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Abstract: The ability to automatically detect and repair vulnerabilities in code before deployment has 

become the subject of increasing attention. Some approaches to this problem rely on machine learning 

techniques, however the lack of datasets—code samples labeled as containing a vulnerability or not—

presents a barrier to performance. We design and implement a deep neural network based on the recently 

developed Grammar Variational Autoencoder (VAE) architecture to generate an arbitrary number of unique 

C functions labeled in the aforementioned manner. We make several improvements on the original Grammar 

VAE: we guarantee that every vector in the neural network's latent space decodes to a syntactically valid C 

function; we extend the Grammar VAE into a context-sensitive environment; and we implement a semantic 

repair algorithm that transforms syntactically valid C functions into fully semantically valid C functions that 

compile and execute. Users can control the semantic qualities of output functions with our constraint system. 

Our constraints allow users to modify the return type, change control flow structures, inject vulnerabilities 

into generated code, and more. We demonstrate the advantages of our model over other program synthesis 

models targeting similar applications. We also explore alternative applications for our model, including code 

plagiarism detection and compiler fuzzing, testing, and optimization.   
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1. Introduction 

Software analysis has become an important part of the code development pipeline. Developers use 

software analysis tools to help identify potential vulnerabilities in code so that they can be repaired before 

launch. Such tools operate either statically on source code or dynamically on instruction traces. The former 

are generally preferable since they cost less time and do not require that source code be compiled. It is also 

very difficult to cover the entire code base using dynamic analysis, whereas with static analysis such a feat 

can be accomplished with much more ease. Therefore, there has been an increase in demand for static 

analysis tools that can identify vulnerabilities with high accuracy. In order to increase this accuracy, some 

new static analysis tools have incorporated machine learning techniques into their approaches. This is the 

goal of the MUSE project at Draper. One of the main difficulties of the project was identifying or creating 

labeled datasets on which to train the neural networks. Each example in the dataset would need to be a C 

function labeled as containing a vulnerability or not. Identification of vulnerabilities in the wild is a difficult 

problem; compiling a corpus of labeled functions from existing code bases at the scale required to train 

machine learning models is simply not feasible. The ultimate goal of our research is to create a system that 

allows us to generate an arbitrary number of C functions that we know for certain contain or do not contain 
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vulnerabilities. The model will support MUSE by enabling the synthesis of large datasets of realistic-looking 

C functions labeled as good or bad with respect to vulnerabilities. It can also be useful in other applications 

that require a large number of valid C programs that obey certain constraints. We design and implement a 

system that meets these requirements and opens the way for future research in this space. 

We address 2 questions in this work. First, can we use a Grammar VAE to improve and/or expand upon 

previous methods of program synthesis in support of the MUSE project? Second, can we enforce constraints 

on code synthesized by our network? We answer both questions in the affirmative. Many of the previous 

attempts at program synthesis have either relied on a detailed program specification from the user or a set 

of input/output pairs in order to synthesize a single function. In order to synthesize a large number of 

functions, a significant amount of user involvement is required. We circumvent this obstacle by taking a 

different approach to the program synthesis task: rather than generate one program at a time where each 

accomplishes a specific task or computes a specific function, we generate many programs that are similar to 

a set of input functions and that obey certain user-specified constraints. Output functions are not required to 

solve any particular problem. To generate the output functions, we chose to implement a Grammar VAE. A 

Grammar VAE is a generative neural network model in which each raw input example is decomposed into a 

sequence of production rules according to some grammar. During the training procedure, the Grammar VAE 

encodes each function into the latent space, then decodes each latent vector back into a sequence of 

production rules corresponding to a valid C function. The input and output sequences are intended to match 

as closely as possible. After training has been completed, new sequences can be discovered by decoding 

arbitrary vectors from the latent space. Some logic in the decoder ensures that each output sequence 

produced by the Grammar VAE is syntactically (but not necessarily semantically) valid. Thus, we can use the 

Grammar VAE to generate an arbitrary number of syntactically valid C programs that are similar to the 

functions on which the network was trained. To the best of our knowledge, we are the first researchers to 

apply a Grammar VAE to the problem of program synthesis. To accomplish our second goal, we add several 

additional layers of logic to the Grammar VAE in the decode phase. This logic forces the output sequences to 

behave according to user-specified constraints. The constraints allow control over the kinds of design 

decisions that programmers would normally make: function return type, arguments, variable types, control 

flow, and semantic validity. They also allow users to inject vulnerabilities into functions. In summary, we meet 

the goals of using a Grammar VAE for program synthesis and enforcing constraints on the synthesized code. 

We construct an appropriate grammar and handle issues of context-sensitivity during sequence generation; 

we generate a dataset on which to train our model; we apply the Grammar VAE to the problem of program 

synthesis; we train and tune the model extensively; we analyze the latent space; and we impose constraints 

on generated functions. 

2. Background 

2.1. Program Synthesis 

Automatic program synthesis has long been the subject of research. The goal of program synthesis is to 

generate full or partial programs from a specification [1]. Specifications vary based on application. Often, they 

involve a set of rules or statements in a formal logic, but some recent works use input/output pairs as formal 

specifications [2]. Early attempts at code synthesis leveraged theorem provers to construct a proof of the 

specifications, and then build a program to satisfy the proof [3]-[5]. The next popular approach was 

transformation-based synthesis, which iteratively transformed the formal specification into the desired 

output program [6]. One shortcoming of these deductive approaches is that it is left to the user to provide the 

specifications that precisely define the behavior of the desired function. Specifications of this kind can be 

even more difficult to compose than the desired code would be [1]. Users must have a deep understanding of 
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the underlying logic of the program to be generated, and this is not always achievable. 

Deductive synthesis gave way to inductive synthesis based on input/output examples, program sketches, 

and other forms of incomplete specification. The advantage of this methodology is that it does not require 

users to have much or any understanding of the underlying logic of the desired program. Machine learning 

has been applied to the inductive synthesis problem with impressive results. Inductive synthesis does not 

usually work directly with source code. The synthesized programs are often latent (hidden in the weights of 

a neural network or the DNA of a genetic algorithm, for instance) or written in a domain-specific language in 

which syntax is not a concern. A common example of the latter case is when the synthesizer must determine 

how to string together calls from a programmer-defined pool of possible commands, which can be executed 

successfully in arbitrary order. Some machine learning techniques fall outside of what is traditionally 

understood as inductive synthesis. Cummins et al. [7], for instance, attempt to write code one character at a 

time using a neural network. One limitation with this and similar models is that, in general, there is no 

guarantee that the generated code will be either syntactically or semantically correct. 

We take program synthesis in a slightly different direction than those explored by most of the previous 

work. Synthesized programs are usually very specific—they are intended to produce a certain output, solve 

a particular problem, or model some function. We attempt to generate many programs that do not necessarily 

solve any particular problem. This methodology is better suited to the applications that we target. 

2.2. Grammars 

Grammars are formal constructs that describe the set of all valid strings in a language. In this work, we 

consider two types of grammars: context-free and context-sensitive. A Context-Free Grammar (CFG) G is 

formally defined as a 4-tuple G = (V,  , R, S) where V is the set of non-terminal symbols,   is the set (disjoint 

from V) of terminal symbols, R is the set of production rules (also called the vocabulary), and S is the start 

symbol. The rules in R describe how to transition from non-terminal symbols to strings in the language. When 

written in Backus-Naur Form (BNF), each rule is of the form A ➝  where A  V and   (V   )*. The string 

is complete when it has been fully expanded so that it contains only terminal symbols. 

A Context-Sensitive Grammar (CSG) is defined by the same 4-tuple as a CFG, but with the additional 

requirement that every rule be of the form A ➝  where A  V; , ,   (V   )*; and |A |  | |. A CSG 

allows for each application of a rule to take into account the context of terminal and non-terminal symbols in 

the string, so CSGs can describe more complicated languages than CFGs can. Most modern programming 

languages are not context-free, which is why we must extend the original Grammar VAE architecture. 

Throughout this work, we say that a C program is “syntactically valid” if it parses into an abstract syntax tree 

without errors. We say that a program is “semantically valid” if it both parses and compiles without errors. 

Kusner et al. [8] introduce the Grammar VAE, an extension to the traditional VAE model that integrates a 

grammar during the encoding and decoding phases. When the input sequences can be written in terms of a 

grammar, the Grammar VAE learns a coherent latent space and makes the guarantee that all sequences 

generated by the VAE will be syntactically valid according to the grammar. The original Grammar VAE 

supports only CFGs; we extend this model to CSGs by incorporating context information. Kusner et al. [8] used 

a Grammar VAE to learn a latent space for molecules according to the SMILES molecular CFG [9]. The benefits 

of the Grammar VAE over other generative models were first, that every molecule extracted from the latent 

space was syntactically valid; and second, that the latent space was more meaningful, allowing for much 

quicker search for desirable molecules. After training, the Grammar VAE was used to generate new molecules 

by sampling latent vectors from a multivariate Gaussian distribution and decoding them. Similarly, we use 

our Grammar VAE to generate an arbitrary number of semantically valid C functions. 
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3. Methods 

3.1. System Overview 

 

Fig. 1. System overview. 

 
Fig. 1 gives an overview of our system. There are two primary points of entry into the system. The first is 

with a C function in the training dataset as shown in the top left of the Fig. The system takes the function and 

parses it into an abstract syntax tree. We wish to reduce the number of unique production rules required to 

represent all of the functions in our dataset because a smaller vocabulary produces smaller one-hot vectors, 

and smaller one-hot vectors improves the neural network's performance. Thus, to reduce the number of 

unique production rules required to represent any set of input functions, the system optimizes the abstract 

syntax tree by making it near-binary. In the next step, the system outputs the sequence of production rules 

that correspond with a preorder traversal of the abstract syntax tree and converts each rule into a one-hot 

vector using the grammar. The boxed subsystem represents the Grammar VAE. The neural network attempts 

to reproduce the input from the limited information in the latent vector with as high a degree of accuracy as 

possible. The sequence of one-hot vectors representing the input function is passed to the neural network. 
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The neural network encodes the sequence through several layers. The first layers in the network are 

convolutional layers, which learn position-invariant relationships within the input. After the convolutions are 

applied, the network passes the input through several fully connected layers until it becomes a compressed 

latent vector. The latent vector is the second point of entry for the system. In order to generate new functions 

not seen in the training dataset, one can choose a random latent vector and send it through the neural 

network decoder and the remainder of the system. This point of entry makes the system useful as a generative, 

program synthesis model. Regardless of the point of entry chosen, the latent vector is decoded through 

several layers in an attempt to reproduce the input. The last of the decode layers are recurrent layers, which 

specialize in learning sequential relationships in data. The output of the final recurrent layer is a sequence of 

logit vectors, each of which gives the neural network's prediction for the production rule at that index in the 

sequence. The system then enforces the first two sets of optional user-provided constraints. The first class of 

constraints enforced is the disallow constraints, which are applied as the sequence of logit vectors is first 

decoded. The second class is the include constraints, which are applied both during and after the decoding of 

the initial sequence. The result of these transformations is the sequence of final logit vectors that correspond 

to the neural network's best guess of the original input sequence given the optional user-provided constraints. 

The system then completes the decode phase by translating the logit sequence into production rules in the 

grammar. The Grammar VAE architecture ensures that the decoded production rule sequence corresponds to 

a syntactically valid function according to the grammar. Depending on user-provided repair constraints, the 

last class of constraints, the production rule sequence may undergo semantic repair, which transforms the 

syntactically valid function into a fully semantically valid function. The system will then use the grammar to 

reconstruct the optimized abstract syntax tree from the production rules. From the optimized abstract syntax 

tree, the system derives the corresponding deoptimized abstract syntax tree, which is turned into C source 

code using a C parser. If the user has specified that the function should contain a vulnerability, one is injected 

at this point. Vulnerability injection is another optional repair constraint. The system now returns the 

function produced as output. Table 1 lists the subsystems used in each step of Fig. 1. 

 

Table 1. Subsystems Required for Each Step 

Step Subsystems required 

1 Any C parser 

2 CSG construction, AST optimization 

3 CSG construction 

4 Grammar VAE, disallow constraints 

5 Include constraints 

6 Grammar VAE 

7 Repair constraints 

8 AST reconstruction 

9 AST optimization 

10 Any C parser 

11 Repair constraints 

 

3.2. CSG Construction 

One key requirement for our model is a grammar. There are several available grammars for C, most notably 

that found in the appendix of Kernighan et al. [10], however many of the context requirements are conveyed 

through explanation in plain English and not BNF. In fact, many grammars treat C as a context-free language, 

an assumption that can be proven false by the well-known typedef-name context requirement at the least. 

Thus, part of our work involved composing a suitable CSG in BNF for at least a subset of the C language. The 

grammar must be in BNF so that each rule can be represented as a one-hot vector. 
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It was beyond the scope of our work to write such a grammar by hand. However, because the sequence of 

production rules used to generate a piece of code can be extracted directly from a preorder traversal of the 

associated AST, we can reverse engineer the grammar from a large enough pool of C functions. During 

enumeration, we can include context information in each rule by listing the successor and predecessor nodes 

in the AST, but we do not know how many symbols in general we must include in each rule to have the correct 

level of context required to ensure the syntactic validity of output functions. Two further considerations: only 

past context information can be incorporated into the model, since the Grammar VAE only knows predecessor 

symbols when it outputs a given rule; and as the level of context increases, the vocabulary size increases 

exponentially. Thus, we decided to use one step of past context information (i.e. one predecessor node in the 

AST) in each rule. This kept the vocabulary sufficiently small to allow the training process to succeed, but 

sufficiently expressive to guarantee the syntactic validity of output sequences. We also limited the size of the 

vocabulary by performing several transformations on the functions; most importantly, we replaced all 

identifier names and literals with generic values. 

We built our vocabulary in this manner using the production rules found in 100 randomly selected 

functions from the MUSE C source dataset. Our final vocabulary contained 234 rules, one of which was for 

padding. 

3.3. AST Optimization 

We would like to modify function ASTs in such a way that we reduce the number of production rules in the 

grammar and preserve AST correctness. We will accomplish this by making the AST near-binary. Specifically, 

we transform any node in the AST that accepts a variable number of children (e.g. a block statement) into a 

linked list of nodes that each accept at most two children: a value node, and a next node. This has 3 important 

effects. First, it increases the number of nodes in each AST by a small factor; this is not an issue for our 

applications. Second, it dramatically reduces the number of production rules in the vocabulary when each 

rule is discovered through the enumeration process mentioned above. Third, it allows the Grammar VAE to 

reach a wider range of output functions. Without optimization, the Grammar VAE would not be able to output 

a function with a block containing, say, 4 statements unless it had seen a function with a block of exactly that 

length in the training dataset. Optimization is an invertible procedure, so deoptimization is trivial given the 

optimization algorithm. 

3.4. Grammar VAE 

We use the work of Kusner et al. [8] as a starting point for the design and implementation of our own 

Grammar VAE. We refer to their Grammar VAE explicitly as the Molecule Grammar VAE and ours as just the 

Grammar VAE. We implement two main models: the Grammar VAE and the Character VAE. The Grammar VAE 

takes as input a sequence of production rules that comprise the input function and returns as output a 

sequence of production rules that correspond with a syntactically valid C function. Our model makes hard 

guarantees about the syntactic validity of outputs, and has the ability to enforce user-provided constraints on 

generated functions. The Molecule Grammar VAE uses a grammar with 76 production rules and a maximum 

sequence length of 277. The Grammar VAE's grammar has 234 production rules, and we use a maximum 

sequence length of 50. The VAE is split into two components: the encoder, comprising all layers up to and 

including the latent vector; and the decoder, beginning with the latent vector and containing all remaining 

layers. The purpose of the encoder is to compress the input data into the latent vector in such a way that the 

important information is retained and the input can still be reconstructed. The encoder begins with several 

1-dimensional convolutional layers. These convolutions help our neural network learn position invariant 

relationships between particular sets of rules. Information from the filters is passed to the subsequent dense 

layers. The latent vector is the most compact layer, containing just 10 neurons. Whereas the encoder 

Journal of Software

232 Volume 14, Number 6, June 2019



  

compressed the input, the decoder aims to recreate the input sequence using only the information available 

in the latent vector. The first layers in the decoder are expanding dense layers. Then come several recurrent 

layers. These layers take advantage of sequential patterns in the data to improve reconstruction accuracy. 

The Character VAE is a simple VAE that attempts to write code one character at a time. The Character VAE 

takes as input a sequence of characters that comprise the input function and returns as output a sequence of 

characters that should correspond with the input C function. The characters are one-hot encoded. The 

internal architecture of the Character VAE is similar to that of the Grammar VAE: convolutional layers, dense 

layers, latent vector, dense layers, and recurrent layers. Consistent with previous work, we use this model as 

a baseline for our experiments. 

When Kusner et al. [8] introduced the Grammar VAE, they suggested that the architecture could be applied 

to the problem of program synthesis. However, as introduced, their architecture was not readily applicable to 

program synthesis for two main reasons. First, although the Molecule Grammar VAE produced only 

syntactically valid outputs, it had a high rejection rate of about 70%. When generating a large number of 

outputs, the rejection rate must be much lower. This discrepancy is not thoroughly explained, but we 

speculate that it is mainly due to the fact that decoded sequences that meet the maximum sequence length 

but do not yet represent a complete molecule are automatically rejected. We solve this problem by 

introducing a sequence completion procedure. If the maximum sequence length is reached, but the function 

is not complete, the decoder passes control to the sequence completion procedure, which uses the grammar 

to find the remaining production rules. By default, the rule with the fewest children that does not violate 

syntactic validity is chosen, although randomness can be incorporated to increase output function variety. 

The second reason why the original Grammar VAE was not ready for program synthesis is that it was only 

designed to handle CFGs. As stated earlier, most modern programming languages are context-sensitive, and 

attempts to treat the grammar as context-free in a Grammar VAE setting result in a very high number of 

syntactically invalid outputs. This is a problem if one would like to generate a large corpus of functions, as we 

do for applications like MUSE. We address this problem by incorporating context into the rules themselves, 

making context-sensitivity checks during the decode phase, and reconstructing the AST using the context 

information available in the production rules. As a result of our changes, 100% of output sequences 

correspond with syntactically valid functions, which is important for generating large datasets. 

As in a context-free environment, the grammar is incorporated into the VAE decoder. Each logit vector 

output by the neural network is translated into a production rule sequentially. First, an empty stack of non-

terminal symbols is instantiated. The start rule in the grammar is automatically chosen as the first rule in the 

sequence, and the rule's child non-terminal symbols are pushed onto the stack. For each next logit vector in 

the sequence, only those transitions in the grammar that begin with the non-terminal symbol on top of the 

stack are allowed. This is enough to guarantee the syntactic validity of outputs when using a CFG. Given the 

probabilities in the logit vector, the next rule is chosen, the symbol on top of the stack is popped, and any child 

non-terminal symbols of the new rule are pushed. This process continues until there are no more symbols on 

the stack (a valid output) or the maximum sequence length is reached. Our sequence completion procedure 

continues with the same logic. 

With the introduction of a CSG, extra logic is necessary when each next rule in the sequence is chosen. Given 

our relatively small vocabulary size, there were relatively few (a few dozen) syntactically invalid structures 

that appeared in various functions. Thus, it was possible to search for these cases and add specific logic to 

prevent each. Table 2 gives several examples of invalid structures caused by failure to observe context-

sensitivity. Case-by-case logic is not necessary if the full grammar can be written in BNF, so including a greater 

degree of context in rules could solve this automatically. However, as stated earlier, we do not know how many 

steps of context would be required to do this, and each additional step causes an exponential increase in 
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vocabulary size. 

 

Table 2. Selected Context-Sensitivity Issues 

Invalid structure Valid structure Context-sensitivity issue 

int f() = 0{} int f(){} 
Declaration node cannot have “init” if child of Function Declaration 
node 

(char *)x; char *x; Pointer Declaration node cannot have “declname” if child of Cast node 

int f(x){} int f(int x){} Parameter List node cannot use identifiers if child of Declaration node 

int f(){int g(){}} int f(){} Function Declaration node cannot be child of Function Declaration node 

case: case: f(); Final Case node in switch statement cannot be a leaf node 

 

The MUSE dataset consists of over 11,000,000 C functions. Every production rule used in every function of 

our training dataset must be in our vocabulary. Because we must include context in each production rule, the 

number of rules found in the full MUSE dataset is well over 30,000. A vocabulary of this size is good for 

expressiveness, but has two main disadvantages: physical size and neural network performance. Using such 

large one-hot vectors, the size of the training dataset was well over 1TB. Not only was it a burden to store 

such a large file, but training took on the order of weeks for each model. Additionally, the neural networks 

never learned a good latent representation of the data, and were therefore useless as generative models. 

We needed to limit the vocabulary size somehow. We accomplished this by randomly selecting 100 

functions from the MUSE dataset and extracting their production rules; we took these and trimmed them to 

234 based on which we felt would be used most often by programmers. With these rules, we randomly 

generated 250,000 functions subject to certain constraints. The functions in this dataset used only the 

production rules that we selected. This gave us a training dataset of sufficient size and with a small vocabulary. 

We also note that, even across the entire MUSE dataset, there were too few functions that used only the 

selected production rules to create a suitable training dataset for a deep neural network. Future work should 

attempt to expand the vocabulary and train on human-written functions. We made some progress toward 

this goal by relaxing the requirement that all output functions be syntactically valid, but the resulting model 

did not produce functions of as high quality as those of the model that we present in this work. One major 

advantage of the Grammar VAE architecture is that it learns the semantic qualities of the training dataset 

exceptionally well. If we trained the Grammar VAE on the original MUSE dataset, then we could expect the 

generated functions to share many semantic qualities with those functions. A model capable of such a feat 

would be an important breakthrough for program synthesis. 

We trained our neural network to minimize the ELBO loss function. We experimented with various network 

architectures and performed hyperparameter tuning. We split our dataset of 250,000 functions into a training 

dataset of 225,000 functions and a validation dataset of 25,000 functions. 

We considered 3 major performance metrics when evaluating the model: training and validation loss and 

accuracy values, code similarity metrics, and coherence of the latent space. Table 3 shows our model's 

performance on the training and validation datasets after tuning. Loss and accuracy numbers do not have 

much intuitive meaning on their own, but they are useful for comparing results between models, and they 

are the primary method by which we judge the results of training. In addition to loss and accuracy, we 

consider several code similarity metrics for evaluating, comparing, and validating our models. The purpose 

behind these supplementary metrics is to provide greater clarity on the success or failure of our trained 

model by giving an intuitive, but quantitative measure of its performance. Our supplementary metrics are 

gathered on 1,000 randomly selected functions from the training dataset. Importantly, in this test and all of 

our experiments, every decoded function parses correctly; out network produces only syntactically valid 
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functions. This is a major improvement on previous work. In this experiment, we set the variance used in the 

decoder to 0 so that we can determine how well the model can produce unique functions. Early models 

produced very few ( 50) unique functions, and we found that the quality of their generated outputs was poor. 

Increasing the decoder variance by even a small amount will lead to 100% unique functions. We produce 

about 70% unique functions on average. We also examine how many decoded functions have the same return 

type and number of arguments as the original input functions. These two metrics are useful for measuring 

basic semantic similarity. Finally, we calculate the mean and median Levenshtein distance. Levenshtein 

distance is defined as the number of single character edits required to transform one string into another, and 

is used in many code plagiarism checkers to determine how closely related two programs are based only on 

text. Our third performance metric was the coherence of the latent space. Fig. 2 shows an idealized latent 

space in which like features cluster together and each axis controls a set of semantic properties. In practice, 

the latent space is not so tidy. We traverse the latent space in randomly selected regions to see, in general, 

how smooth the transitions are. A good model will have smooth transitions throughout the latent space and 

similar features will be clustered together. 

 

 
Fig. 2. Idealized latent space. 

 

Table 3. Grammar VAE Training Results 

Metric Final Model Performance 

Training loss 0.0461 

Training accuracy 0.0338 

Validation loss 0.0459 

Validation accuracy 0.0339 

 

3.5. Constraints 

We would like to guarantee that our generated functions obey certain user-specified constraints so that the 

user can make some of the design decisions that programmers would normally make about functions: return 

type, number and types of arguments, control flow, variable types, and more. We also allow the user to specify 

that the decoded function be semantically valid and/or contain a vulnerability. We divide our constraints into 

3 categories based on when they are enforced in our model. The constraint subsystem is another of our major 

contributions. Without constraints, the user has little control over the kinds of functions that are generated. 

The user can sample intelligently from the latent space if they know that a certain semantic quality is common 

in a region of the space, but there are many problems with this approach: search for particular features in the 

latent space will be at least O(nz) where n is the number of samples taken along each dimension and z is the 

dimensionality of the latent vector (here, 10); there is no guarantee that an output with all of the desired 
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properties even exists in the latent space; and even if such a region exists, it is probable that multiple samples 

must be taken because the bounds of the region are not well defined. As the number and complexity of 

semantic qualities desired increases, the search for satisfactory outputs becomes more difficult. These 

reasons also explain why it is not sufficient to set the variance parameter of the decoder to some non-zero 

number and repeatedly decode the latent vector until the decoder produces a function with the desired 

properties. Our constraint subsystem alleviates these concerns and facilitates the search for outputs with 

specific semantic qualities. With near-perfect success rate, the output will satisfy all given constraints. Users 

can take advantage of constraints to generate datasets with particular semantic qualities, which can be useful 

to train or optimize models for different properties (e.g. a compiler that exhibits excellent performance on 

programs with loops). They can also generate very specific new kinds of outputs. In the case of the Molecule 

Grammar VAE, one could use constraints to produce new molecules that contain, say, a benzene ring. 

The disallow category consists of constraints that are enforced by preventing the decoder from choosing 

some subset of production rules in certain contexts. All of this logic is contained in the decoder and is 

executed as each new rule in the sequence is chosen. The decoder marks rules that would otherwise have 

been valid in a given context as invalid, restricting the choices available to the decoder. Some of the 

implemented disallow constraints include: return type modifier, argument number modifier, argument type 

modifier, and control flow modifiers (e.g. no loops). Disallow constraints are by far the simplest to enforce, 

although doing so is not always trivial. Sometimes certain rules can be marked invalid without context 

information, but other times the decoder must use previous rules in the decoded sequence to determine 

whether or not a rule should be marked invalid based on the constraints. 

The basic premise of include constraint enforcement is that we prevent the decoder from returning the 

completed function if it does not contain the desired feature. This process occurs in two phases. First, we 

mask out any rules that result in the function ending unless we see the desired feature appear in the decoded 

function. This allows the function to produce the feature organically. For simple features, this frequently 

occurs. The second phase begins when the maximum sequence length is reached and the function completion 

procedure begins. Now, we pursue the more aggressive strategy of forcing the function to choose production 

rules that will lead to the inclusion of the feature by increasing their priority in the queue of rules. Then, we 

allow the function to end. We could have decided instead to add the feature at the beginning of the function, 

but our two-step approach increases the variety of decoded functions under include constraints. The 

constraints that fall in this category influence various control flow features, such as the inclusion of loops, 

branches, or even specific statements. 

The final type of constraint requires us to take a sequence of rules corresponding to an already valid AST 

and fix them in some way. We need repair constraints in order to make some of the semantic guarantees that 

cannot be expressed as disallow or include constraints. In particular, we would like to use repair constraints 

to make guarantees about semantic validity and the presence of vulnerabilities. The advantage of our 

approach is that, at minimum, every decoded sequence of production rules corresponds to both a complete 

AST and a syntactically valid function. So, when we do repair, we are not starting from scratch; rather than 

generate a semantically valid function, we can take a syntactically valid function and make it semantically 

valid. We find this approach easier because the level of context information required to produce syntactically 

valid C functions is far less than that required to produce semantically valid ones. We can also use a variety 

of techniques to solve this problem because for each function we have its production rules, AST, and C source 

representation. Sometimes we find it convenient to work at one level, sometimes another. However, 

constraints that fall in this category are very complex, and the implementation of each is a small feat in itself. 

We implemented two repair constraints: semantic repair and vulnerability injection. 

The semantic repair constraint takes a sequence of production rules corresponding to a syntactically valid 
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function and returns another sequence of production rules corresponding to a semantically valid function. 

We strive as much as possible to preserve the meaning of the original sequence. The logic for the semantic 

fixer is quite complicated. Recall that we transformed production rules to use generic identifier names and 

literal values. In order to guarantee semantic validity, we must replace generic identifier names in such a way 

that the program obeys variable declaration rules, scoping rules, type rules, etc. The logic of the semantic 

fixer is similar to that of a typechecker or parser. The semantic fixer uses a namespace, a mapping between 

variable names and their types, to force variables to obey scoping and type rules. Like a typechecker, the 

semantic fixer uses recursion to maintain this namespace as variables go in and out of scope. Every 

declaration adds a numbered identifier to the namespace, and the type is set based on the available context 

information; when variables are referenced, the most recently used variable in the namespace that is of the 

correct type is chosen. We use the principle of temporal locality to guide this decision. There are many other 

changes that must be made to the output function during this process, including: ensuring that all control 

flow structures appear in valid contexts, replacing invalid unary operations, changing assignments to 

declarations when necessary, inserting declarations before variable use, adding basic function 

implementations when other functions are called, and more. After all of these transformations are complete, 

the result is a semantically valid C function. Our preliminary tests indicated a 100% success rate, but the 

results of our final experiments show that the semantic repair constraint fails a small percent of the time ( 

0.1%). 

Vulnerability injection is done after the function has been semantically repaired. In order to inject a 

vulnerability, the user must define a vulnerability template: a string with special keywords that indicates the 

structure of a code segment containing the said vulnerability. The keywords describe how special regions of 

the template are filled. For example, the keyword _CODE_ means that this section can be filled with arbitrary 

code; the keyword _CONSTANT_ means that the keyword should be replaced with a constant; the keyword 

_INT_EXPR_ means that the keyword should be replaced by an expression that returns int. In addition to the 

template, one must define any special rules for filling in the keyword values. For example, in our template for 

the buffer overflow vulnerability, the buffer size must be strictly less than the loop variable's maximum value 

in order to trigger the desired error, and both must be strictly greater than 0. Vulnerability injection then 

proceeds as follows. First, we allow the injector to choose any value for constants as long as they fall within 

the bounds of some predefined maximum and minimum values. Next, we fill in code blocks with arbitrary 

pieces of code. We then replace integer expression keywords with random integer expressions. The function 

that performs this action takes as an argument the variable that is to be used in the expression (e.g. the loop 

counter). The final step is to actually perform the injection of the vulnerability. We deconflict the namespaces 

of the function and the vulnerability itself so that the two share no variable references. Then, we choose a 

random line in the function. We check to see if this would be a satisfactory index at which to insert the 

vulnerable code. If the vulnerability would interfere with any control flow statements or would compromise 

the semantic validity of the function, then we sample another index until we find one that will work. Finally, 

we insert the vulnerability string into the function string at the chosen index and return the result. The output 

of the vulnerability injection process is a semantically valid, vulnerable function. This process is successful 

100% of the time. In future work, we would like to implement more complex vulnerabilities. However, the 

main reason that we chose to implement vulnerabilities in the manner that we did is because the vulnerable 

functions that we produce are very similar to those found in the MUSE dataset (which includes a few 

handwritten functions with labeled vulnerabilities). Also, our approach allows us to train the MUSE classifiers 

to recognize position invariance both within and between vulnerabilities. Previous work in vulnerability 

injection worked on the binary level [11]. This process was more sophisticated in some ways, but also had a 

high failure rate and was far slower, sometimes taking on the order of minutes to inject a single vulnerability. 
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This delay is not acceptable if one wishes to generate datasets of hundreds of thousands or millions of 

functions. Our approach works every time, and does not incur any noticeable penalty in terms of function 

decode time. 

3.6. AST Reconstruction 

Suppose that we have a sequence of production rules that correspond to the preorder traversal of the AST 

of a syntactically valid C function (the output of the Grammar VAE) and we would like to regenerate said 

function. Because the production rules correspond directly to the preorder traversal of the AST, we can 

reconstruct the AST by making recursive calls on the rule sequence: for every child found in the production 

rule, we make a recursive call to reconstruct that subtree in the AST. After a child node is reconstructed 

successfully, we attach it to the current node. The current node is fully reconstructed when all of its child 

nodes are reconstructed. When the recursion is complete and the root node is reconstructed, we have a 

complete optimized AST. AST reconstruction will fail if the Grammar VAE naively treats production rules in a 

context-free manner. During the node reconstruction process, several context-sensitivity checks are made in 

order to ensure that the resulting AST is that of a syntactically valid function. Based on context information, 

we know when a production rule belongs to a parent node or child node, which directly corresponds to which 

of the two nodes will make the recursive call on the rule in question. 

 

Table 4. Constraint Enforcement Statistics 

Constraints Average decode time (s) Success rate 

None 0.246 - 
1 disallow 0.272 100% 

3 disallow 0.251 100% 

1 include 0.834 100% 

Semantic repair 0.295 99.93% 

Vulnerability injection 0.284 100% 

 

4. Experiments and Results 

4.1. Example Generation 

We want to determine the extent to which our model can output high quality functions. A high quality 

function is one that is syntactically and semantically valid, and contains sufficient semantic information to be 

used as an example in a dataset to train the MUSE classifiers. Our neural network guarantees syntactic validity 

of outputs, so already we have met one of the three qualifications. Semantic validity is handled by the 

semantic repair constraint. The final qualification, that the contents of the function must carry some meaning, 

is difficult both to measure and attain. We would like our generated functions to be indistinguishable from 

human-written functions, but this is a lofty goal for the scope of our work. Another way that we can measure 

the success of our model is to train the MUSE classifiers on our generated datasets and see whether 

performance improves, but this goal is also beyond the scope of our work. As is the case with many generative 

models, the only way of which we are currently aware to measure program quality is visual inspection. We 

also have some quantitative metrics to assist in our analysis. Example generation is the most important of 

our experiments. Our model was designed to create datasets of functions to train the MUSE classifiers, so we 

need to generate functions of the highest quality possible. We also note that, even if the functions are not yet 

sophisticated enough for the MUSE project, there are still several applications for which our model would be 

appropriate. We explore these in Section 6. 

To conduct this experiment, we sample and decode 10,000 latent vectors from the multivariate Gaussian 

distribution Q  N(0, c * I) where c is a constant that determines how different the latent vectors are from 
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each other. This value is a hyperparameter; we tune it over several iterations of the experiment until we 

produce the best functions possible. Lower values reduce the number of unique functions produced, whereas 

higher values lead to functions of lower quality. 

 

 
Fig. 3. Grammar VAE generated functions. 

 

We ran the experiment several times using various combinations of constraints and evaluated average 

function decode time, constraint success rate, and function quality. Table 4 shows the results for these 

experiments. Average decode time remained fairly consistent, but spiked when we enforced include 

constraints. The reason for this is that many functions that would have ended quickly without the constraint 

are not allowed to end until the maximum sequence length is reached, at which point the feature is added to 

the function. The success rate is perfect for all but the most complicated constraints. Function quality is 

generally good throughout the experiments, leading us to conclude that our generated functions will be a 

valuable addition to the MUSE dataset and could be useful in other applications, discussed below. The 

vulnerabilities in particular look very similar to those found in the MUSE dataset. However, include 

constraints cause function quality to deteriorate in many functions; the logit sequence may only be 

meaningful until the index where the function was supposed to end. The remainder of the logit vectors may 

not contain a high degree of semantic information. Fig. 3 shows the output of the final two experiments: 

semantic repair (teal) and semantic repair/vulnerability injection (blue). In the final experiment, we used a 

buffer overflow vulnerability template. The generated functions are not without their stylistic flaws, but 
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almost all of them are semantically valid functions that compile and execute, users can use constraints to 

control various semantic features, and the functions contain real vulnerabilities. Moreover, the generation 

process is fast, so creating large datasets of these functions is feasible. Improvement of the semantic quality 

of output functions can be attained by training the model on human-written functions. We leave this to future 

work. 

Earlier we noted that we trained our model on randomly generated functions. One may ask: if we can 

produce randomly generated functions, then why do we need the Grammar VAE as a generative model? The 

reason why the Grammar VAE is an important and necessary next step for program synthesis is that, unlike 

randomly generated functions, functions output by the Grammar VAE take on the semantic characteristics of 

the training dataset. This is an important quality for many (but not all) applications, and can also tell us a 

great deal about how humans write code. 

 

 
Fig. 4. Character VAE generated functions. 

 

In previous work, a Character VAE has been used as a baseline point of comparison with the Grammar VAE. 

We follow this convention. We generate 10,000 functions by sampling randomly from the latent space and 

decoding them, as with the Grammar VAE. The results were much worse. The average function decode time 

was 0.221 seconds, which is slightly better than the Grammar VAE; however, none of the functions were 

syntactically or semantically valid. The reason for this poor performance was first speculated by Kusner et al. 

[8], who noted that the Grammar VAE does not need to learn syntax because it automatically produces 

syntactically valid outputs, whereas the Character VAE must learn both syntax and semantics. Another 

problem with the Character VAE is that the user has no influence over the basic features of output sequences 

because there is no analogue to our Grammar VAE constraints subsystem. Fig. 4 shows some of the outputs 

generated by the Character VAE. Clearly, the Grammar VAE produces higher quality functions, and with very 

little cost in terms of decode time. We conclude that the Grammar VAE is a good alternative for program 

synthesis, whereas the Character VAE is not. 
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4.2. Latent Space 

In the following experiments, we determine the coherence of the latent space for both the Grammar VAE 

and the Character VAE. We say that the latent space is “coherent” if small steps along any dimension in the 

space produce small or minor changes in functions. Because the latent space is 10-dimensional, we cannot 

visualize it very well. So, we examine several arbitrarily chosen 2-dimensional cross-sections of the latent 

space. We do this by sampling a latent vector from the multivariate Gaussian distribution as defined earlier, 

then choosing 2 dimensions and taking small steps in the positive and negative directions. Finally, we decode 

all of the latent vectors and place them in a 2-dimensional chart so that regions of the latent space can be 

visualized. Fig. 5 shows the output of one of these experiments; other experiments had similar results. Not 

many functions can be visualized at once without making them illegible, so only 5 samples are taken in each 

direction. In all experiments, we observed that the latent space is coherent, with smooth transitions 

throughout. At times one can see how a particular dimension controls a particular set of features, as when 

movement along one axis heavily influences the return type. As a result of these observations, we say that the 

latent space is coherent. This property is important both because it demonstrates the success of the training 

procedure, and because it facilitates the search for a function with a particular set of features, which may be 

necessary depending on the application. Another benefit of a coherent latent space is that we can use it to 

accurately assess the semantic similarity of functions. We can do this by measuring the distance between 

latent vectors. Fig. 6 shows an example of latent space distance as a measure of function similarity. In this 

case, as in many others, latent space distance corresponds very closely with our intuition. This result leads 

us to another potential application for our work: code plagiarism detection. 

The Character VAE did not learn a coherent latent space, making it much less useful for the applications we 

target. Fig. 7 shows the output of a traversal of the Character VAE's latent space; other experiments had 

similar results. Again, we conclude that the Grammar VAE is a suitable model for program synthesis, unlike 

the Character VAE. 

 

 
Fig. 5. Grammar VAE latent space traversal. 

 

5. Related Work 

Gulwani et al. [1] give an account of state-of-the-art approaches to program synthesis. In our work, we 

explore constraint solving and inductive programming in depth. The authors list challenges in the domain, 

including the intractability of the program space and diversity in user intent. We face both challenges in our 
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work. 

Fig. 6. Grammar VAE latent space distance. 

Fig. 7. Character VAE latent space traversal. 

 

Green et al. [3], Manna et al. [4], and Waldinger et al. [5] pioneer early methods of program synthesis. These 

works rely heavily on a user-defined specification, which is then translated into a proof in a formal logic using 

SAT/SMT solvers. The proof is used to build the final program. Another approach that relies on user-defined 

specifications is transformation-based synthesis [12]. 

Jha et al. [13] define formal inductive program synthesizer as one that “generalize[s] from examples by 

searching a restricted space of programs.” Shaw et al. [14] design a system that produces recursive LISP 

programs from single input-output pairs. Summers et al. [15] and Biermann et al. [16] create more robust 

LISP programs from multiple input-output examples. 

Modern approaches to inductive synthesis often employ machine learning. Liang et al. [17] use a Bayesian 

prior to learn inter-program substructures between related programs using only a few input-output 

examples. Menon et al. [18] learn weights in a probabilistic model using textual features in input-output 

examples. Both of the aforementioned works rely on a probabilistic context-free grammar that corresponds 

to a set of function applications. These functions were created by the authors to conduct certain predefined 

string transformations in a domain-specific syntax. In contrast, our grammar is that of the C programming 

language, and we allow our model to build functions directly into source code. Balog et al. [19] use deep 

learning to augment traditional inductive programming techniques. Their model, like some of those 

previously discussed, predicts a series of applications of specific predefined functions (+1, -1, map, reduce, 

filter, sort, etc.). Bunel et al. [20] learn and optimize assembly-like programs using a neural compiler, leading 

us to consider compiler optimization a potential application. 

Some machine learning research has focused on writing source code directly in non domain-specific 

languages. Lin et al. [21] use an RNN and program templates to create single-line bash scripts to solve 

problems given by a natural language specification. Raychev et al. [22] synthesize code completions for 

programs with holes. They mainly consider Java programs that rely heavily on API calls. Cummins et al. [7] 
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discuss the need for generative models that can produce a large quantity of semantically valid source code 

for the purpose of training compilers. They note the lack of datasets for such problems, and the need for 

generated programs to be similar to hand-written programs. They use an RNN to produce code at the 

character level. Generated code is then fed into a discard filter, which rejects functions that do not compile. 

They have a discard rate of approximately 32%. We remove the need for a discard filter by employing a 

Grammar VAE. 

Modern inductive approaches to program synthesis have expanded on source code composition by 

including a grammar to assist in the derivation of generated programs. Patra et al. [23] create a generative 

model for fuzzing similar to Cummins et al. [7], except that theirs is based on probabilistic decision trees and 

a CFG. However, because they do not rely on any context information, only 96.3% of generated JavaScript 

programs are syntactically valid and 14.4% of the subset of syntactically valid programs execute without 

causing an error. Our approach guarantees that all generated programs are syntactically valid, and we 

improve upon these semantic validity numbers. 

One final set of sources inspired this work. Most important and relevant to our work is that of Kusner et al. 

[8], who introduce the Grammar VAE neural network architecture and demonstrate its effectiveness on 

generative modeling of discrete data. They recognize that many generative models across all domains 

(including program synthesis) often produce invalid outputs. The Grammar VAE guarantees syntactic validity 

of output sequences when the data can be represented as production rules from a context-free grammar. They 

find that the Grammar VAE learns a more meaningful latent space when compared to the traditional VAE 

architecture, and they apply their model to both symbolic regression and molecular synthesis. Finally, they 

suggest program synthesis as a potential application for the Grammar VAE. Dolan et al. [11] design a system 

to inject vulnerabilities into C source code. They successfully add vulnerabilities to common Unix utilities like 

bash and tshark. Depending on the application, they are able to inject vulnerabilities successfully between 

9.6% and 53.2% of the time. We improve upon these numbers, although we work in source code rather than 

compiled binaries. Additionally, their vulnerability injection process is quite expensive, taking up to several 

minutes on average. This latency is unsatisfactory for making a dataset of hundreds of thousands or millions 

of functions, which is the size of the corpus required by MUSE. 

6. Conclusion 

Of the models that we implemented, we find that the one with the most use as a generative model for the 

applications that we target is the Grammar VAE. The Grammar VAE guarantees that every latent vector 

decodes to a syntactically valid function, over 99% of which can be converted into semantically valid functions 

using our repair constraint. The importance of this guarantee cannot be overstated. In order to build datasets 

for our target applications, we need to produce not merely syntactically valid but also semantically valid 

functions. The Grammar VAE is also fast. As the experiments demonstrate, generating examples from the 

neural network takes less than a quarter of a second per function on average. This is important because it 

means that building very large datasets is feasible. Our experiments also show that constraint enforcement 

works flawlessly for all but the most sophisticated constraints, and even these have error rates below one 

tenth of one percent. The user therefore has a fair amount of control over the types of functions that appear 

in the output dataset, and whether or not they contain vulnerabilities. Furthermore, the Grammar VAE 

contains a very coherent latent space, which gives users the ability to generate datasets of similar functions. 

The Character VAE, which writes code one character at a time, was our baseline throughout the experiments. 

We found that this model was not a feasible alternative to the Grammar VAE for our applications. In particular, 

the Character VAE was not capable of producing syntactically valid C functions, did not allow for constraint 

enforcement, did not significantly improve execution time, and did not have a coherent latent space. Thus, we 
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conclude that the Grammar VAE, not the Character VAE, is the best alternative for program synthesis. 

This work makes numerous contributions to the domains of both program synthesis and machine learning. 

First, we provide an end-to-end system that allows users to generate arbitrarily large datasets of syntactically 

and semantically valid C functions of approximately 2 to 10 lines in length. Second, we make several 

improvements on the work of Kusner et al. [8], who introduce the Grammar VAE. Unlike previous work, our 

Grammar VAE guarantees that every vector in the latent space will correspond with a syntactically valid 

output. Another major improvement is the extension of the Grammar VAE into a context-sensitive 

environment. We use a significantly larger grammar compared to Kusner et al. [8], and we can semantically 

repair almost all output sequences. Third, we demonstrate the ability to exert control over function behavior 

by imposing constraints on generated functions, including vulnerability injection. Fourth, we improve upon 

previous methods of program synthesis. Previous generative models for code, like that of Cummins et al. [7], 

often produce invalid outputs—specifically, the aforementioned model must discard at least 32% of all 

generated functions, and they only consider the domain of OpenCL programs; we can produce syntactically 

valid C code 100% of the time and semantically valid C code over 99% of the time. 

We envision several applications for this work. The first is to generate arbitrarily large datasets of code on 

which to train machine learning algorithms. This would be useful for projects like MUSE. The second 

application that we identify is compiler testing and optimization. Our model could be used to create a wide 

variety of programs for testing or verifying a compiler's correctness; we also believe that our model could be 

applied to compiler optimization on various tasks. Cummins et al. [7] use an RNN to synthesize OpenCL 

programs to train their compiler, which leveraged machine learning techniques to improve its performance 

on certain tasks. They note that there is an increasing need for datasets of code that finely cover the feature 

space of programs. We can fill this gap. Finally, we believe that our model could be a valuable addition to 

source code plagiarism detection tools or other applications that require a similarity metric between pieces 

of code. We propose a new metric to these tools: the distance between the latent vectors associated with two 

functions. Because of the coherence of the latent space, this distance would give a good measure of how 

similar two functions are from a qualitative standpoint. 
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