
SLA Compliance Checking and System Runtime 
Reconfiguration — A Model Based Approach 

 

Mahin Abbasipour1, Ferhat Khendek1, Maria Toeroe2 

1 Electrical and Computer Engineering, Concordia University, Montreal, Canada. 
2 Ericsson, Montreal, Canada. 
 
* Corresponding author. Email: Maria.Toeroe@ericsson.com 
Manuscript submitted  August 10, 2019; accepted October 18, 2019. 
doi: 10.17706/jsw.14.11.488-518 
 

 

Abstract: Service providers aim at optimizing system resource utilization while ensuring the quality of 

service expressed in the Service Level Agreements (SLAs) is met. For this purpose, systems are reconfigured 

dynamically according to workload variations to satisfy the SLAs while using only the necessary resources. 

Whenever a dynamic reconfiguration is required because of low resource utilization or potential SLA 

violations, one or more triggers may be generated. These generated triggers invoke elasticity rules that define 

actions to be taken in each specific situation. The elasticity rules that are invoked at the same time may lead 

to actions that may impact each other. As a result, handling each trigger independently may threaten the 

stability of the system. In this paper, we propose a model-driven framework, which manages the compliance 

of SLAs and enables dynamic reconfiguration. We use UML models to describe all the artifacts in the 

framework. All SLA models are transformed into an SLA compliance model which is used at runtime to check 

SLA compliance and generate triggers when a dynamic reconfiguration is required. In this framework, the 

actions of the elasticity rules invoked simultaneously are correlated before their application. The proposed 

correlation is based on the relations between the triggers. We perform a preliminary evaluation of the 

approach. 

 
Key words: Correlation, elasticity rules, dynamic reconfiguration, model driven approach, trigger, SLA 
violation avoidance. 

 

1. Introduction 

Service Level Agreement (SLA) [1] is a contract negotiated and agreed upon by a provider and a customer. 

It describes the quality of services provided to the customer as well as the rights and obligations of each party. 

When any of the parties fails to meet its obligations, it may be subject to penalties. 

System workload varies over time, which results in variable resource usage. To increase revenue, instead 

of allocating a fixed amount of resources, service providers try to allocate only as much as needed to support 

the workload and adapt this allocation according to the workload variations. In the cloud environment, the 

dynamic resource provisioning according to workload variations is called elasticity. A cloud system evolves 

and adapts dynamically to workload variations by scaling out/in and up/down [2]. 

To scale out/in or up/down, the system needs to be monitored, measurements need to be collected and 

the SLAs checked periodically. Whenever there is a potential SLA violation (i.e. an SLA is about to be violated 

in the near future) or the measurements show that the resource utilization is low, the system is adapted 

accordingly. Generally, in order to achieve this one or more triggers are generated automatically to invoke 

488 Volume 14, Number 11, November 2019

Journal of Software

mailto:Maria.Toeroe@ericsson.com


elasticity rules applicable in the current system’s situation [3]. Invocation of an elasticity rule leads to the 

execution of an action. This action applied on a system entity may have an impact on other entities because 

of the relations and the dependencies between the entities. As a result, handling each trigger independently 

or in an ad hoc manner is sub-optimal and may compromise the stability of the system. For illustration 

purpose, let us assume two triggers t1 and t2 that invoke two opposite elasticity rules e1 and e2, respectively, 

where e1’s action is to remove a node and e2’s action is to add a node. If the triggers are handled separately, 

resource oscillation [4] will certainly occur. On the other hand, in cloud systems because of the multiple 

layers (infrastructure, platform and application layer), one root cause may generate multiple triggers in these 

different layers. For example, some workload decrease at the application layer may cause triggers at the 

application layer as well as triggers at the infrastructure layer. If these triggers are considered separately, 

the invoked elasticity rules may remove some critical resources twice and this may jeopardize the availability 

[30], [40] of the service. 

 

 

Fig. 2. The overall picture for SLA compliance management and dynamic reconfiguration. 

 

In this paper, we propose a model-driven management framework which aims at managing SLA 

compliance and enabling system dynamic reconfiguration whenever required. Contrarily to current work on 

elasticity in the cloud, our framework does not only add or remove resources to/from the system, but it also 

allows for rearranging the resources to optimize their utilization. The Model-Driven Development (MDD) [5] 

paradigm separates the application logic from the platform technology and manipulates platform-

independent models; thus models are the primary artifacts in the development process [6]. The major 

advantage of this paradigm is that the models are at higher level of abstraction than the implementation 

technology. This paradigm is appropriate for our purpose as it allows not only to facilitate the understanding, 

design and maintenance of the system [7], but also to reuse the models generated during the system design 

phase. 

uses

Violated Constraints

Relations

Relation Graphs

Thresholds

SLAs

Elasticity 

Rules Configuration

Measurements

SLA Compliance 

Model

OCL 

Constraints

Triggers

Action 

Correlation 

Meta-Rules
uses

Building/ and Updating 

the SLA Compliance 

Mode

Validation

Trigger Generation

SLA Compliance Management

Trigger Correlation

ERs Selection, Actions 

Correlation and Execution

Trigger Correlation and 

Dynamic Reconfiguration

489 Volume 14, Number 11, November 2019

Journal of Software



Fig. 1 shows the overall picture of our management framework. In the SLA Compliance Management 

process, all the SLAs, their corresponding measurements and the thresholds are combined into an SLA 

compliance model. The validation of the SLA compliance model against its metamodel is performed 

periodically. The violation of Object Constraint Language (OCL) [8] constraints during this validation will 

generate automatically triggers for system reconfiguration, to save resources when the workload decreases 

or avoid SLA violations when the workload increases and the SLAs are about to be violated.  

In the Trigger Correlation and Dynamic Reconfiguration process, the triggers generated on related entities 

of the configuration are first correlated and a set of graphs called relation graphs are defined. For each trigger 

in a relation graph, the applicable elasticity rule is then selected. Since an elasticity rule may contain multiple 

alternative actions, based on the current situation an optimal action among these alternatives is selected. The 

actions of two unrelated triggers do not impact each other. Therefore, actions of elasticity rules invoked by 

triggers in different relation graphs can be executed in parallel. For each relation graph, based on the 

relations between the triggers the optimal actions of the selected elasticity rules are correlated using a set of 

action correlation meta-rules. With the reconfiguration of the system, the values of the thresholds may also 

be updated. It is worth mentioning that this is a periodic process; at the end of each monitoring time interval, 

the SLA compliance model is updated according to the new measurements and possibly new/terminated 

SLAs and thresholds models. 

The rest of this paper is organized as follows: In Section 2, we review the related work in SLA management 

and dynamic system reconfiguration. In Section 3 we provide some background knowledge about the 

application domain used throughout this paper. In Section 4, we discuss our approach for checking for SLA 

compliance and generating triggers for system reconfiguration at runtime. In Section 5, we discuss our 

correlation approach to manage the application of elasticity rules at runtime. In Section 6, we conduct some 

preliminary experiments to evaluate the efficiency of the proposed framework. We conclude in Section 7. 

2. Related Work 

In this section, we review the work related to our management framework in three aspects: SLA 

compliance management, trigger correlation and dynamic system reconfiguration. As most of the related 

work focuses only on one aspect of our framework, we organize this section into three sub-sections, one for 

each aspect. 

2.1. SLA Compliance Management 

Monitoring a system, collecting measurements and assessing them against the SLAs are necessary tasks 

for reconfiguration based on workload variations. 

In [9] and [10], authors propose the rSLA framework to monitor SLAs during their life cycle. The 

framework consists of three main components: rSLA language, rSLA Service and Xlets. The rSLA language is 

defined to describe SLAs and service metrics as well as evaluation conditions. In rSLA, it is described how the 

metrics should be measured and composed to define Service Level Objectives (SLOs). It can also be specified 

what actions should be taken when the SLAs are violated. The authors of SLAs are the providers. As the SLAs 

are agreements among the providers and customers and need common understanding of the terms, 

considering all of the above terms may be cumbersome or not important for the customers as they may not 

care how the measurements are obtained. The rSLA Service checks for SLA compliance. Xlets provide 

standard interfaces for monitoring the system and reporting measurements. 

In [11], to detect violations with respect to response time, a timed automata is used. The work in [12] is 

closely related to the SLA management of our framework. The goal in [12] is to detect individual SLA 

violations only, while in our case we want to avoid the potential SLA violations and achieve this goal with the 

minimum amount of resources needed according to the workload variations. In [12], for each SLA parameter 

490 Volume 14, Number 11, November 2019

Journal of Software



an OCL constraint is defined to check if the measurement has reached the threshold. When a new parameter 

is added to an SLA, a new OCL constraint for the violation detection has to be defined as well, which is not 

the case in our framework. 

In [13], authors demonstrate their architecture for SLA violation detection at the application level. In [13], 

thresholds for SLA parameters such as response time and throughput are defined. According to their 

architecture, when a user requests for a service, based on the SLAs at first it is checked if the request is coming 

from the right customer. In the next step, based on the requests, the tasks are generated and executed. There 

are multiple monitoring agents that collect application level measurements. They define LoM2HiS [14] to 

map the monitoring measurements to SLA parameters. The measurements are passed to the SLA 

management framework where it is checked if the value of a threshold has been reached or not. 

2.2. Trigger Correlation 

In the studies which are threshold based, trigger correlation and the coordination of the related actions 

which are important for the dynamic reconfiguration of systems are hardly considered. In the current 

literature, trigger correlation is discussed extensively for fault management of distributed systems and 

networks where an error caused by a fault is propagated through many related objects and potentially large 

volume of triggers are generated for the same fault. In these studies, a reported fault is an event which 

triggers an action and correlation is used as a reduction technique to filter the symptoms and identify the 

root cause fault; while in our approach triggers are not necessarily symptoms and should not be simply 

eliminated because the allocation of resources to one entity does not necessarily mean the allocation of 

resources to another entity even if they are related. 

In [15] and [16], authors come up with different correlation graphs based on which the triggers are 

correlated. The proposed correlation graphs only capture the paths where a fault can propagate. To build a 

correlation graph in [15], for each entity of the system the faults that can originate from the entity, the 

relationships that the entity has with other entities and the faults that propagate along these relationships 

are specified by an expert. From these elements, a causality graph is inferred. A node in a causality graph is 

an event which can be a symptom or a root cause fault. A causality graph may have information which may 

not contribute to the correlation analysis like a cycle. A correlation graph is deduced from a causality graph 

by eliminating the cycles and aggregating each into a single event or by pruning indirect symptoms (i.e. the 

symptoms that are not caused by a root cause fault directly). The correlation process in [15] is based on an 

encoding technique where the events are represented by a code. To code a correlation graph, the root faults 

in the graph contain bits where each bit corresponds to a single symptom in the correlation graph. For 

example, for a graph with three symptoms, the code length will be three. The value of 1 for a symptom for a 

root fault indicates that the root fault causes the corresponding symptom. Therefore, the event correlation 

process becomes finding problems in the correlation graph whose codes optimally match the observed 

symptoms. In the case that similar symptoms are caused by different root faults, the root cause is not 

distinguishable. In [16], the correlation graph is obtained from the dependencies between the functionalities 

of the managed system. Therefore, the nodes of the correlation graph in [16] are the functionalities and the 

edges are the dependencies. When a fault occurs in a component, the components which communicate with 

that component are also affected and similar faults will be reported for them. In [16] they use their proposed 

correlation graph to identify the component whose failure caused a large number of symptoms. In [15], [16] 

trigger correlation is the aggregation of similar triggers that report the same fault. 

2.3. Dynamic System Reconfiguration 

There are many papers focusing on elasticity management. They reconfigure the system by 

adding/removing VM instances or by scaling up/down the VM instances at runtime [17]-[23]. Among them, 

491 Volume 14, Number 11, November 2019

Journal of Software



the study in [22] considers elasticity rule correlation to some extent. In our paper, we propose a finer grain 

approach which not only adds or removes resources when it is required but also reorganizes them (e.g. by 

changing the active and standby assignment roles) for better resource utilization while taking into account 

the service availability. 

In [22], when the load on VMs increases, the VMs are scaled up. In their approach, they considered action 

correlation for a specific case where hosted VMs with the same supporting physical node need to be scaled 

up and the supporting node does not have enough resources for all the requests. To handle such conflicts, the 

authors use VM migration. To choose the candidate VM for the migration, they select the one for which the 

cost and the time of migration as well as the release of resources resulting from the migration are optimal. 

The accuracy of their approach depends on the weight they set for the different types of resources like CPU, 

memory, etc. 

There has been some research in which they do not use thresholds as the points for allocating or 

deallocating resources. Instead, they use prediction techniques which take the previous workload and the 

resources utilized as input and forecast the future workload and resource requirements. In these studies, the 

previous workload is analyzed at different time intervals with a fixed window size to identify any repeating 

patterns in the workload [24]. Based on the pattern found, the future workload is predicted. Next, the system 

is scaled according to the defined policies if it is necessary. The size of the window and the accuracy of the 

prediction have significant impact on the efficiency of the scaling. These approaches try to solve the problem 

of when and how much to scale; but they do not specify how the system is scaled or the elasticity rules based 

on which the system is scaled. 

In [25], [19] and [20] workload variations are predicted by machine learning. In [19] based on the 

predicted workload, penalty of violating SLAs and the cost of adding VM instances, it is decided if VM 

instances should be added or removed. In [20], online machine learning is used as a decision maker to add 

or remove Virtualized Network Functions (VNFs) [26]. Similar to other online learning approaches, the initial 

performance when the system is learning can be low. The performance can be worse especially when the 

workload is not even. Others such as [27]-[41] used queuing theory to model the cloud system based on the 

arrival rate of requests and other parameters such as mean service time (i.e. response time) and CPU load. 

They use this model to predict the response time or the load in the next time interval.  

3. Background: System Configurations with an Example from the Domain of Interest 

Systems are described and managed through configurations. In our domain of interest, a configuration 

describes the software and/or hardware entities, their corresponding types, the types of the services they 

provide and their relationships. In this configuration, a system is viewed from two perspectives: service side 

and service provider side. The entities of the service perspective (service entities) are workload units. A 

workload unit represents a chunk of workload (e.g. a certain amount of request per second) associated with 

the provisioning of a service. Workload units are logical resources. Service provider entities are software 

and/or hardware entities which collaborate to provide the service. Thus, they are the tangible resources. In 

this paper, software entities are represented as serving units hosted by computing nodes (i.e. the physical or 

virtual computing nodes). To provide the services, workload units representing them are assigned to the 

serving units at runtime. 

To provide and protect highly available services [28], provider entities are deployed in a redundant 

manner. Two or more serving units form a work pool. A node group is used to host the serving units of a work 

pool. Depending on the redundancy model, a workload unit may have one or more active and zero or more 

standby assignments to different serving units of a work pool. A serving unit with an active assignment 

492 Volume 14, Number 11, November 2019

Journal of Software



provides the service represented by the workload unit. A serving unit with a standby assignment does not 

provide the service, but it is ready to become active for the workload unit in a minimum amount of time. 

 

 
Fig. 3. An example configuration at runtime. 

 

The work discussed in this paper is applicable in the context of the Service Availability Forum [29] and in 

any other domain where the service and service provider perspectives are described explicitly in the 

configuration. 

In this paper, we also assume a maximum workload for which the system has been designed and that the 

required software for handling this maximum workload is available anywhere it may be executed. When the 

workload is not at its maximum, some serving units are not assigned any workload units – they are spares – 

and may be terminated to reduce resources/power consumption. When the workload increases and more 

serving units are needed to provide the service, the spare serving units are instantiated and assigned 

workload as needed. 

Fig. 2 illustrates an example configuration at runtime. In this configuration, there are two work pools (Work 

Pool1 and Work Pool2) which are protecting three workload units (Workload Unit1, Workload Unit2 and 

Workload Unit3). The serving units of Work Pool1 can be hosted only on the nodes of Node Group1 (Node1, 

Node2, Node3 and Node4) and the serving units of Work Pool2 can be hosted only on Node5, Node6 and Node7 

composing Node Group2. As shown in the figure with the service dependency relation, the provisioning of the 

service represented by Workload Unit2 depends on the provisioning of the service represented by Workload 

Unit3. In this example, each assignment of Workload Unit2 requires one assignment of Workload Unit3.  

4. SLA Compliance Management  

In this section, we introduce the SLA compliance management portion of our management framework. As 

mentioned earlier, SLA compliance management aims at generating triggers whenever there is a potential 

SLA violation (i.e. it is probable that an SLA is going to be violated in the next time interval of monitoring) or 

the resource utilization is getting low. 

4.1. Modeling for SLA Compliance Management 

In this section, we discuss the metamodels we have defined as well as the reasoning behind these 

definitions.  

4.1.1. The SLA metamodel 

To model the SLAs, we use the SLA metamodel introduced in [30]. As shown in Fig. 3, each SLA is an 

agreement between a service provider and a customer and identified by an ID. A third party may also 

participate in the contract to validate the agreed terms. SLAs aim at describing the services that the provider 

agrees to provide with specific Quality of Service (QoS). The metaclass SlaParameter captures the different 

types of QoS included in the SLAs. The agreed values are represented by maxAgreedValue and 

Node5 Node6Node4Node3

Work Pool2

Node2Node1

Work Pool1

Serving 

Unit1

Serving 

Unit2

Workload 

Unit2

Serving 

Unit3

Workload 

Unit1

Serving 

Unit5

Serving 

Unit6

Workload 

Unit3

Serving 

Unit4

Serving 

Unit7

Node7

Node Group1 Node Group2

Service Dependency

493 Volume 14, Number 11, November 2019

Journal of Software



minAgreedValue in the metamodel. For example, for the SLA parameter availability, the minAgreedValue 

represents the minimum percentage of the time that the provider guarantees the service is available. For the 

SLA parameter DataRate, the maxAgreedValue represents the maximum number of requests per second the 

customer may send for the specific service, and the minAgreedValue represents the minimum amount of 

service that the provider agreed to provide. If service providers or customers fail to meet the agreed terms, 

they may be subject to penalties. The QoS included in the SLAs should be either measurable by the monitoring 

system or reported by the constituent components of the system; otherwise, it cannot be included in SLAs. 

Customers may want to specify at which frequency the SLA parameters should be measured. This 

customization is represented by SlaMetric metaclass. However, the frequency specified by the user should be 

compatible with the capability of the monitoring system. An SLA is applicable for specific time duration and 

has a cost that customer agrees to pay.  

Fig. 4 shows two SLA models. The FTP functionality is sold to customers C1 and C2 with different quality of 

service. The service type FTP is represented with gray rectangle and the SLA parameters with rounded 

squares. The dashed lines show RelatedTo relations.  

 

 
Fig. 4. Two different SLAs. 

 

 
Fig. 5. The measurements metamodel. 

SLA_1

FTP

DataRate

-minAgreedValue: 300

-maxAgreedValue: 700

SLA_2

FTP

DataRate

-minAgreedValue: 200

-maxAgreedValue: 400

Model1 Model2

Provider_P1

Customer_C1

Provider_P1

Customer_C2

Availability

-minAgreedValue: 99.9

Availability

-minAgreedValue: 99

Entity

Service SLA

MeasuredMetric

-measuredValue

1..*

1

RelatedTo

Node

SlaParameter

-mappedValue

mappingRule()

1..*

*

MappedTo

DecomposedTo

*

1

1..*

1

BelongsTo

+metric

ServiceType

1..*

1

1..*

1..*

Includes

IsInstanceOf

494 Volume 14, Number 11, November 2019

Journal of Software



 
Fig. 6. The SLA metamodel 

 

 

Fig. 7. The threshold metamodel. 

 

4.1.2. The measurements metamodel 

A monitoring system collects the metrics of interest. These measured metrics are related to a computing 

node or a service. The Service metaclass represents instances of a service type, which—in the above 

explained domain—are represented by workload units. Some of the metrics (e.g. service up/down time) and 

the SLA parameters perceived by the customers (e.g. availability of service) are not at the same level. To 

bridge the gap between the measured metrics and the SLA parameters, we have defined mapping rules. Fig. 

5 shows the measurements metamodel. The attribute mappedValue represents the value of such mapped 

measurements. As an example, the mapping rule for mapping service up time and down time to service 

availability is presented:  

Context Availability :: mappingRule ( ) 

self.mappedValue = self.metric -> select (c|c.oclIsTypeOf(MeasuredUpTime)).measuredValue-> 

at(1)/(self.metric-> select(c|c.IsTypeOf(MeasuredUpTime)).measuredValue -> at(1) + self.metric-> 

select(c|c.oclIsTypeOf(MeasuredDownTime)).measuredValue-> at(1))*100 

SLA

-startDate

-duration

-id

-price

ServiceType

1..*

SlaParameter

-maxAgreedValue [0..1]

-minAgreedValue [0..1]

0..*

Party
+customer

+provider

SlaMetric

0..*

+composite

+ThirdParty

0..1

0..*

CustomizedBy

RelatedTo

Penalty

-fee

0..1

AssociatedWith
MeasuredMetric

Metric

-frequency: Real

1..* +measuredMetric

MappedTo

ObligedBy

*

1

1

1..*

1..*

*

11

1

1

Entity

Node

SLA

SlaParameter

Threshold

-value

DefinedFor

*

*

0..1

maxCurrent

Threshold

RelatedTo

SlaThreshold
minCurrent

Threshold

maxNode

Threshold

minNode

Threshold

Service

-currentCapacity

1..*

1
BelongsTo

DefinedFor

1

ServiceType

-maxSystemCapacity

IsInstanceOf
*

1

1..*

1

495 Volume 14, Number 11, November 2019

Journal of Software



Fig. 6 shows an example measurement model. The measured metrics are represented by rounded squares 

in light gray. The dotted and dashed lines represent BelongsTo and RelatedTo relations respectively. 

4.1.3. The threshold metamodel 

 
Fig. 8. An example of thresholds model. 

 

In this paper, we use thresholds. When they are reached, actions are required to avoid SLA violations or 

low resource utilization. Fig. 7 shows the threshold metamodel. Some of the thresholds are related to all 

customers’ (aggregate) resource usage (i.e. thresholds defined on nodes) while others are related to 

individual SLAs (e.g. service availability). The attribute currentCapacity in the Service metaclass specifies the 

current capacity of a service entity (i.e. a workload unit) for handling the workload of a specific customer. 

The attribute maxSystemCapacity is determined at the design phase as the maximum capacity the system can 

be expanded to for a specific service type without major changes (e.g. upgrade/redesign). For nodes and 

service entities (i.e. represented as workload units), two thresholds (maximum and minimum thresholds) 

are defined: The maximum limit represents the load of the node or the workload unit without SLAs violation. 

If no action is taken SLA violation is likely to happen within the next measurement period. The minimum 

limit represents the load of the node or the workload unit for efficient usage of the resources; otherwise they 

are wasted. In the following the different types of the thresholds are explained:  

• maxNodeThreshold and minNodeThreshold: To avoid SLA violations because of node limitations, e.g. 

trying to load a node beyond its capacity, we define the maxNodeThreshold point at which we may 

allocate more resources to the node (e.g. virtual machine, hyper scale system [31]), add more nodes 

to the system or rearrange the assignments (i.e. the relation load < maxNodeThreshold should be 

always respected). To avoid wasting resources, the minNodeThreshold is defined. The 

maxNodeThreshold and minNodeThreshold are vectors that take into account different types of node 

resources (e.g. CPU, RAM, etc.). 

• maxCurrentThreshold and minCurrentThreshold: For each service, the system is dimensioned 

dynamically with a currentCapacity to handle the workload of a certain customer. In order to avoid 

SLA violations, i.e. workload exceeding currentCapacity, we define a maxCurrentThreshold point with 

maxCurrentThreshold < currentCapacity. Not to waste resources, we also define a 

minCurrentThreshold. Unlike resource provisioning, the resources should be released in a reactive 

Node3

DefinedFor

maxCurrent

Threshold

-value: 350

minCurrent

Threshold

-value: 250

maxNode

Threshold

-value: 85

minNode

Threshold

-value: 20

Workload Unit1

-currentCapacity: 400

DefinedFor DefinedFor

DefinedFor

FTP

-maxSystemCapacity: 2000

maxCurrent

Threshold

-value: 350

minCurrent

Threshold

-value: 250

Workload Unit2

-currentCapacity: 400

DefinedFor DefinedFor

IsInstanceOf IsInstanceOf

496 Volume 14, Number 11, November 2019

Journal of Software



manner. The values of maxCurrentThreshold and minCurrentThreshold are determined by different 

functions which take into account the current capacity, the measurement period, the average 

reconfiguration time and the predicted workload. 

• slaThreshold: SLA parameters like service availability are set on a per customer basis. Therefore, to 

avoid SLA violations, we need to watch the SLAs separately using a slaThreshold for each QoS of each 

SLA. 

Fig. 8 shows an example of threshold model. In this figure, different thresholds for services of type FTP as 

well as Node3 are defined.  

 

 
Fig. 9. The SLA compliance metamodel. 

 

 
Fig. 10. An example of SLA compliance model 

Service 

-currentCapacity

-maxCurrentThreshold

-minCurrentThreshold

1..*

SlaParameter

-mappedValue: Real

-goal: Goal

-maxAgreedVale [0..1]

-minAgreedValue [0..1]

-slaThreshold 

0..*

MeasuredMetric

-measuredValue

1..*

SLA

-startDate

-duration

-id

-price

Party+customer

+provider

+thirdParty

0..1

1

RelatedTo

+containedService

DecomposedTo

0..*

MappedTo

<<Enumeration>>

Goal

-Minimize

-Maximize

Penalty

-fee

0..1

1..*

Node

-capacity

-maxThreshold

-minThreshold

SupportedBy

+measuredMetric

1..*

Obliged

1..*

1

*

1..*

ServiceType

-maxSystemCapacity

1..*

+serviceInstance
IsInstanceOf

1..*

1

1..*

+sla

+serviceType

1

1

11

SLA_1 SLA_2

FTP

-maxSystemCapacity: 2000

DataRate_1

-mappedValue: 350

-minAgreedValue: 300

-maxAgreedValue: 700

-goal: Maximize

DataRate_2

-mappedValue: 210

-minAgreedValue: 200

-maxAgreedValue: 400

-goal: Maximize

Provider_P1Customer_C1 Customer_C2

Availability_1

-mappedValue: 99.51

-minAgreedValue: 99.9

-slaThreshold: 99.9

-goal: Maximize

Availability_2

-mappedValue: 99.2361

-minAgreedValue: 99

-slaThreshold: 99

-goal: Maximize

MeasuredUpTime_1

-measuredValue: 1433

MeasuredDownTime_1

-measuredValue: 7

MeasuredUpTime_2

-measuredValue: 1429

MeasuredDownTime_2

-measuredValue: 11

WorkloadUnit1

-currentCapacity: 400

-maxCurrentThreshold: 350

-minCurrentThreshold: 250

WorkloadUnit2

-currentCapacity: 400

-maxCurrentThreshold: 350

-minCurrentThreshold: 250

Node3

-maxNodeThreshold: 85

-minNodeThreshold: 25

ResourceUtilization

-mappedValue: 20

497 Volume 14, Number 11, November 2019

Journal of Software



 

Fig. 11. Different types of violations. 

 

Fig. 12. The trigger metamodel. 

 

4.1.4. The SLA compliance metamodel 

An SLA compliance model is the combination of all SLA models, thresholds model, part of the current 

configuration and the mapped measurements [30]. The main reason for merging all SLA models into one 

model is that we want to be able not only to avoid violations of each individual SLA but also to trigger 

elasticity rules which are related to all customers’ resource usage. 

The SLA compliance metamodel is shown in Fig. 9 and an instance model of it is shown in Fig. 10. Different 

services of the same service type with the same or different QoS (i.e. represented by SLAParameter) are 

generally offered to multiple customers. The MeasuredMetric metaclass represents the measurements that 

are collected from the monitoring system per service for each customer or per node of the system. When an 

SLA parameter is not respected, the RelatedTo relation indicates which service of which SLA has been 

violated. 

The attribute goal of an SLA parameter specifies the parameter’s optimization goal. For some SLA 

parameters, like service availability, the optimization goal is maximization while for others like response 

time, the goal is minimization. We categorize OCL constraints for SLA violation avoidance based on these 

optimization goals. When a new SLA parameter is introduced and taken into consideration, there is no need 

to define a new OCL constraint as long as its optimization goal fits into one of the aforementioned categories.  

Violation

Violation from 

a Provider

Violations from 

a Customer 

Violation on a 

Node 

System Boundary 

Violation 
Individual SLA 

Violation

Violation on a 

Service Entity

Violation on a 

system resource

Trigger

-scalingType: ScalingType

-measurement

-threshold

Entity
IssuedOn

1 1

<<Enumeration>>

ScalingType

-Increase

-Decrease

498 Volume 14, Number 11, November 2019

Journal of Software



According to UML [32], a constraint is a model element that can have a name (it is optional) and consists 

of an invariant (i.e. a Boolean expression that must be evaluated to true for the constraint to be satisfied), 

constrained elements (i.e. a set of elements required to evaluate the constraint) and a context (i.e. the model 

element on which the constraint is defined). Therefore, an OCL constraint is defined as a tuple of (name, 

context, ConstrainedElements, invariant). To define an OCL constraint, its different elements should be 

specified. 

Depending on the type of SLA violation, different OCL constraints are defined in the SLA compliance 

metamodel. As shown in Fig. 11, an SLA can be violated by the provider or by the customer. Violations by 

providers are categorized into: violations issued on system resources, which can be violations on service 

entities (i.e. represented as workload units in our domain) or nodes and lead to the generation of triggers for 

dynamic reconfiguration; individual SLA violations can be related to the design of the system and system 

boundary related violations. The focus of this paper is on the triggers, which lead to dynamic reconfigurations 

(i.e. violations on system resources). When the trigger is of this type, the generated elasticity rules are applied 

to reconfigure the system dynamically. The different types of violations are defined as follows:  

SLA Violation Avoidance from a Provider 

To avoid SLA violations from a provider, the OCL constraints are defined on attributes of the SLA 

compliance metamodel as follows: 

• Service Entities Violations: In order to avoid SLA violations, the relation workload represented by a 

workload unit < maxCurrentThreshold must be respected. If the workload of a workload unit exceeds 

the threshold, a potential violation is detected and a trigger should be generated to either increase 

the workload unit capacity to a new currentCapacity for which a new maxCurrentThreshold is defined, 

or to add a new workload unit. To check if the system needs to be scaled due to workload increase, 

the following OCL constraint is defined. This OCL constraint is named as Increase. Later we use this 

name as the scaling type of the generated trigger to indicate that the violation was due to increase in 

the workload (see Section 4.2.2). 

Context Service 
Inv Increase: maxAgreedValue > Service.allInstances() -> select(s|s.sla = self.sla and s.serviceType = 
self.servicetype) -> collect(currentCapacity) -> sum() implies 
self.maxCurrentThreshold > (self.slaParameter -> select (p|p.oclIsTypeOf(DataRate)).mappedValue -> 
at(1) 

Not to waste resources we define an OCL constraint to check if the relation workload ≥ 

minCurrentThreshold is respected. This OCL constraint is named as Decrease because its violation 

indicates the resources of the system are excess and the system should be shrunk. 

Context Service 
Inv Decrease: self.minCurrentThreshold ≤ (self.slaParameter -> select (p|p.oclIsTypeOf 
(DataRate)).mappedValue -> at(1) 

Considering the SLA compliance model in Fig. 10, the workload of the customer C1 represented by 

WorkloadUnit1, i.e. 350 requests per second, reaches the maxCurrentThreshold. Therefore, its 

corresponding OCL constraint named as Increase is violated which indicates more resources for 

handling the workload of this customer should be allocated. 

• Node Violation: Although services are supported by nodes and service side violations (i.e. increase in 

the workload) usually lead to the violations on the underlying nodes, we still need to distinguish 

between violations on the services and on the nodes. The reason is that when the node hosts multiple 

services and the workload increase of an individual service does not reach its threshold, the 

499 Volume 14, Number 11, November 2019

Journal of Software



workload increases of the hosted services will accumulate on the hosting node and the total load may 

cause violation. This happens when the distribution of entities among the nodes is not optimal. 

Therefore, to detect SLA violations because of node limitations, the relation load < maxNodeThreshold 

should be respected. Similar to the maxNodeThreshold, the load represents the load on the different 

types of resources which is measured by the monitoring system. In addition, the relation load ≥ 

minNodeThreshold should be respected in order to not to waste resources.  The load imposed on the 

node by service requests is estimated at runtime by a function. This function takes into account 

parameters that characterize the service workload as well as the node (e.g. the types of workload the 

node currently supports, the operating system, etc.). 

Context Node 
Inv Increase: self.maxNodeThreshold > (self.measuredMetric-> select 
(p|p.oclIsTypeOf(ResourceUsage))-> at(1).measuredValue) 
 

Context Node 
Inv Decrease: self.minNodeThreshold ≤ (self.measuredMetric-> select 
(p|p.oclIsTypeOf(ResourceUsage))-> at(1).measuredValue) 

Similar to the OCL constraints defined on the services, these OCL constraints are also named as 

Increase and Decrease as their violations indicate if the load on the node has to be decreased or if the 

node or some resources of the node are in excess. Considering the SLA compliance model in Fig. 10, 

the current load on Node3 is 20 which is less than the minNodeThreshold which is 25. Therefore, for 

Node3 the OCL constraint with the name of Decrease is violated. 

• Individual SLA Violation: Some SLA parameters behave similarly with respect to violation. Some of 

them like availability and throughput for which a higher value is preferable (i.e. the attribute goal is 

equal to Maximize) will be violated by a service provider when in the SLA compliance model, the 

experienced quality is less than their defined slaThreshold (i.e. the relation mappedValue > 

slaThreshold must be respected all the time if goal=Maximize); while for others like response time, 

the violation happens from the provider when the measured response time is greater than the 

slaThreshold (i.e. the relation mappedValue < slaThreshold must be respected if goal=Minimize). We 

use OCL constraints as follows to define these restrictions: 

Context SlaParameter 
Inv Maximize: Self.goal=Goal::Maximize implies self.mappedValue > self.slaThreshold 
 
Context SlaParameter 
Inv Minimize: Self.goal=Goal::Minimize implies self.mappedValue < self.slaThreshold 

Considering the SLA compliance model in Fig. 10, for customer C1 the measured availability of FTP 

service is 99.51 which is less than its corresponding slaThreshold of 99.9; therefore in this example, 

the OCL constraint for availability, which has the goal of Maximize is violated. 

• System Boundary Violations: Customers have periods of activity and inactivity; therefore, the 

customers may not use resources all at the same time. To make the most profit, providers may sell 

the same service to multiple customers. This is known as overbooking technique [33]. In this paper, 

we assume that the provider sells the service to the maximum number of customers such that 

minimum or no violation occurs and the revenue is the most. With overbooking, there is a risk that 

the customers want to use the resources all at the same time. When the value of maxSystemCapacity 

is reached, the system cannot be expanded further; thus the admission control/overload protection 

500 Volume 14, Number 11, November 2019

Journal of Software



needs to be engaged to protect the system from overload. In addition, the service provider may 

decide to redesign the system with new user requirements if some SLAs are violated. The following 

OCL constraint detects the potential SLA violation when the system reaches its maximum capacity: 

Context ServiceType 
Inv SystemBoundary: maxSystemCapacity = self.serviceInstance -> collect(currentCapacity)->sum() 
implies self.sla -> forAll(sla:SLA| let services: sla.containedService -> select (s|s.serviceType = self) in 
services -> collect(currentCapacity) -> sum () < services-> at(1).maxAgreedValue implies services -> 
forAll(srvc:Service|srvc.maxCurrentThreshold > srvc.slaParameter -> select 
(p|p.oclIsTypeOf(DataRate)) -> at(1).mappedValue)) 

Customer Side SLA Violation Detection 

Unlike violations from providers, the violations from customers cannot be avoided. However, it is 

important to detect any service overuse by a customer to take the appropriate actions (e.g. charging or 

dropping the extra workload). By the following OCL constraint it is detected if a customer has violated an 

SLA: 

Context DataRate 
Inv CustomerViolation: self.mappedValue  self.maxAgreedValue 

4.1.5. The trigger metamodel 

To reconfigure the system at runtime, a trigger is issued on a configuration entity to reconfigure the entity 

or add (e.g. by instantiating the configuration entity) or remove it. Fig. 12 shows the trigger metamodel. In 

this metamodel, the attribute scalingType can have the value of either Increase or Decrease and specifies 

whether an action to increase or decrease the resources is needed. The attributes measurement and 

threshold represent the measurements from the monitoring system and the current threshold value that has 

been violated. The values of threshold and measurement are used to determine the amount of resources that 

should be given to or released from the entity to resolve the violation of the received trigger. For example, if 

the current load on a node is 90% and the threshold on the node is 85%, the load of the node should be 

decreased by at least 5% to resolve the issued trigger. 

4.2. SLA Compliance Management Process 

In this section, the different tasks of the SLA compliance management process are elaborated in more 

details. 

4.2.1. Building/ and updating the SLA compliance model 

To build the SLA compliance model all SLA, measurement and the threshold models are combined at 

runtime. We use the Atlas Transformation Language (ATL) [34] transformation to implement this process. 

When any of the measurement or threshold models are updated or new/old SLAs are added/terminated, the 

SLA compliance model is updated too. New measurements arrive at the end of each measurement period. 

The measurement period should be long enough to process the previous measurements and reconfigure the 

system as necessary before the arrival of new measurements. After each reconfiguration, the thresholds 

model may also be updated before the new measurements arrive. Although new SLAs arrive or existing ones 

can be terminated at any time, we update the SLA compliance model at the end of each time interval. For 

illustration purposes, assume a new SLA (representing a new customer) arrives when a reconfiguration is 

being performed. If we update the SLA compliance model as soon as the new SLA arrives, the previously 

generated triggers have not been resolved yet; at the validation of the updated SLA compliance model the 

same triggers may be regenerated. Handling the same triggers may cause instability in the system. 

When a new SLA for a new customer arrives, all the SLA elements are added to the current SLA compliance 

model. Since no workload unit is yet assigned to represent the workload of the new customer, for each service 

501 Volume 14, Number 11, November 2019

Journal of Software



type contained in the new SLA, a Service model element with the current capacity of 0 is created in the SLA 

compliance model. This added element represents a workload unit which needs to be added to represent the 

workload of the new customer. The validation of the updated SLA compliance model leads to the generation 

of a trigger to add that workload unit. Similarly, when an SLA is removed, the elements related to only this 

SLA should be removed from the SLA compliance model together with their measurements and thresholds. 

This is achieved with a different transformation that takes the SLA to be removed and the SLA compliance 

model as input and generates a new SLA compliance model. In ATL language, the number of input and output 

models cannot be arbitrary; therefore, to add or remove multiple SLAs, we execute the corresponding 

transformation multiple times as required. In the prototype implementation the addition and removal of 

SLAs are done offline. 

4.2.2. Trigger generation 

As mentioned earlier, the validation of SLA compliance model may lead to the generation of triggers. An 

SLA compliance model is valid when all the constraints of its metamodel are satisfied. 

To generate a trigger, its different elements should be specified based on the constituent elements of the 

violated OCL constraint. In the SLA compliance metamodel, the constraints for the scaling of the system are 

defined on nodes and services. These OCL constraints are violated when there are not enough resources for 

such entities or their resources are in excess. Therefore, the entity on which a trigger is generated is the node 

or the service for which the respective OCL constraint is violated. 

The constrained elements based on which the invariant is defined are the measurement and the threshold. 

The constraint checks if the measurement has reached the value of the current threshold. If the value of the 

threshold reaches (i.e. the constraint is violated), the constrained elements of the violated OCL constraints 

are extracted to specify the measurement and threshold elements of the generated trigger. 

We use the names of the constraints as the scalingType of the generated triggers to initiate resource 

allocation (when the name is Increase) or release of surplus resources (when the name is Decrease). 

5. Trigger Correlation and Dynamic System Reconfiguration 

In this section, we explain our correlation approach to manage the application of elasticity rules at runtime 

based on the generated triggers. 

5.1. Modeling for Trigger Correlation and Dynamic Reconfiguration 

5.1.1. The elasticity rule metamodel 

We model the elasticity rules using the metamodel introduced in [35]. As shown in Fig. 13, the elasticity 

rules are defined for types of configuration entities because entities that belong to same type share common 

characteristics and are subject to the same type of actions. The metaclass EntityType in Fig. 13 represents the 

type of the configuration entities on which the elasticity rule can be applied. In this paper, for each entity type 

two elasticity rules are defined: one for the expansion and one for the shrinkage (contraction) of the system. 

The attribute scalingRule of an elasticity rule specifies if by the application of the rule the resources of a type 

are allocated (when the value of this attribute is Increase) or released (when the value of this attribute is 

Decrease).  

An elasticity rule consists of alternative actions each of which is performed in a different situation. 

Therefore, an action can be associated with different Boolean expressions which constrain the applicability 

and feasibility of the action. The condition under which the action is applicable is represented by the 

Condition metaclass. In another word, for an action to be considered for execution at runtime, its associated 

condition must evaluate to true. Otherwise, the action is not applicable in the current situation and will not 

be considered for execution at all. 

502 Volume 14, Number 11, November 2019

Journal of Software



To execute an applicable action at runtime, the execution of other actions as prerequisite may be required. 

Therefore, Boolean expressions as prerequisites are defined to check if the action is feasible in the current 

situation (i.e. the prerequisites are met). As shown in Fig. 13, a prerequisite is associated with a prerequisite 

trigger. At runtime, if an applicable action is not currently feasible (i.e. the prerequisite is evaluated to false) 

a prerequisite trigger is generated to invoke the prerequisite elasticity rules by which prerequisite resources 

are allocated first. For illustration purpose, let us consider an elasticity rule for a resizable VM where one 

action of the elasticity rule is adding virtual resources to the VM. A resizable computing node such as a 

resizable VM has a maximum capacity that it can expand to. In this example, the condition (i.e. applicability) 

is defined as a Boolean expression that checks if the VM has not reached its maximum capacity yet. The 

associated prerequisite (i.e. feasibility) checks if the hosting physical node has enough resources for the VM 

to expand. In this example, if the VM has reached its maximum capacity (i.e. the condition is not met), 

resources cannot be allocated to the VM regardless of the availability of host resources (i.e. the prerequisite). 

In the case that the VM has not yet reached its maximum capacity (the action is applicable) but the physical 

host does not have enough resources (the prerequisite is not met), a prerequisite trigger on the physical host 

is generated to execute the physical host elasticity rule first. The action on the physical host can be the 

addition of physical resources to the host if it is applicable (e.g. hyperscale data center systems like Ericsson 

HDS 8000 [31]) or releasing physical resources by moving out some services or migrating other VMs to other 

hosts. 

In the case that an entity (i.e. dependent) requires resources of another entity (i.e. sponsor), it is less likely 

that triggers will be generated on both entities during the same period of monitoring time (usually a trigger 

on the dependent is generated before a trigger on the sponsor as the dependent is the bottleneck). The action 

contained in the elasticity rule of the dependent has a prerequisite which checks the capacity of the sponsor 

and if needed, the sponsor is reconfigured as well even if there is no trigger for it. This is a proactive action 

which prevents, in the near future, the generation of other triggers related to the sponsor. 

 

 

Fig. 13. The elasticity rule metamodel. 

 

In contrast to prerequisites, a follow-up is a Boolean expression which is evaluated after the execution of 

an action and it checks if there are unused resources. If the follow-up is evaluated to true at runtime, a follow-

up trigger should be generated to remove excess resources. For instance, after the removal of workload units, 

ElasticityRule

-scalingRule

Prerequisite

Action

-midCost

-capacity

1..*

1..*

AssociatedWith1..*

1

1

ExpressedBy

*

Trigger

-scalingType

-measurement

-threshold [0..1]

EntityType

+prerequisiteTriggers

1..*

1

Generates

DefinedFor

Entity

Realizes

+followUpTriggers
FollowUp

1..*

AssociatedWith

1 1

Condition

1

AssociatedWith

0..1

1..*

503 Volume 14, Number 11, November 2019

Journal of Software



a follow-up trigger may be generated to remove unused resources (e.g. serving units and nodes) if there are 

any. 

The execution of an action imposes a cost. In this paper, the attribute midCost represents an approximate 

cost of the action and its value is the median of the minimum cost (where all the prerequisites are met and is 

represented as attribute cost in the metamodel) and the maximum cost (where none of the prerequisites are 

met and all prerequisites are invoked and it is the sum of costs of their actions). 

 

Fig. 14. The relation graph metamodel. 

 

5.1.2. The relation graph metamodel  

When the triggers are correlated, a set of relation graphs are generated [36]. Later, we use the generated 

relation graphs to correlate the actions of applicable elasticity rules (see Section 5.2). Fig. 14 shows the 

metamodel for the relation graph description. Each relation graph consists of some triggers and relations 

between them. As shown in the figure, the relation between the triggers is categorized into adjacency and 

dependency relations. The dependency relation is categorized further into service or protection dependency, 

assignment relationship, membership relation and physical containment. The different types of relations are 

explained in Section 5.2.1 in more details.  

5.2. Trigger Correlation and Dynamic Reconfiguration Process 

5.2.1. Trigger correlation   

Triggers are related to each other based on the relations existing between their corresponding 

configuration entities. As summarized in Fig. 15, the relations between configuration entities can be of 

different types and categorized into two categories, dependency relations and adjacency relation. The first 

group consists of directed relations while the second defines a symmetric relation. The different types of 

relations are defined as follows [36]: 

Service Dependency: Dependency relation exists between services when the provision of one service (i.e. 

dependent entity) depends on the provision of another service (i.e. sponsor entity); therefore, the sponsor 

needs to be provided first to support the dependent. 

Protection Dependency: This relation is defined between the active and the standby assignments of a 

workload unit. 

Trigger

-scalingType

-measurement

-threshold

TriggerEntity
IssuedOn

1 1

Relation

Service 

Dependency

Dependency Adjacency

Physical 

Containment

Membership 

Relation

Assignment 

Relationship

Protection 

Dependency

+source +target1 1

* *

504 Volume 14, Number 11, November 2019

Journal of Software



Assignment Relationship: This relation is defined between a serving unit (i.e. service provider entity) and 

the workload unit (i.e. service entity) assigned to it. 

Membership Relation: A membership relation exists between two entities when an entity is logically a 

member of a group represented by the other entity. For example, a node is a member of a node group. 

Physical Containment: A physical containment relation exists between two entities if one entity is 

physically part of the other entity. In this case, the container entity (i.e. sponsor) provides resources for the 

contained entity (i.e. dependent). For example, a physical node is a container entity which provides resources 

for its hosted VMs as contained entities. 

Adjacency: Two entities are adjacent when they are depending on (they are dependent of) the same 

sponsor. In this case, the common sponsor is called the common entity. 

Correlated triggers are put into a relation graph where nodes are the triggers and edges represent the 

relations between these triggers. A set of relation graphs is automatically generated based on the triggers 

and the relations between the entities they correspond to. The algorithm correlating triggers generated for 

the same measurement period is provided in the appendix (Algorithm1). The entities of the triggers are 

looked up in the current configuration. Any relations between these entities are transferred to their 

associated triggers.  

 

Fig. 15. Different types of relations between configuration entities 

5.2.2. Elasticity rule selection and execution 

After the correlation of triggers, the generated relation graphs are processed in parallel. For each relation 

graph, the applicable elasticity rules are selected and their actions are correlated. The correlated actions are 

executed on the fly. Therefore, in this paper, we do not build or evaluate different action paths before their 

execution. 

In this section, we first introduce our approach of selecting the applicable elasticity rules given the 

correlated triggers; then we explain the selection of the optimal action among all the alternatives available 

for execution. We also introduce a set of meta-rules used for the correlation of the optimal actions of the 

selected elasticity rules. 

5.2.3. Selecting applicable elasticity rules 

The generated triggers invoke the applicable elasticity rules. On the one hand side, a trigger is issued on a 

configuration entity when any of its current threshold values is reached. On the other hand, an elasticity rule 

specifies the actions that can be taken on an instance of a given type to resolve a given type of threshold 

violation. Therefore, an elasticity rule is considered for invocation if the entityType for which the elasticity 

rule is defined is the same as the type of the entity on which the trigger was generated. 

The scalingType of a trigger is either Increase to initiate resource allocation or Decrease to release surplus 

resources. On the other hand, the scalingRule of an elasticity rule is Increase if its actions add resources; and 

it is Decrease if its actions remove resources. As a result, for an elasticity rule to be applicable its scalingRule 

should be equal to the scalingType of the trigger (see Algorithm 2 in the appendix). 

Relation

Service 

Dependency

Dependency Adjacency

Physical 

Containment

Membership 

Relation

Assignment 

Relationship

Protection 

Dependency

Configuration 

Entity
*

*

+source

+target

0..1

0..1

505 Volume 14, Number 11, November 2019

Journal of Software



5.2.4. Selecting the optimal action 

In an elasticity rule, multiple actions may be specified. When such an elasticity rule is invoked by a trigger, 

among these alternatives an optimal action needs to be selected for execution depending on the condition 

and the prerequisite(s) met (see Algorithm 3 in the appendix). 

To be considered as optimal an action should at least be applicable in the current situation (i.e. the 

condition must be evaluated to true). It also needs to be feasible, so among the applicable alternatives, the 

feasible action with the least cost is selected if there is such. In the case that none of the applicable alternatives 

are feasible, the infeasible action with least midCost is selected for invocation and an appropriate prerequisite 

trigger is generated. If the cost of an infeasible action is less than the cost of a feasible action, we still select 

the feasible one because according to the current situation no prerequisite action is required, which more 

likely results in an efficient reconfiguration.  

 
Fig. 16. An example of invoked action path 

 

For illustration purpose, let us assume that due to workload increase, a trigger (T1) for scaling the system 

is received from the SLA compliance management (see Fig. 16). Based on the scalingType of the trigger 

(increase) and the related entity, the applicable elasticity rule is selected and invoked. As shown in the figure, 

the actions of invoked elasticity rules have a cost. In the elasticity rule invoked by T1, the defined action is the 

addition of an assignment. To add an assignment, the prerequisite is that there should be a serving unit in 

the work pool to which the new assignment can be assigned. If there is no such serving unit in the work pool 

(i.e. the prerequisite is not met), a prerequisite trigger is generated to initiate another elasticity rule for 

Invokes

<<Action>> 

Add Assignment

-midCost: 350

<<Elasticity Rule>> 

Service

<<Action>> 

Reconfigure Work 

Pool

-midCost: 350

<<Elasticity Rule>> 

Work Pool

ExpressedBy

Prerequisites

ExpressedBy

<<Action>>

Move Out Other 

Workload

-midCost: 500

<<Elasticity Rule>> 

Node
ExpressedBy

Prerequisites

<<Action>> 

Scale Up

-midCost: 300

ExpressedBy

S
e
le

ct
e
d
 A

ct
io

n
 P

at
h

<<Trigger>> 

T1

-scalingType: Increase

-measurement: 350

-maxCurrentThreshold: 350

A
l t

e
rn

at
iv

e
 A

ct
io

n
 P

at
h

506 Volume 14, Number 11, November 2019

Journal of Software



reconfiguring the work pool by adding to it a new serving unit. However, a serving unit requires a node to 

host it. If there is no such node, a prerequisite trigger is generated again to invoke the corresponding elasticity 

rule. The actions contained in the node elasticity rule are: moving out some workload to other nodes with 

approximate cost of 500 which is feasible if there are enough providers for them; scaling up the node with 

approximate cost of 300, which is applicable if the node has not reached the maximum capacity yet and 

feasible if the physical node hosting the node has enough resources. Considering the current situation, 

assume that all of the contained actions are applicable, but only the first action which is moving out some 

workload is feasible. In this example, the first action is chosen as the optimal action as all the action’s 

prerequisites are met and most likely it will result in an efficient reconfiguration in terms of cost. 

In this example, trigger T1 leads to the invocation of multiple elasticity rules where the invocation of one 

elasticity rule is a prerequisite for another one. The path resulted from the execution of an elasticity rule is 

called an action path. 

5.2.5. Action correlation meta-rules 

In this paper, we use higher level rules to govern the application of elasticity rules and execute their actions 

on the fly. We refer to these rules as action correlation meta-rules and their applicability is governed by the 

relations between the triggers [36]. Algorithm 4, provided in the appendix, is used to apply the action 

correlation meta-rules at runtime. They have been implemented as ATL lazy rules in our framework. 

Meta-Rules for Dependency Relation: Triggers on a sponsor entity can be due to the violation of one its 

thresholds and because of its dependent(s) as to take an action on a dependent entity, first the capacity of its 

sponsor is checked as a prerequisite. If both cases apply and a prerequisite action is taken to provide a 

sponsor first, it may also resolve the sponsor’s trigger. To illustrate, let us assume that the workload for a 

service represented by a workload unit has more than one active assignment. Suppose at some point in time, 

the workload increases and two triggers are generated: One on the workload unit (dependent) and one on 

the node (sponsor) which supports one of the assignments of the workload unit. In this example, the least 

costly action of the elasticity rule invoked by the dependent trigger is executed first, which is adding an 

assignment on another node (i.e. the system is scaled out). Once the action path of the dependent entity is 

executed, the workload is shared between more nodes and therefore less workload will be imposed on the 

original sponsor node for which the sponsor trigger was received. It may not be applicable anymore and to 

determine that the sponsor trigger needs to be updated. As a result, the first meta-rule for the dependency 

relation is defined to handle horizontal scaling (i.e. scaling out). It is as follows: 

Meta-Rule 1: If the relation between triggers is of type physical containment or assignment relationship 

and the optimal action for resolving the dependent trigger is scale-out, the action path for the dependent 

entity is executed before the path for the sponsor entity. 

Meta-Rule 1 handles the cases where the relation between the triggers is of type physical containment or 

assignment relationship and the execution of the action path for the dependent provides solution for the 

sponsor through adding a new sponsor (i.e. scaling out). Note that it is possible that adding an assignment 

was not the least costly action or it was not an option at all and therefore the first meta-rule is not always 

applicable. 

Meta-Rule 2: If multiple triggers have physical containment relations with the same container trigger and 

the optimal action for resolving each contained trigger is scale-up, some of the corresponding entities of the 

contained triggers may be migrated base on the cost of the migration. The corresponding entities of the 

contained triggers are sorted in ascending order using the metric m = (migrationCost/releasedResource), 

where migrationCost is the approximate cost of migrating the contained entity to another container and 

releasedResource is the amount of resources released by migration. The contained entities with smaller m are 

migrated until the container trigger is resolved. 

507 Volume 14, Number 11, November 2019

Journal of Software



Unlike Meta-Rule 1, Meta-Rule 2 handles vertical scaling (i.e. scale up). According to Meta-Rule 2, if multiple 

contained entities (i.e. dependents such as VMs) depend on the same container (i.e. sponsor such as a physical 

host) need to be scaled up but the container does not have enough resources for all of them, one or more 

contained entities (i.e. dependents) are migrated to other containers first to release resources of the 

container. The selection is made based on whose migration releases more critical resources at less cost. The 

released resources of the sponsor can then be given to the remaining dependent entities to scale up. 

If the relation between triggers is of type dependency, but none of Meta-Rule 1 and Meta-Rule 2 can be 

applied, still we need to make sure that the action paths of dependent and sponsor are not executed 

simultaneously. To guarantee this, we execute the action path of the sponsor before the action path of 

dependent. Therefore, the third meta-rule is defined as follows: 

Meta-Rule 3: If the relation between triggers is of type dependency but none of Meta-Rule 1 and Meta-Rule 

2 can be applied, the action path for the sponsor entity is executed before the action path for the dependent 

entity. 

Meta-Rules for Adjacency Relation: When triggers invoke elasticity rules on adjacent entities, it is possible 

that the actions of the elasticity rules would like to manipulate the common sponsor entity of the adjacent 

entities (i.e. their container or sponsor) simultaneously. These actions may be conflicting or interfering. To 

prevent such conflicts, only one action at a time is taken on the common entity, i.e. the actions are ordered. 

The order of actions on the common entity affects the efficiency of reconfiguration. To optimize it, the 

following meta-rules are defined: 

Meta-Rule 4: The actions releasing resources of the common entity are taken first. 

Meta-Rule 5: Any action that would remove a common resource/entity (e.g. removing a node) is considered 

only after executing all the action paths of all adjacent triggers. 

When executing the action paths, triggers which release resources are given higher priority than triggers 

which allocate resources to enable reallocation. However, the actions releasing resources of the common 

entity are delayed until all the adjacent triggers have been considered. Thus, the resources of the common 

entity are released at the end only if they have not been reallocated by corresponding actions of other 

adjacent triggers. When all the resources of a common entity can be removed, the common entity is removed 

as well (e.g. a work pool is removed when its entire member serving units can be removed or when a common 

entity such as node has no process to run). 

5.2.6. An example for trigger correlation and reconfiguration 

Let us consider the example shown in Fig. 1 again. Suppose at some point in time, the configuration is as 

shown in Fig. 17 (a), and two triggers (t1 and t2) are generated by the SLA compliance management for 

Workload Unit1 and Workload Unit2, respectively. Assume trigger t1 is generated due to the decrease in the 

workload represented by Workload Unit1 to the point that two assignments should be removed, and trigger 

t2 is generated due to the increase of the workload represented by Workload Unit2.  

To reconfigure the system, first the triggers issued on related entities are put into relation. Workload Unit1 

and Workload Unit2 are protected by the same work pool (having the same logical container). Therefore, their 

corresponding triggers are put in adjacency relation. In this relation, the common entity is Work Pool1. Fig. 

17 (b) shows the relation graph resulted from the trigger correlation process. 

Next, the applicable elasticity rules are selected and based on the defined action correlation meta-rules, 

the triggers of the relation graph are ordered for the invocation of the applicable elasticity rules. Based on 

Meta-Rule 4 for the adjacency relation, the action path resulting from t1 should be executed before the action 

path resulting from t2 because the scalingType of trigger t1 is Decrease. Therefore, trigger t1 is considered first 

and its corresponding elasticity rule is executed. According to the elasticity rule for Workload Unit1, two 

assignments should be removed to reconfigure the system. Fig. 17 (c) shows the configuration resulting from 

508 Volume 14, Number 11, November 2019

Journal of Software



the removal of assignments. As shown in the figure, by the removal of assignments, serving units hosted on 

Node3 and Node4 become unassigned (without assignments). Considering Meta-Rule 5, the issue of follow-up 

trigger on Work Pool1 as common entity is delayed till the adjacent trigger t2 manipulates the common entity. 

 

 

 

 

 
Fig.  17. System reconfiguration-An example 

Node5 Node6Node4Node3

Work Pool2

Node2Node1

Work Pool1

Serving 

Unit1

Serving 

Unit2

Workload 

Unit2

Serving 

Unit3

Workload 

Unit1

Serving 

Unit5

Serving 

Unit6

Workload 

Unit3

Serving 

Unit4

Service Dependency

(a)

    
Adjacency

Common entity =  Work Pool1

(b)

Node6Node5Node4Node3

    
Adjacency

Work Pool2

Node2Node1

Work Pool1

Workload 

Unit1

Workload 

Unit2

Workload 

Unit3

Action Path1

Remove 

Workload Unit1 

Assignments 

(2 Assignments) 

Serving 

Unit1

Serving 

Unit2

Serving 

Unit3

Serving 

Unit4

Serving 

Unit5

Serving 

Unit6

Service Dependency

Invokes

(c)

Node7Node6Node5Node3

Work Pool2

Node2Node1

Work Pool1

  

Workload 

Unit1

Workload 

Unit2

Workload 

Unit3

Serving 

Unit1

Serving 

Unit2

Serving 

Unit3

Serving 

Unit6

Serving 

Unit7

Serving 

Unit5

Service Dependency

Action Path2

Add 

Workload Unit2

Assignment

Add 

Workload Unit3

Assignment

Prerequisite

Reconfigure 

Work Pool2

Add Node7

Prerequisite

Prerequisite

Invokes
(d)

Node4

Serving 

Unit4

Node7Node6Node5Node3

Work Pool2

Node2Node1

Work Pool1

  

Workload 

Unit1

Workload 

Unit2

Workload 

Unit3

Serving 

Unit1

Serving 

Unit2

Serving 

Unit3

Serving 

Unit6

Serving 

Unit7

Serving 

Unit5

Service Dependency

Action Path1

Remove

Workload Unit1

Assignment

Reconfigure 

Work Pool1

Remove 

Node4

Follow-Up

Follow-Up

Invokes
(e)

509 Volume 14, Number 11, November 2019

Journal of Software



According to the elasticity rule initiated by trigger t2, one assignment should be added to handle the 

workload increase represented by Workload Unit3. To take this action, two prerequisites should be met: 

There should be a serving unit to which the added assignment can be assigned and also its sponsor should 

have enough capacity to support the increase. The first prerequisite can be met by Serving Unit3 or Serving 

Unit4. Since according to the service dependency each assignment of Workload Unit2 needs one assignment 

of Workload Unit3, the increase in the workload represented by Workload Unit2 cannot be sponsored by the 

current number of Workload Unit3’s assignments. Therefore, the second prerequisite is not met. To make the 

action feasible, a prerequisite trigger on Workload Unit3 is generated to increase the sponsor’s capacity. The 

generated prerequisite trigger invokes the elasticity rule for Workload Unit3. According to Workload Unit2’s 

elasticity rule, one assignment of Workload Unit3 should be added to resolve the prerequisite trigger; 

however, the action cannot be taken until Work Pool2 is reconfigured in a way that the added assignment can 

be assigned. Therefore as a prerequisite, the required serving unit should be added to Work Pool2 first. To 

add a serving unit, there should be a node to provide the required resources for the added serving unit. 

Although Node4 has enough resources, it cannot host the serving units of Work Pool2 because Node4 is not a 

member of Node Group2 on which Work Pool2 can be configured. Since this perquisite is not met, first a node 

is added so that the serving unit can be added to Work Pool2. Fig. 17 (d) shows the configuration resulting 

from the execution of Action Path2. Note that node groups are shown in Fig. 1 only and not in Fig. 17. 

Once all adjacent triggers (i.e. t1 and t2) with the same common entity have been processed, the delayed 

follow-up trigger on Work Pool1 can be evaluated and therefore the serving unit hosted on Node4 is removed 

from Work Pool1. Node4 does not have any running serving units. Therefore, the resource removal action can 

be taken at this moment. Fig. 17 (e) shows the configuration resulting from the execution of the delayed 

follow-up actions in Action Path1. As explained in this example, the action paths are not pre-built and the 

actions are executed right away.  

6. Prototype Implementation and Preliminary Evaluation 

In this section we present a preliminary evaluation of our framework using a prototype implementation 

and discuss the results. Each test was performed five times and the average is reported here as the execution 

time. 

6.1. Validation of the SLA Compliance Model and Trigger Generation 

In this prototype, Domain Specific Modeling Languages (DSMLs) are used to capture the concepts, their 

relations as well as their well-formedness rules (constraints). To define the DSMLs, we use the UML profiling 

mechanism [32]. We followed the approach in [37] to create UML profiles in two steps: we first defined the 

metamodels and then mapped the metamodels to the UML metamodel. 

To generate triggers from violated OCL constraints, we used OCL APIs [38] in a standalone java application 

in the Eclipse Modeling Framework (EMF) [39]. The OCL constraints of SLA compliance profile are extracted 

and validated given an SLA compliance model. If a constraint is evaluated to false, a trigger is generated and 

takes the name of the violated constraint (i.e. either Increase or Decrease); corresponding entity is the 

context of the violated constraint (i.e. either a node or a service) and the measurement and threshold are 

from the constrained elements (i.e. the measurement and the threshold) of the violated constraint. 

Table 1 presents the results for SLA compliance model validation and trigger generation given different 

SLA compliance models and measurements. The first column of the table is the number of elements in the 

SLA compliance model. The SLA compliance models differ in the number of nodes, the number of SLAs and 

the number of services of the same or different service types. These models were built offline. For each case, 

the input measurements were compiled also offline in such a way that some would violate their 

corresponding thresholds. The second column is the total number of constraints to check. As explained in 

510 Volume 14, Number 11, November 2019

Journal of Software



Section 4.1.4, constraints are defined on SLA parameters, service entities (i.e. WUs) and nodes where for 

some (i.e. service entities and nodes) more than one constraint is defined. As a result, as the size of the SLA 

compliance model increases with the increase of the number of nodes, SLAs or the contained services in the 

considered configuration, the number of constraints to check increases too. The third and fourth columns 

show the number of the generated triggers and the total execution time of the SLA compliance model 

validation and the trigger generation, respectively. The result of this evaluation is represented by the chart 

in Fig. 18. As the number of elements in the SLA compliance model increases, more constraints are checked, 

and therefore the validation time increases. From the validation of the SLA compliance models we can 

conclude that the execution time grows linearly with respect to the numbers of constraints to check (in each 

case, the proportion of execution time to the number of constraints to check is almost 100). 

 

Table 1. SLA Compliance Model Validation and Trigger Generation Performance Evaluation 

CASES 
Number of Model 

Elements 
Number of Constraint 
Checks Performed 

Number of 
Generated 
Triggers 

Execution 
Time (ms) 

CASE 1 13 7 1 694 

CASE 2 16 11 2 1189 

CASE 3 24 14 3 1377 

CASE 4 26 18 4 1845 

CASE 5 42 28 6 2844 

CASE 6 87 77 8 7573 

6.2. Trigger Correlation and Dynamic Reconfiguration 

We implemented a prototype of trigger correlation and dynamic reconfiguration using ATL [34]. To 

analyze the efficiency of our approach for trigger correlation and dynamic reconfiguration, we consider the 

triggers generated in the previous experiment (i.e. Section 7.1). It is worth mentioning that the generated 

triggers are not redundant and therefore, with the correlation approach the number of triggers remains the 

same after correlation. Since we manipulate the models, the execution time is the time of making changes in 

the configuration model and does not include the execution time of the actions. For example, when a node is 

added, this addition manifests as a change in the number of instantiated nodes in the configuration model; 

however, in real systems, creation of VM instances may take several minutes [40]. As a result to analyze the 

efficiency of our approach, we measure the execution time as well as the number of reconfiguration actions 

with our approach where the triggers as well as the actions of invoked elasticity rules are correlated, and 

compare them to the execution time and number of actions when the triggers are not correlated. Fig. 19 

shows the result of this comparison. As shown in Fig. 19 (a), the results demonstrate the reduction in the 

number of actions by the correlation approach in overall which means less applicable elasticity rules are 

selected and invoked at runtime. As a result, by the correlation approach the execution time which includes 

the correlation time is reduced in overall as well. As the actions are executed at runtime, reducing the number 

of reconfiguration action is an important goal for real time and highly available systems. In the case that the 

triggers are not related (like last case in Fig. 19), the execution time is more in our approach which is due to 

the time for checking relations between the triggers to correlate them. It is worth mentioning that the 

stability of the system is not guaranteed when the triggers are not correlated.  

511 Volume 14, Number 11, November 2019

Journal of Software



 

Fig. 18. Performance evaluation for SLA compliance model validation and trigger generation given different 
SLA compliance models 

 

 

Fig. 19. Comparison of the execution time and the number of reconfiguration actions for dynamic 

reconfiguration with correlation and without correlation. 

7. Conclusion 

To adapt a system at runtime based on the workload fluctuation, we proposed a framework which is finer-

grain than current approaches for the elasticity management of cloud systems. In our proposed framework, 

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

e
r 

o
f 

M
o

d
e

l 
El

e
m

e
n

ts

N
u

m
b

e
r 

o
f 

C
o

n
st

ra
in

t 
C

h
e

ck
s 

P
e

rf
o

rm
e

d

Execution Time (ms)

0

2

4

6

8

10

12

14

16

1 2 3 4 6 8

Number of

reconfigurati

on Actions

Number of Triggers

with correlation

without correlation

(a)

512 Volume 14, Number 11, November 2019

Journal of Software



the resources are not only added or removed when it is required, but they are also reorganized for better 

resource utilization. All these are performed while taking into account also service availability. 

We proposed a model-driven framework which reuses the models developed at the design stage (e.g. 

configuration model). We defined OCL constraints that are periodically evaluated at runtime to generate 

triggers automatically from the violated OCL constraints. The generated triggers initiate the application of 

corresponding elasticity rules to reconfigure the system and avoid SLA violations by the provider and 

resource wasting.  

Since multiple triggers may be generated simultaneously, handling the triggers independently may 

jeopardize the stability of the system. We proposed a model driven approach for correlating the triggers and 

the actions of their related elasticity rules. Triggers are correlated based on the relations existing between 

their corresponding configuration entities. The result of trigger correlation is represented as a set of relation 

graphs. For each trigger of a relation graph, the applicable elasticity rule is then selected. In order to correlate 

the actions of applicable elasticity rules, we defined action correlation meta-rules that govern the application 

of elasticity rules when the triggers are correlated. The goal is not only to reconfigure the system properly 

and avoid resource oscillation but also to minimize the number of reconfiguration actions because any 

change in the configuration needs to be applied at runtime on system entities. Moreover, the correlated 

actions are executed on the fly. I.e. no action path is evaluated or built before the execution. A correlated 

action is executed right away once its prerequisites are met if there is any.  

We performed some experiments that show that our solution reduces the time of the dynamic 

reconfiguration and the number of reconfiguration actions while avoiding resource oscillation compared to 

the reconfiguration solution without trigger correlation.  

 To define the OCL constraints, we used a set of threshold values lower than the current capacity of the 

system. We assumed the values of the thresholds are given. As future work, the average reconfiguration time 

and the predicted workload as well as the cost of reconfiguration versus the penalty of SLA violations can be 

considered to determine the values of the thresholds. 

Appendix 

 

513 Volume 14, Number 11, November 2019

Journal of Software



 

 

514 Volume 14, Number 11, November 2019

Journal of Software



 

 

Acknowledgment 

This work has been partially supported by the Natural Sciences and Engineering Research Council of 

Canada (NSERC) and Ericsson. 

515 Volume 14, Number 11, November 2019

Journal of Software



References 

[1] Larson, K. (1998). The role of service level agreements in IT service. Information Management & 

Computer, 6(3), 128-132. 

[2] Herbst, N., Kounev, S., & Reussner, R. (2013). Elasticity in cloud computing: What it is, and what it is not. 

Proceedings of the International Conference on Autonomic Computing. 

[3] Chapman, C., Emmerich, W., Ma rquez, F., Clayman, S., & Galis, A. (2012). Software architecture definition 

for on-demand coud provisioning. Cluster Computing, 15(2). 

[4] Zhu, X., Uysal, M., Zhikui, W., Singhal, S., Arif, M., Padala, P., & Shin, K. (2009). What Does Control Theory 

Bring to Systems Research? ACM SIGOPS Operating Systems Review. 

[5] OMG: MDA, Retrieved from:  http://www.omg.org/mda/ 

[6] Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20(5), 19-25. 

[7] OMG: MDA User guide, version 1.0. Retrieved from: 

https://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf 

[8] OMG:  Object Constraint Language (OCL). Retrieved from: http://www.omg.org/spec/OCL/   

[9] Ludwig, H., Stamou, K., Mohamed, M., Mandagere, N., Langston, B., Alatorre, G., Nakaruma, H., Anya, O., & 

Keller, A. (2015). rSLA: Monitoring SLAs in dynamic service environments. Proceedings of the 

International Conference on Service-Oriented Computing (pp.139-153). 

[10] Tata, S., Mohamed, M., & Sakairi, T. (2016). rSLA: A service level agreement language for cloud services.  

Cloud Computing, 415-422. 

[11] Raimondi, F., Skene, J., Emmerich, W., & Wozna, B. (2007). A methodology for on-line monitoring non-

functional specifications of web-services. Proceedings of the First International Workshop on Property 

Verification for Software Components and Services. 

[12] Skene, J., & Emmerich, W. Generating a Contract Checker for an SLA Language. Retrieved from: 

http://eprints.ucl.ac.uk/712/1/9.9.1coala.pdf 

[13] Emeakaroha, V., Netto, M., Brandic, I., & De, R. C. (2015). Application level monitoring and SLA violation 

detection for multi-tenant cloud services. Emerging Research in Cloud Distributed Computing Systems. 

[14] Emeakaroha, V., Netto, M., Calheiros, R., Brandic, I., Buyya, R., & De, R. C. (2012). Towards autonomic 

detection of SLA violations in cloud infrastructures. Future Generation Computer Systems, 28(7). 

[15] Yemini, S., Kliger, S., Mozes, E., Yemini, Y.,  & Ohsie, D. (1996). High Speed and Robust Event Correlation. 

[16] Gruschke, B. (1998). Integrated event management: Event correlation using dependency graphs. 

Proceedings of the 9th IFIP/IEEE International Workshop on Distributed Systems: Operations and 

Management. 

[17] Konig, B., Calero, J. A., & Kirschnick, J. (2012). Elastic monitoring framework for cloud infrastructures. 

IET Communications, 6(10). 

[18] Sedaghat, M., Hernandez-Rodriguez, F., & Elmroth, E. (2013). A virtual machine re-packing approach to 

the horizontal vs. vertical elasticity trade-off for cloud autoscaling. Proceedings of the 2013 ACM Cloud 

and Autonomic Computing Conference. 

[19] Shariffdeen, R. S., Munasinghe, D. T. S. P., Bhathiya, H. S., Bandara, U. K. J. U., & Dilum, H. M. N. (2016). 

Workload and resource aware proactive auto-scaler for paas cloud. Proceedings of the 2016 IEEE 9th 

International Conference on Cloud Computing. 

[20] Tang, P., Li, F., Zhou, W., Hu, W., & Yang, L. (2016). Efficient auto-scaling approach in the telco cloud using 

self-learning algorithm. Proceedings of the IEEE Global Communications Conference (pp. 1-6). 

[21] Wang, C., Gupta, A., & Urgaonkar, B. (2016). Fine-grained resource scaling in a public cloud: A tenant’s 

perspective. Proceedings of the 2016 IEEE 9th International Conference on Cloud Computing. 

[22] Shen, Z., Subbiah, S., Gu, X., & Wilkes, J. (2011). Cloudscale: Elastic resource scaling for multi-tenant cloud 

516 Volume 14, Number 11, November 2019

Journal of Software

http://www.omg.org/mda/
https://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
http://www.omg.org/spec/OCL/
http://eprints.ucl.ac.uk/712/1/9.9.1coala.pdf


systems. Proceedings of the  2nd ACM Symposium on Cloud Computing. 

[23] Jamshidi, P., Ahmad, A., & Pahl, C. (2014). Autonomic resource provisioning for cloud-based software. 

Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing 

Systems.  

[24] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., & Merle, P. (2018). Elasticity in cloud computing: State of the art 

and research challenges. Proceedings of the IEEE Transactions on Services Computing. 

[25] Zhang, Q., Chen, H., & Yin, Z. (2017). PRMRAP: A proactive virtual resource management framework in 

cloud. Proceedings of the 1st International Conference on Edge Computing. 

[26] Network functions virtualisation (NFV); terminology for main concepts in NFV. Retrieved from: 

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_NFV003v010201p.pdf 

[27] Ali-Eldin, A., Tordsson, J., & Elmroth, E. (2012). An adaptive hybrid elasticity controller for cloud 

infrastructures. Proceedings of the Network Operations and Management Symposium. 

[28] Toeroe, M., & Tam, F. (2012). Service Availability: Principles and Practice. John Wiley & Sons. 

[29] Service Availability Forum. Retrieved from: http://devel.opensaf.org/documentation.html 

[30] Abbasipour, M., Khendek, F., & Toeroe, M. (2015). A model-based framework for SLA management and 

dynamic reconfiguration. Proceedings of the International SDL Forum (pp. 19-26). 

[31] Ericsson introduces a hyperscale cloud solution. Retrieved from: 

http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-

FGB1010554&Lang=EN&HighestFree=Y 

[32] OMG: UML 2.0 Superstructure － Final Adopted Specification. Retrieved from: http://www.omg.org/cgi-

bin/doc?ptc/2003-08-02. 

[33] Birkenheuer, G., Brinkmann, A., & Karl, H. (2009). The Gain of Overbooking. Springer Berlin Heidelberg. 

[34] ATL/user guide-the ATL language. Retrieved from: https://wiki.eclipse.org/ATL/User_Guide_-

_The_ATL_Language. 

[35] Abbasipour, M., Khendek, F., & Toeroe, M. (2018). A model-based approach for design time elasticity rules 

generation.  Proceedings of the  23rd International Conference on Engineering of Complex Computer 

Systems  (pp. 93-103).  

[36] Abbasipour, M., Khendek, F., & Toeroe, M. (2018). Trigger Correlation for Dynamic System Reconfiguration. 

SAC 2018, Pau, France. 

[37] Selic, B. (2007). A systematic approach to domain-specific language design using UML. Object and 

Component-Oriented Real-Time Distributed Computing. 

[38] OCL - Eclipsepedia - Eclipse Wiki. Retrieved from: https://wiki.eclipse.org/OCL 

[39] Eclipse Modeling Framework (EMF). Retrieved from: https://www.eclipse.org/modeling/emf/ 

[40] Jiang, Y., Perng, C.-S., & Li, T. (2013). Cloud analytics for capacity planning and instant VM provisioning. 

IEEE Transactions on Network and Service Management, 10(3), 312-325. 

[41] Nabi, M., Toeroe, M., & Khendek, F.  Availability in the cloud: State of the art. Journal of Network and 

Computer Applications, 54-67. 

[42] Moreno-Vozmediano, R., Monter, R. S., Huedo, E, & Liorente, I. (2019). Efficient resource provisioning for 

elastic cloud services based on machine learning techniques. Journal of Cloud Computing. 

Mahin Abbasipour received her Ph.D. degree (electrical and computer engineering) from 

Concordia University, Montreal, QC, Canada in 2018.  During her study at Concoria 

University, Mahin did a 9 month internship at Ericsson Inc., Montreal focusing on SLA 

compliance management. Mahin’s research interests are model driven approach (MDA), 

requiremnts engineering and dynamic system reconfiguration. 
 

 

Author’s 

formal photo 

517 Volume 14, Number 11, November 2019

Journal of Software

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_NFV003v010201p.pdf
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language
https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language
https://wiki.eclipse.org/OCL
https://www.eclipse.org/modeling/emf/


Ferhat Khendek received his PhD from University of Montreal, Canada. He is a full 

professor in the Department of Electrical and Computer Engineering of Concordia 

University where he also holds since 2011 the NSERC/ericsson senior industrial 

research chair in Model Based Management.  Ferhat Khendek has published more than 

200 conference/journal papers. Ferhat Khendek‘s research interests are in model based 

software engineering and management, formal methods, validation and testing, cloud 

computing, real-time software systems, and service engineering and architectures. 

 

Maria Toeroe is an expert at Ericsson working in the area of dependable software, 

service availability and fault tolerance. She has represented Ericsson in the Service 

Availability Forum and more recently in OPNFV and ETSI NFV. Maria is also the technical 

coordinator of the Ericsson research collaboration with Concordia University. She has 

numerous publications and served as organizer and program committee member of 

different conferences. Maria holds a PhD from the Budapest University of Technology and 

Economics. 

 

518 Volume 14, Number 11, November 2019

Journal of Software




