuitive sense in predicting total deaths per million people. Lastly, we believe that 

countries should aim to increase the health care spending as percentage of government budget and take a 

long-term approach on economic development to gradually increase GDP per capita and boost citizens’ life 

expectancy in addition to implementing short-term healthcare measures such as social distancing, washing 

hands and mask wearing in order to flatten the death rate of potential future pandemics. 
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