

Journal of Software

300 Volume 13, Number 5, May 2018

Web	Crawling	and	Processing	with	Limited	Resources	for	
Business	Intelligence	and	Analytics	Applications	

	

Loredana	M.	Genovese,	Filippo	Geraci*	
Institute	for	Informatics	and	Telematics,	CNR,	Via	G.	Moruzzi,	1	Pisa,	Italy.	
	
*	Corresponding	author.	Email:	filippo.geraci@iit.cnr.it	
Manuscript	submitted	January	10,	2018;	accepted	March	8,	2018.	
doi:	10.17706/jsw.13.5.300-316	
	

Abstract:	Business	 intelligence	 (BI)	 is	 the	 activity	 of	 extracting	 strategic	 information	 from	big	 data.	 The	
benefits	of	this	activity	for	enterprises	span	from	the	reduction	of	the	operative	costs	due	to	a	more	sensible	
internal	organization	to	a	more	productive	and	aware	decision	process.	To	be	effective,	BI	relies	heavily	on	
the	availability	of	a	huge	amount	of	(possibly	high-quality)	data.	The	steady	decrease	of	costs	for	acquiring,	
storing	and	analyzing	large	knowledge	bases	has	motivated	big	companies	to	invest	in	BI	technologies.	Until	
now,	 instead,	SMEs	(Small	and	Medium-sized	Companies)	are	excluded	from	the	benefits	of	BI	because	of	
their	limited	budget	and	resources.	In	this	paper	we	show	that	a	satisfactory	BI	activity	is	possible	even	in	
presence	 of	 a	 small	 budget.	 Our	 ultimate	 goal	 is	 not	 necessarily	 that	 of	 proposing	 novel	 solutions	 but	
providing	the	practitioners	with	a	sort	of	hitchhiker’s	guide	to	a	cost-effective	web-based	BI.	In	particular,	
we	discuss	how	 the	Web	can	be	used	as	a	 cheap	yet	reliable	 source	of	 information	where	 crawling,	data	
cleaning	and	classification	can	be	achieved	using	a	limited	amount	of	CPU,	storage	space	and	bandwidth.	 	
	
Key	words:	Big	data	analytics,	business	intelligence,	spam	detection,	web	classification,	web	crawling.	 	

	
	

1. Introduction	
Intelligence	 is	 the	activity	of	 learning	 information	from	data.	The	benefits	of	 its	application	to	business	

activities	have	started	to	be	discussed	from	the	mid	of	the	nineteen	century	when	Hans	Peter	Luhn	coined	
the	term	business	intelligence	(BI)	in	a	paper	of	him	[1].	In	that	paper	Luhn,	described	some	guidelines	and	
functions	of	a	business	intelligence	system	under	development	at	the	IBM	labs.	 	
In	 the	 course	of	 the	years,	BI	has	evolved	extending	outside	 the	 scope	of	 the	database	 community	and	

increasing	its	complexity.	Structured	information	has	been	replaced	by	unstructured	one;	data	volumes	got	
bigger	 posing	 new	 challenges	 both	 for	 gathering,	 storing	 and	 analyzing	 them;	 analytics	 (namely:	 the	
possibility	 of	 creating	profiles	 from	data)	 has	 emerged	as	 a	new	 opportunity	 to	 help	 companies	 to	 drive	
their	 business	 efforts	 on	 the	 most	 promising	 directions.	 Forecasts	 on	 future	 trends	 [2]	 predict	 an	 ever	
increasing	role	of	BI	and	big	data	analytics	in	the	success	of	companies.	However,	the	cost	of	implementing	
BI	has	excluded	small	and	medium	enterprises	from	the	benefits	of	big	data	analysis.	In	fact,	collecting	and	
storing	data	is	still	considered	expensive	and	computationally	demanding.	Although	practical	guides	as	that	
in	 [3]	 provide	 wise	 suggestions	 to	 build	 scalable	 infrastructures	 that	 can	 optimize	 long-term	 costs,	 the	
initial	effort	required	to	setup	a	minimalistic	BI	system	still	remains	unaffordable.	
In	 this	paper	we	 deal	with	 the	 problem	of	 building	a	 good	 quality	 business	 intelligence	 infrastructure	

keeping	an	eye	on	 the	 company	budget.	Achieving	 this	 goal	 requires	a	 careful	 choice	of	 the	data	 sources,	
extraction	 procedures,	 and	 pre-processing.	 As	 other	 studies	 suggest,	 given	 the	 universal	 accessibility	 of	

Journal of Software

301 Volume 13, Number 5, May 2018

contents	 as	 well	 as	 its	 intrinsic	 multidisciplinarity,	 the	 Web	 can	 be	 considered	 as	 the	 most	 convenient	
source	 of	 information.	 However,	 using	 the	 Web	 poses	 several	 issues	 in	 terms	 of	 data	 coherence,	
representativeness,	 and	 quality.	 Moreover,	 technical	 challenges	 have	 to	 be	 considered.	 In	 fact,	 although	
downloading	a	page	seems	to	be	for	free,	crawling	large	portions	of	the	web	may	quickly	become	expensive	
and	 computationally	 demanding.	 Seed	 selection	 is	 a	 key	 factor	 to	 ensure	 the	 data	 to	 be	 up	 to	 date.	 For	
example,	 new	 initiatives	 can	 be	 promoted	 by	 registering	 ad-hoc	websites	 that	may	 not	 be	 reachable	 yet	
from	other	websites	but	are	spread	through	other	channels	such	as	social	media.	Download	ordering	can	
influence	representativeness	while	data	filtering	can	bias	coherence.	
In	Section	2	we	discuss	crawling	strategies,	tailored	on	the	needs	of	small	companies,	that	can	drastically	

simplify	 the	 design	 of	 crawlers	 and	 data	 storage	without	 sacrificing	 quality.	 In	 particular,	 analyzing	 the	
bottlenecks	 of	 standard	 crawling,	we	 discovered	 that	most	 of	 the	 CPU	effort	 is	 due	 to	 the	 need	 to	 check	
whether	a	URL	has	already	been	discovered/downloaded	or	not.	However,	a	more	in-depth	analysis	shows	
that,	leveraging	on	an	ad-hoc	downloading	ordering,	these	checks	can	be	reduced	in	the	specific	context	of	
limited	resources.	This,	in	turn,	has	the	effect	of:	simplifying	the	storage	architecture,	and	providing	a	data	
stream	access	for	the	subsequent	analyses.	
In	section	3	we	try	to	answer	to	the	question	about	whether	web	data	is	suitable	for	BI	or	not.	Statistical	

analyses	in	the	literature	show	that,	although	morphologically	different,	web	corpora	have	the	potential	to	
be	 good	 knowledge	 bases	 once	 noise	 is	 filtered.	We	 pinpoint	 spam	 and	web	 templates	 as	 the	 two	main	
sources	of	noise.	Besides	data	 coherence,	spam	has	a	profound	 impact	on	 the	 consumption	of	bandwidth	
and	storage	resources.	In	order	to	limit	resource	waste,	we	show	how	to	exploit	DNS	(domain	name	server)	
queries	to	predict	whether	a	newly	discovered	domain	is	likely	to	be	spam	and,	in	case,	remove	it	from	the	
list	of	websites	pending	to	be	downloaded.	 	
In	section	4	we	discuss	the	problem	of	per-topic	classification	comparing	post-processing	with	 focused	

crawling.	In	absence	of	resource	limits	the	former	solution	would	be	preferable	because	it	prevents	a	useful	
document	 linked	 by	 an	 off	 topic	 website	 to	 be	 lost.	 However,	 in	 a	 real	 scenario	 the	 higher	 cost	 of	
post-processing	 compared	 to	 its	 benefits	makes	 focused	 crawling	more	 feasible.	 In	 either	 case,	 however,	
dealing	with	classification	requires	to	own	a	large	set	of	examples	that,	at	least	for	specialized	companies,	
can	be	hard	to	find	in	publicly	available	ontologies	or	annotated	resources.	Thus,	we	show	how	such	a	set	of	
examples	can	be	build	using	semi-supervised	techniques	that	balance	accuracy	and	human	effort.	 	
Summarizing:	 in	 this	 paper	 we	 investigate	 the	 technological	 and	 methodological	 challenges	 that	 IT	

practitioners	have	to	deal	with	building	a	BI	architecture	with	a	limited	budget.	We	also	propose	solutions	
that	can	help	to	attain	a	satisfactory	tradeoff	between	costs	and	BI	quality.	

2. Crawling	
Crawling	 is	 the	activity	of	 creating	a	 local	 copy	of	a	 relevant	portion	of	 the	World	Wide	Web.	This	 task	

usually	 represents	 the	 first	 challenge	 that	 IT	 professionals	 have	 to	 deal	 with	 performing	 BI	 and	 Web	
analytics.	 	 In	 its	 simplest	 form,	 a	 crawler	 is	 a	program	 that	 receives	as	 input	a	 list	of	 valid	URLs	(called	
seeds)	 and	 starts	 downloading	 and	 archiving	 the	 corresponding	 websites.	 Intra-domain	 hyperlinks	 are	
immediately	 followed	 in	 breath-first	 order,	while	 links	 to	 external	 resources	 are	 appended	 to	 the	 list	 of	
seeds.	 	 The	crawling	process	terminates	once	the	list	of	seeds	becomes	empty.	Despite	simple	in	principle,	
the	 variety	 of	 purposes	 for	which	 data	 is	 collected	as	well	 as	 technical	 issues,	made	 crawling	 a	 rich	 and	
complex	research	field.	As	a	measure	of	the	interest	for	this	topic,	in	a	recent	survey	[4]	the	authors	claim	
they	censused	1488	articles	about	crawling.	Restricting	to	the	real	 implementations	the	authors	 listed	62	
works.	 In	 the	 following	 section	we	dissect	 the	main	 crawling	design	 strategies	and	propose	 cost-effective	
options	tailored	on	the	BI	process.	

Journal of Software

302 Volume 13, Number 5, May 2018

2.1. Seed	Selection	
The	seed	 list	 is	 the	 initial	set	of	URLs	(more	often	websites’	home	pages)	taken	 in	 input	 from	a	crawler	

starting	 to	 build	 the	web	 image.	 Despite	 not	 in-depth	 discussed	 in	 the	 scientific	 literature	 about	 general	
purpose	crawling,	how	to	build	a	comprehensive	seed	list	is	one	of	the	most	debated	topics	in	specialized	
forums.	 	
In	[5]	the	authors	provide	a	successful	macroscopic	description	of	the	web	that	can	be	useful	to	speculate	

on	the	effects	of	seed	selection.	They	start	recalling	that	the	web	can	be	modeled	as	a	direct	graph	where	
pages	are	nodes	and	hyperlinks	are	edges.	According	 to	 the	experiments	 in	 [5],	webpages	 can	be	divided	
into	five	categories	that	form	the	famous	bow-tie	shaped	graph.	The	core	of	the	web	consists	in	the	SSC:	a	
strongly	connected	subgraph	(i.e.	a	graph	where	given	any	two	random	nodes	there	exists	a	path	connecting	
them).	The	SSC	is	linked	from	the	class	of	IN	pages	and	links	the	OUT	pages.	The	two	other	relevant	classes	
are	the	TENDRILS	(namely:	pages	not	connected	with	SSC)	and	the	disconnected	pages	(i.e.	pages	with	both	
in-degree	and	out-degree	equals	to	0).	
Crawling	the	SSC	and	OUT	components	is	relatively	easy.	In	fact,	given	a	single	URL	belonging	to	SSC	it	is	

theoretically	possible	to	find	a	path	that	connects	to	all	the	other	elements	of	SSC	and,	in	turn	to	OUT.	The	
elements	of	these	categories	are	typically	popular	websites,	thus	finding	pre-compiled	lists	of	them	on	the	
web	is	a	simple	task.	
Pages	 in	 IN	 and	 in	 TENDRILS,	 which	 often	 are	 new	websites	 not	 yet	 discovered	 and	 linked,	 are	 very	

difficult	or	even	 impossible	to	be	discovered.	 In	 fact,	these	pages	have	either	 in-degree	equals	to	0	or	are	
linked	from	pages	of	the	same	category.	According	to	the	estimations	 in	[5]	 IN	and	TENDRILS	account	 for	
about	half	of	the	entire	web.	Thus,	 in	order	to	crawl	as	many	pages	as	possible	of	 these	two	classes,	 their	
URLs	should	be	present	in	the	initial	seed	list.	
Collaborative	efforts	have	produced	 large	 lists	of	domains	 freely	available	on	the	web.	Despite	useful	 to	

increase	the	coverage	of	the	IN	and	TENDRILS	classes,	these	resources	cannot	be	kept	updated	because	of	
the	 dynamicity	 of	 the	 web.	 Recently,	 harvesting	 URLs	 posted	 on	 Twitter	 has	 emerged	 as	 an	 effective	
alternative	source	of	fresh	and	updated	seeds.	A	first	application	of	Twitter	URLs	to	enhance	web	searching	
is	shown	in	[6],	 the	ability	of	this	social	media	to	 immediately	detect	new	trends	 is	proven	 in	[7],	while	a	
machine	learning	approach	to	identify	malicious	URLs	on	Twitter	posts	is	described	in	[8].	

2.2. URL	Crawling	Order	 	
In	 the	 context	 of	 limited	 resources,	 the	 URL	 download	 order	matters	 [9].	 Pioneering	 papers	 like	 [10]	

indicate	the	breath-first	as	the	strategy	that	provides	better	empirical	guarantees	to	quickly	download	high	
quality	(in	terms	of	page	rank)	pages.	The	intuition	at	the	basis	of	this	idea	is	that	page	quality	is	somehow	
related	to	the	depth	from	the	document	root	[11].	 	
In	[11]	the	authors	provide	a	nice	comparison	of	several	ordering	strategies.	According	to	[11],	the	main	

qualifying	 feature	 to	 classify	ordering	algorithms	 is	 the	amount	of	 information	 they	need,	going	 from:	no	
pre-existing	information	to	the	request	of	historical	information	about	the	web-graph	structure.	
In	 the	 context	 of	 BI	 for	 small	 and	medium	 enterprises,	 however,	 supposing	 the	 existence	 of	 historical	

information	(i.e.	a	previous	crawling)	may	be	inappropriate.	In	fact,	small	companies	are	not	supposed	to	be	
able	to	refresh	their	crawling	too	often.	Thus,	even	if	existing,	historical	information	could	be	old	enough	to	
become	 misleading.	 Hence,	 ordering	 strategies	 that	 do	 not	 require	 pre-existing	 information	 should	 be	
preferred.	 	
In	[12]	the	authors	propose	a	hybrid	approach	in	which	websites	are	kept	sorted	using	a	priority	queue	

and	priorities	 are	given	by	 the	number	of	URLs	per	host	 already	discovered,	but	which	download	 is	 still	
pending.	 Once	 a	 website	 is	 selected,	 a	 pre-defined	 number	 of	 pages	 is	 downloaded.	 This	 strategy	 has	k

Journal of Software

303 Volume 13, Number 5, May 2018

several	advantages	in	terms	of	network	usage.	In	fact:	the	number	of	DNS	requests	can	be	reduced	thanks	to	
caching,	while	 the	 use	 of	 the	keep-alive	 directive	 [13]	 reduces	 network	 latency.	 Experiments	 in	 [12]	
prove	that	this	strategy	still	downloads	high	quality	pages	first.	 	
Building	upon	[12]	we	propose	an	ordering	strategy	that	can	drastically	simplify	the	crawler	architecture	

in	the	practical	case	of	limited	resources.	We	exploit	the	important	observation	from	[14]	where	the	authors	
observe	 that	 chains	 of	 dynamic	 pages	 can	 lead	 to	 an	 infinite	 website	 even	 though	 the	 real	 information	
stored	in	the	webserver	is	finite.	According	to	this	observation,	setting	a	limit	to	the	maximum	number	of	
pages	per	host	appears	sensible.	 	
We	thus	keep	the	hosts	sorted	as	in	[12],	but	once	a	website	is	selected,	the	downloading	process	is	done	

all	at	once.	Some	necessary	caveats	are	discussed	in	the	subsequent	sections.	

2.2.1. Politeness	
Crawling	etiquette	would	require	not	to	affect	webserver	performances	overloading	it	with	downloading	

requests.	 According	 to	 the	experiments	 in	 [12],	 a	 time	 interval	 of	 15	 seconds	 is	 appropriate	 for	 real	 life	
applications	 so	 as	 to	 balance	 politeness	 constraints	 with	 the	 timeout	 of	 the	 keep-alive	 directive.	
Moreover,	using	a	time-series	analysis	of	webserver	access	logs	as	in	[15],	we	observed	that	a	limited	degree	
of	 tolerance	 to	 this	 limit	 could	 be	 acceptable	 in	 the	 initial	 phase	 of	 download.	 This	 comes	 from	 the	
observation	 of	 the	 browser	 behavior.	 In	 fact,	 since	 to	 be	 rendered,	 a	 page	 may	 require	 several	
supplementary	files	(i.e.	CSS	directives,	images,	script,	etc.),	in	order	to	promptly	display	it,	browsers	have	
to	download	all	 these	 files	 in	parallel.	As	a	result,	mimicking	the	browser	download	pattern	can	speedup	
crawling	(at	least	of	small	websites)	without	influencing	the	webserver	performance.	 	
Despite	 the	 above	 considerations,	 our	 URL	 ordering	 policy	 still	 requires	 a	 large	 per-host	 degree	 of	

parallelism	to	maximize	network	throughput.	In	order	to	avoid	breaking	the	etiquette	rules	because	of	the	
use	of	virtual	hosts,	however,	some	careful	is	required	in	the	selection	of	the	hosts	that	are	downloaded	in	
parallel.	 In	 fact,	even	low	rates	of	requests	can	become	problematic	 if	they	have	to	be	served	by	the	same	
physical	machine.	We	 thus	modified	the	ordering	policy	described	 in	 [12]	 selecting	 the	host	with	highest	
priority	among	those	that	not	resolve	to	an	IP	already	in	download.	 	

2.2.2. URLs	management	
According	to	the	breath-first	strategy,	once	a	URL	is	found,	a	crawler	has	to	check	whether	it	is	already	in	

the	 list	 of	 those	 known	 and,	 if	 not,	 append	 it	 to	 the	 list.	 Since	 this	 check	 is	 URL-oriented,	 it	 has	 to	 be	
repeated	 for	each	outgoing	 link,	both	 internal	 and	external,	 in	a	webpage,	 resulting	 in	a	 computationally	
demanding	operation.	In	particular,	distributed	crawling	architectures	split	the	URL	list	among	nodes,	thus	
checking	for	a	URL	and	updating	the	list	might	also	imply	extra	network	traffic.	 	
Our	 crawling	 strategy	 introduces	 a	 drastic	 simplification	 in	 the	 URL	 management.	 Since	 a	 host	 is	

downloaded	all	at	once,	we	do	not	need	to	keep	track	of	each	individual	URL	in	the	crawling,	but	it	suffices	
per-host	 information.	 In	 fact,	 a	 newly	 discovered	 external	 URL,	 will	 be	 retrieved	 again	 once	 the	
corresponding	website	 is	downloaded	unless	the	crawler	reached	the	maximum	number	of	pages	 for	that	
host	 or	 the	 corresponding	 page	 was	 not	 connected	 to	 the	 home.	 However,	 except	 for	 the	 case	 of	 a	
disconnected	 page	 belonging	 to	 a	 small	 enough	website	 (that	 we	 expect	 to	 be	 of	marginal	 utility	 for	 BI	
applications),	keeping	the	newly	discovered	URL	does	not	change	its	crawling	fate,	thus	it	can	be	discarded.	
We	arrange	URLs	in	two	data	structures:	the	intra-links	table	and	the	host	queue.	An	intra-links	table	(see	

Fig.	 1)	 is	 locally	maintained	 by	 each	 individual	 crawling	 agent	 and	 destroyed	 once	 the	 download	 of	 the	
corresponding	 website	 is	 completed.	 This	 data	 structure	 is	 used	 to	 maintain	 the	 set	 of	 internal	 pages	
(sorted	by	discovery	time).	We	implemented	intra-links	tables	as	fast	hash	sorted	sets.	
	

Journal of Software

304 Volume 13, Number 5, May 2018

	
Fig.	1.	Intra-link	table	example.	

	
The	host	queue	is	a	priority	queue	storing	the	host	URL	and	IP	address	(that	is	looked	up	only	when	the	

host	is	selected	for	downloading),	the	status	(complete,	in	download,	pending),	and	the	priority	expressed	
as	the	number	of	pending	downloads.	In	absence	of	the	complete	list	of	already	discovered	URLs,	however,	
duplicates	(namely	URLs	discovered	more	than	once)	cannot	be	detected	unless	accepting	a	degree	of	error,	
thus	the	number	of	pending	downloads	can	only	be	estimated.	We	propose	two	simple	estimation	methods.	
The	 easier	 approach	 leverages	 on	 the	 idea	 that	 the	 importance	 of	 a	 website	 depends	 on	 the	 number	 of	
in-links,	thus	the	number	of	pending	downloads	can	be	replaced	with	the	host	in-degree.	As	an	alternative,	a	
small	 Bloom	 filter	 can	 be	 associated	 to	 each	 host.	 Bloom	 filters	 are	 fast	 and	 compact	 data	 structures	 to	
sketch	object	sets	that	enable	probabilistic	membership	query.	In	our	case,	once	an	external	link	is	extracted,	
the	Bloom	filter	associated	to	the	corresponding	host	is	queried	for	membership.	If	the	URL	is	not	found,	it	
is	 added	 to	 the	 bloom	 filter	 and	 the	 counter	 of	 pending	 downloads	 is	 incremented.	 Despite	 being	
computationally	more	demanding	 than	host	 in-degree,	bloom	 filters	are	 still	much	 lighter	 than	URL	 lists.	
Moreover,	accessing	the	host	queue	happens	only	for	external	links	that	account	for	an	average	of	11.62%	of	
the	outgoing	links	in	our	experiments.	

2.3. Crawling	Depth	
As	 mentioned	 in	 section	 2.2,	 in	 a	 real	 scenario	 storage	 and	 bandwidth	 are	 limited	 and	 expensive	 as	

opposed	to	the	possibility	of	dynamically	create	new	webpages	which	is	unlimited	and	for	free.	The	authors	
of	 [14]	conclude	that	crawling	up	to	 five	 levels	 from	the	home	page	 is	enough	to	 include	most	of	 the	web	
that	is	actually	visited.	Hypotheses	on	the	power-low	distribution	of	the	number	of	pages	per	website	[16],	
however,	 suggest	 that	 most	 websites	 are	 smaller.	 Based	 only	 upon	 the	 common	 sense,	 here	 we	 try	 to	
speculate	on	how	the	threshold	on	the	crawling	depth	can	be	small	for	BI	applications	with	severe	resource	
limits.	 	
Setting	the	depth	to	the	minimum	possible,	a	crawler	would	only	download	the	website	document	root.	

This	page,	however,	is	often	used	as	a	sort	of	gateway	to	collect	information	on	the	user	configuration	and	
redirects	the	browser	to	the	appropriate	version	of	the	home	page.	In	this	case,	a	crawler	should	be	aware	
of	redirections	and	follow	them	until	reaching	the	proper	home	page.	 	
As	expected,	home	pages	are	very	informative	containing	most	of	the	base	information	about	the	website.	

In	particular,	leveraging	only	on	home	pages	it	is	possible	to	derive	some	structural	information	about	the	
underneath	 	 technologies	 [17],	 accomplish	 large	 scale	 usability	 tests	 [18],	 [19]	 and	 perform	 web	
classification	[20].	
Extending	the	crawling	to	two	 levels	has	a	 large	 impact	 in	terms	of	required	storage	and	bandwidth.	 In	

fact,	home	pages	often	tend	 to	act	 as	a	sort	of	hub,	 thus	 the	expected	volume	of	pages	directly	 reachable	
from	the	home	is	usually	high.	Based	on	a	sample	of	60	among	the	most	popular	websites,	we	estimated	the	
second	level	of	the	web	hierarchy	to	have	on	average	137	pages	(Notice	that	this	can	be	an	underestimation	
since	news	websites	and	general-purpose	portals	tend	to	have	more	links	than	the	other	websites	and	can	
easily	exceed	500	internal	 links).	However,	 the	higher	cost	 in	terms	of	resources	 is	balanced	by	the	much	

Already downloaded

discovered

URL

Url4
Not added because

already known

Url2 Url3 Url4 Url5Url1

Next

Newly

Journal of Software

305 Volume 13, Number 5, May 2018

richer	information	content.	For	example,	ecommerce	companies	may	have	specified	only	commodity	macro	
categories	in	the	home	pages	leaving	the	subdivision	by	micro	category	or	brand	in	the	second	level.	Other	
important	 details	 like	 contact	 information	 and	 partnerships	 are	 often	 reported	 in	 the	 second	 level	 of	
hierarchy.	
A	crawling	depth	of	three	pages	is	often	synonymous	of	downloading	the	entire	website.	In	fact,	in	order	

to	 facilitate	accessibility	as	well	as	 indexing	 from	 the	 search	engines,	 several	websites	use	sitemaps.	This	
technique	consists	in	creating	a	page	directly	descendent	from	the	homepage	in	which	all	the	internal	links	
of	the	website	are	enumerated.	As	a	result,	sitemaps	bound	the	website	hierarchy	to	three	levels.	

2.4. Data	Storage	
Data	storage	is	probably	the	most	complex	key	factor	in	a	crawling	architecture.	Nonetheless,	even	high	

impact	 publications	give	 few	details	 about	 the	 storage	model.	 For	 example,	 in	 [21]	 the	 authors	 focus	 on	
load-balancing,	 tolerance	 to	 failures,	 and	 other	 network	 aspects;	 while	 in	 [22]	 the	 authors	 discuss	 the	
download	ordering	of	 the	pages,	 the	updates	and	the	 content	 filtering.	 In	both	 cases,	however,	 storage	 is	
only	mentioned.	A	 simple	 classification	of	 the	huge	amount	of	data	produced	during	 crawling	 is,	 instead,	
provided	in	[23].	Crawling	data	can	be	classified	according	to	two	main	characteristics:	fixed/variable	size	
and	output	only/recurrent	usage.	
Fixed	size	data	 is	easier	 to	 store	and	access:	 conventional	databases	 can	handle	billions	of	 records	and	

serve	 hundreds	 of	 concurrent	 requests.	 Variable	 size	 data,	 instead,	 requires	 some	 further	 consideration	
about	its	usage	frequency.	In	fact,	for	frequently	accessed	data	a	fast	access	should	be	preferred,	while	for	
output	 only	 data	a	 compact	 representation	would	 be	 better.	 Frequently,	 however,	 fixed	 and	 variable	 size	
data	co-exist	in	the	same	record.	This	is	the	case,	for	example,	of	the	record	storing	the	information	about	a	
single	webpage.	 In	 fact,	according	 to	the	 level	of	detail	 that	 the	 crawler	provides,	 this	 record	 can	 contain	
several	fixed	size	information,	as	for	example	a	timestamp,	and	some	variable	size	information	like	the	page	
URL.	However,	also	in	this	case	conventional	databases	provide	well-qualified	solutions.	 	
The	 most	 verbose	 variable	 size	 crawling	 data	 is	 the	 HTML	 content	 of	 webpages.	 This	 information,	

however,	 is	used	only	once	to	extract	outgoing	 links	 from	the	page	and	then	 it	 is	stored	for	output.	Small	
crawlers	such	as	wget	store	each	page	(or	website)	in	a	dedicated	file	leaving	the	file	system	the	burden	of	
managing	them.	Page	updates	are	supported	by	deleting	the	corresponding	file	and	replacing	it	with	a	new	
one.	Obviously,	this	solution	cannot	scale	even	for	small	crawls	of	few	million	pages	(or	websites).	 	
Another	simple	storing	strategy	is	that	of	defining	a	certain	number	of	memory	classes	(defining	buckets	

of	fixed	size)	and	memorizing	each	page	in	the	bucket	that	better	fits	the	page	size.	Each	memory	class	can	
be	stored	into	a	separate	file.	This	solution	introduces	a	certain	waste	of	space	that	can	be	minimized	with	a	
careful	 choice	 of	 the	 sizes	 of	 the	memory	 classes.	 A	 simple	method	 to	 set	memory	 class	 sizes	 is	 that	 of	
downloading	a	small	sample	of	pages	and	estimate	suitable	values	from	them.	Updates	are	supported	also	
in	this	case.	However,	the	possibility	for	the	new	copy	of	a	web	page	to	change	size	(thus	requiring	a	bucket	
of	a	different	memory	class)	can	introduce	a	form	of	segmentation	in	which	certain	buckets	become	empty.	
In	order	to	avoid	this	phenomenon,	each	memory	class	can	be	endowed	with	a	priority	queue	(i.e.	using	a	
min-heap)	to	take	note	of	the	empty	slots.	 	
As	an	 intermediate	strategy	between	the	two	previously	described	storage	solutions,	when	updates	are	

not	required,	HTML	pages	can	be	stored	in	log	files.	Once	a	new	page	is	downloaded,	it	is	stored	just	after	
the	previous	one	in	the	log	file.	Keeping	a	record	containing	the	length	and	a	reference	to	the	offset	in	the	
log	 file,	 accessing	 a	 webpage	 is	 very	 fast	 since	 it	 only	 requires	 a	 disk	 seek	 and	 a	 single	 read	 operation.	
Storage	space	is	minimized	because	only	two	integers	per	page	are	required.	Although	supporting	updates	
is	 possible,	 this	model	 is	 recommended	 only	 for	 static	 crawling.	 In	 fact,	 updating	 a	 page	would	 require	
appending	 the	 new	 copy	 to	 the	 log	 file	 and	 updating	 the	 corresponding	 record.	 However,	 the	 previous	

Journal of Software

306 Volume 13, Number 5, May 2018

version	of	the	page	would	not	be	cancelled,	thus	resulting	in	a	waste	of	space.	 	
	

Fig.	2.	Running	time	(in	seconds)	for	the	operations	of:	Download,	parsing	and	retrieving	from	disk	of	60	

among	the	most	popular	websites.	
	
We	 investigated	 a	 further	 class	 of	 data,	 not	 discussed	 in	 the	 literature,	 that	we	 call	 auxiliary	 data.	We	

define	 as	 auxiliary	 some	 piece	 of	 information	 that	 crawlers	 had	 to	 compute	 for	 their	 activity	 but	 they	
withdraw	 immediately	 after	 usage.	 Sometimes,	 however,	 the	 same	 information	 is	 necessary	 for	 the	
subsequent	 analysis	 of	 the	 crawled	 document	 corpus,	 thus,	 storing	 it	 during	 crawling	 would	 speed	 up	
subsequent	analyses	reducing	the	CPU	requirements	at	the	cost	of	a	higher	storage	consumption.	The	most	
important	 information	belonging	to	this	category	 is	parsing.	As	discussed	 later	 in	section	2.4.1,	parsing	 is	
necessary	in	all	data	analyses	and	can	dominate	the	computational	time.	Saving	it	at	the	cost	of	a	moderate	
increase	of	storage	usage	could	be	useful	in	most	of	the	cases.	

2.4.1. Parsing	
As	mentioned	before,	crawlers	perform	parsing	to	extract	outgoing	links	from	webpages.	However,	since	

this	is	considered	a	mere	internal	operation,	general-purpose	crawlers	do	not	return	parsing	in	output,	thus	
forcing	subsequent	analysis	software	to	redo	it.	 	
We	performed	a	simple	experiment	to	show	how	big	the	impact	of	parsing	is	both	for	crawling	and	data	

analysis.	We	tested	the	home	page	of	60	popular	websites	and	compute	the	speed	for	downloading,	parsing	
and	retrieving	then	from	disk.	We	repeated	this	operation	twice	so	as	to	measure	downloading	speed	before	
and	after	network	caching.	As	expected,	except	 for	 few	exceptions	(see	Fig.	2)	parsing	 is	 in	general	much	
faster	than	downloading	and	takes	respectively	24.47%	of	the	overall	processing	time	for	the	first	download	
and	32.64%	for	the	second.	Comparing	parsing	with	disk	access	(as	it	would	be	during	the	analysis),	instead,	
the	situation	drastically	changes.	In	fact,	in	this	case	parsing	takes	on	average	99%	of	the	overall	wall-clock	
processing	time.	Avoiding	repeating	parsing	during	analyses	would	thus	enable	a	consistent	speedup.	
With	the	purpose	of	BI	applications	in	mind,	we	developed	an	ultra-fast	parser	that	stores	the	offsets	of	

tags	in	a	vector	of	quadruples	(see	Fig.	3).	Since	the	tree	structure	of	HTML	is	rarely	necessary	for	analysis	

we	 do	 not	 keep	 track	 of	 it.	 However,	 we	 notice	 that	 building	 it	 would	 cost	 where	 is	 the	

number	of	tags	in	the	page	(in	our	experiment).	Each	tag	is	described	as	its	starting	position	and	
length	(namely:	the	distance	 in	bytes	between	the	opened	and	the	closed	angle	brackets).	 In	addition,	 the	
offset	 of	 the	 tag	 name	and	 its	 length	 is	 stored.	 In	 order	 to	minimize	 the	 number	 of	 disk	 read	 operations	
needed	to	 load	the	whole	parsing	data	structure,	we	maintain	 in	the	 first	word	of	 the	vector	the	size	of	a	
quadruple	and	the	number	of	tags.	As	a	result,	loading	the	data	structure	requires	only	two	disk	accesses.	 	
	

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

1' Download 2' Download Parsing Disk read

O(n log2 n) n

n ≅ 2988

Journal of Software

307 Volume 13, Number 5, May 2018

Fig.	3.	Graphical	description	of	the	parsing	data	structure.	

	
A	relevant	problem	of	this	approach	(and	parsing	in	general)	is	that	we	cannot	do	any	assumption	on	the	

dimensions	of	pages	and	tags.	In	general,	except	for	the	length	of	the	tag	name,	which	is	limited	to	10	bytes	
in	HTML5,	we	should	use	up	to	4	bytes	to	store	each	element	of	the	quadruple.	Using	relative	distances	does	
not	mitigate	the	problem.	This	would	mean	that	storing	the	information	of	each	tag	would	require	13	bytes.	
Given	that	our	experiments	indicate	the	median	of	the	length	of	HTML	tags	to	be	8	bytes	and	56.27%	of	the	
tags	to	be	smaller	than	13	bytes,	 this	would	be	an	unacceptable	blowup	of	required	space.	 	 To	deal	with	
this	 problem,	 we	 use	 an	 adaptive	 strategy	 in	 which,	 after	 processing	 a	 page,	 the	 parser	 computes	 the	
minimum	number	of	bits	necessary	for	each	field	of	the	quadruple	(except	for	the	tag	length	which	is	kept	
constant	to	4	bits).	These	values	are	stored	in	the	header	word	of	the	parsing	structure.	In	particular,	we	use	

5	 bits	 for	 the	 page	 offset	 (i.e.	 limiting	 the	maximum	 page	 size	 to	 bytes),	 4	 bits	 for	 the	 tag	

length	(i.e.	limiting	the	tag	length	to	 	 bytes),	4	bits	for	the	distance	from	the	beginning	of	tag.	
In	order	to	fit	the	header	in	a	32bit	word,	we	reserve	for	the	counter	of	the	number	of	tags	the	remaining	19	
bits.	This,	however,	is	not	a	limitation	in	practice	since	it	would	mean	that	our	data	structure	can	deal	with	
pages	to	up	to	524288	tags.	
We	experimentally	evaluated	the	worst-case	number	of	bits	required	to	store	each	field.	We	observed	that	

20	bits	 are	enough	 for	 the	maximum	page	 length,	11	 for	 the	 tag	 length	and	7	 for	 the	 tag	name	distance.	
Overall	a	quadruple	would	require	a	total	of	42	bits	in	the	worst	case.	

3. Filtering	
What	makes	skeptical	BI	practitioners	in	using	the	Web	as	a	source	of	information	for	their	analyses	is	the	

untrustworthiness	 of	 sources	 and	 possibly	 the	 low	 text	 quality	 due	 to	 the	 presence	 of	 every	 sort	 of	
artificially	added	content	in	the	data	[24]	(aka	boilerplate).	Artificial	text	is	often	used	to	try	to	circumvent	
the	 ranking	algorithms	of	search	engines	 so	as	 to	obtain	a	privileged	position	 in	 the	 list	of	 results.	Other	
sources	of	unrelated	content	are:	interfaces	(menus,	navigation	bars,	etc.)	advertising	banners	and	parked	
domains.	
In	order	to	discern	whether	it	is	possible	to	use	web	data	for	BI	or	not,	we	thus	have	to	answer	to	some	

questions:	 	
1) Are	web-based	corpora	qualitatively	comparable	with	traditional	ones?	 	
2) Can	web-based	corpora	influence	the	BI	activity?	

In	[25],	the	author	tries	to	answer	to	the	first	question	carrying	out	a	comparison	of	“traditional”	corpora	
and	web-based	ones,	focusing	on	Czech	and	Slovak.	Experiments	show	that	none	of	the	compared	corpus	is	
morphosyntactically	 superior.	Web-based	corpora	are	 simply	different.	A	 further	 insight	 comes	 from	 [26]	

Tag name starting position

Memory class size (5,4,4) = 13bits

Number of tags (19bits)

Starting position

Tag length

Tag name length (4 bits)

22
5

=32≅ 4G

216 = 65536

Journal of Software

308 Volume 13, Number 5, May 2018

where	 the	 author	 shows	 the	 effect	 of	 the	 size	 of	 corpus.	 The	 most	 interesting	 result	 is	 the	 empirical	
demonstration	 that	 when	 the	 dataset	 is	 large	 enough,	 the	 language	 of	 the	 web	 perfectly	 reflects	 the	
standard	written	 language.	 Lowering	 the	 size	 of	 the	 dataset,	 the	 equality	 persists	 for	 the	most	 frequent	
nouns	while	differences	begin	to	appear	in	the	least	frequent	nouns.	 	
A	 partial	 answer	 to	 the	 second	 question	 is	 provided	 in	 [27]	 where	 the	 authors	 prove	 that	 a	

computer-mediated	 text	 can	 deceive	 the	 reader.	 However,	 this	 category	 of	 text	 has	 specific	 linguistic	
features	that	can	be	easily	detected	and	removed	[28].	
We	 observe	 that	most	 of	 the	 uninteresting	 text	 in	 web-based	 corpora	 comes	 from	 two	main	 sources:	

templates	 (which	 include	 advertisement	 banners,	 navigational	 elements,	 etc.)	 and	 spam	 websites	 (aka	
parked	domains).	In	[29]	we	proposed	a	general-purpose	algorithm	for	template	removal.	A	brief	discussion	
of	 the	 benefits	 for	 BI	 of	 our	 approach	 as	 well	 as	 a	 sketch	 of	 the	 algorithm	 is	 presented	 in	 section	 3.1.	
Differently	 from	 approaches	 like	 that	 in	 [30]	 our	 approach	 is	 not	 technology-specific	 and,	 thus,	 it	 is	 not	
supposed	 to	 become	 deprecated	 with	 the	 evolution	 of	 web	 technologies.	 Moreover,	 integrating	 our	
approach	 with	 our	 crawling	 ordering	 described	 in	 section	 2.2,	 it	 is	 possible	 to	 reduce	 the	 storage	
requirements	of	crawling	still	enabling	to	restore	the	original	webpages.	
In	[31]	we	proposed	a	clustering-based	approach	to	detect	 the	most	common	category	of	spam:	that	of	

DNS-based	 parked	 domains.	 Our	 experiments	 showed	 that	 these	 websites	 resolve	 to	 dedicated	 name	
servers.	As	a	result,	filtering	at	DNS	level	would	introduce	a	marginal	loss	of	useful	information	while	being	
much	more	efficient	than	a	per-website	classification.	However,	narrowing	to	only	this	category	of	spam	is	
not	enough	for	BI	applications.	In	section	3.2.2	we	extend	the	approach	in	[31]	to	all	the	categories	of	spam	
websites.	

3.1. Template	Removal	
	 Since	 the	 advent	 of	 content	management	 systems	 (CMS)	 in	 the	 late	 nineties,	 web	 sites	 started	 using	

templates.	Estimations	in	[32]	rate	48%	of	the	top	websites	as	using	CMSs,	while	the	number	of	sites	that	
employ	 templates	 is	probably	much	 higher.	Web	 templates	 consist	 in	 stretches	 of	 invariable	HTML	 code	
interlaced	 with	 the	 main	 text	 of	 the	 page.	 The	 goal	 of	 this	 technology	 is	 that	 of	 providing	 a	 uniform	
look-and-feel	to	all	the	pages	of	a	site	easing	the	website	manager	from	the	heavy	task	of	manually	curating	
it.	Thus,	templates	do	not	 introduce	useful	 information	from	the	BI	point	of	view,	but	have	a	mere	role	of	
improving	the	user	experience.	However,	the	impact	of	templates	in	the	amount	of	resources	used	to	store	
websites	 is	not	negligible.	According	to	[29]	the	wasted	space	due	to	templates	 is	highly	variable	and	can	
span	from	22%	(estimated	on	en.wikipedia.org)	to	97%	(estimated	on	zdnet.com).	 	
A	 further	 undesired	 effect	 of	 web	 templates	 is	 that	 they	 have	 been	 reported	 to	 negatively	 affect	 the	

accuracy	of	data	mining	tools	because	of	 the	noise	they	 introduce	 in	the	text	 [33].	 In	 fact,	 large	templates	
can	 introduce	 a	 not	 marginal	 number	 of	 extra	 words	 in	 the	 webpage.	 These	 words,	 in	 turn,	 can	 either	
mystify	duplicate	detection	algorithms	or	artificially	bias	the	similarity	of	documents.	 	
Consequently,	 stripping	 templates	 from	 webpages	 is	 expected	 to	 produce	 a	 drastic	 saving	 of	 storage	

consumption	as	well	as	an	increase	of	the	data	quality	for	the	subsequent	BI	process.	

3.1.1. An	algorithm	for	template	removal	
In	this	section	we	sketch	out	the	main	ideas	behind	our	template	extraction	algorithm	leaving	details	to	

the	 original	 work	 in	 [29].	 Our	 algorithm	 assumes	 that	 the	 template	 of	 a	 website	 is	made	 up	 of	 a	 set	 of	
overrepresented	stretches	of	HTML	tokens	(namely:	a	tag	or	a	piece	of	text	between	two	tags)	and	consists	
of	two	main	routines:	the	aligner	and	a	bottom-up	template	distillation	algorithm.	The	aligner	takes	in	input	
two	 tokenized	 webpages	 and	 uses	 the	 result	 of	 the	 Needleman	 and	Wunsch	 global	 sequence	 alignment	
algorithm	 [34]	 to	 build	 a	 consensus	 page	 containing	 the	 union	 of	 the	 tags	 of	 the	 two	 pages.	 Each	 tag	 is	

Journal of Software

309 Volume 13, Number 5, May 2018

endowed	with	a	numerical	value	representing	the	frequency	of	the	tag	in	the	alignment.	Starting	from	a	set	

of	 pages,	the	template	distillation	algorithm	(see	figure	4)	uses	a	bottom	up	approach	that	

recursively	halves	the	number	of	elements	 in	 aligning	pairs	of	pages.	Once	 contains	only	one	page,	
the	tags	with	estimated	frequency	higher	than	0.5	(i.e.	the	tags	that	are	present	in	at	least	half	of	the	original	
pages)	are	returned	as	the	website	template.	For	the	ease	of	computation,	 is	constrained	to	be	a	power	

of	2.	

Fig.	4.	Example	run	of	the	template	distillation	algorithm.	

3.2. Spam	Websites	Removal	
As	mentioned	in	Section	3,	spamming	is	one	of	the	two	major	sources	of	noise	in	a	web-based	corpus	of	

documents	 for	 BI	 applications.	 Although	 spam	 websites	 no	 longer	 look	 like	 long	 flat	 lists	 of	 ads,	 every	
Internet	user	gathered	experience	on	how	to	recognize	them	at	a	glance.	In	fact,	most	spam	websites	tend	to	
look	similar	to	each	other.	Exploiting	this	fact,	in	[31]	we	developed	a	clustering-based	approach	to	identify	
them.	 	
Going	further,	we	observed	that	it	is	possible	to	leverage	on	the	mechanism	used	to	create	spam	websites	

on	a	large	scale	to	predict	whether	a	website	would	contain	spam	or	not	without	downloading	it.	In	fact,	big	
providers	of	parking	facilities	only	require	an	ad-hoc	setting	of	the	website	name	server	(NS)	to	supply	the	
service.	As	 shown	 in	section	3.2.3,	 classifying	domains	according	with	 their	NSs	 leads	to	an	accurate	and	
computationally	cheap	method	to	remove	spam	saving	bandwidth	and	storage.	

3.2.1. A	clustering	algorithm	for	spam	detection	
In	 this	 section	 we	 sketch	 our	 approach	 leaving	 details	 to	 the	 original	 work	 in	 [31].	 According	 to	 the	

intuition	that	spam	websites	tend	to	look	similar	(not	equal)	to	each	other,	given	a	model	page	and	notion	of	
distance	among	pages,	all	spam	websites	should	form	a	single	homogeneous	cluster.	
However,	 the	 reality	 is	 a	 bit	 more	 complicated.	 In	 fact,	 parking	 service	 companies	 provide	 several	

templates	that	the	customer	can	use	and	personalize.	Consequently,	spam	websites	do	not	partition	into	a	
single	 cluster,	 but	 form	 a	 large	 number	 (as	 large	 as	 the	 number	 of	 templates	 and	 customizations)	 of	
homogeneous	and	well-separated	clusters.	Distilling	and	keeping	updated	a	comprehensive	list	of	templates	
is	 unfeasible,	 thus	 a	model-based	 approach	 is	 not	 pursuable.	 Yet,	 to	 save	 resources	 a	 website	 should	 be	
classified	before	downloading	it,	thus	the	classification	mechanism	should	be	based	on	features	that	can	be	

P = (p1,..., pt) t
P P

t t

t

Template

Align ()

Align () Align () Align ()

Filter ()

...

1 2

...
t−1

Journal of Software

310 Volume 13, Number 5, May 2018

known	in	advance.	 	
Based	upon	the	above	considerations,	our	algorithm	takes	in	input	a	set	of	home	pages	resolved	from	the	

same	name	server	and	classify	it	as	a	regular	ISP	or	as	a	DPP	(Domain	Parking	Provider).	The	list	of	DPPs	
can	subsequently	be	used	during	crawling	to	filter	out	domains	resolving	to	these	NSs	since	they	are	likely	
to	be	spam.	 	
As	a	clustering	algorithm	we	used	our	own	modified	version	of	the	further-point-first	(FPF)	algorithm	for	

the	 k-center	 problem	 (namely:	 find	 a	 subset	 of	 input	 elements	 to	 use	 as	 cluster	 centers	 so	 that	 to	
minimize	the	maximum	cluster	radius)	originally	described	in	[36].	Our	implementation	returns	the	same	
result	 of	 the	 original	 version,	 however,	 it	 drastically	 reduces	 the	 number	 of	 distance	 computations	
leveraging	on	the	triangular	inequality	in	metric	spaces.	Thus,	to	use	our	algorithm	it	is	necessary	that	the	
distance	function	defines	a	metric	space.	 	

Let	 be	 an	 input	 set	 of	 pages	 and	 let	 	 be	 the	 (initially	 empty)	 subset	 of	 cluster	

centers.	The	first	center	is	chosen	at	random	among	the	elements	in	 .	Then,	as	a	new	center	it	is	selected	

the	 element	 such	 that	 the	 distance	 is	 maximized.	 The	 procedure	 stops	 when	 the	

desired	number	of	centers	is	selected,	then	the	remaining	elements	of are	assigned	to	the	closest	center.	 	
In	 its	 simplest	 form,	 the	 distance	 function	 should	 measure	 the	 proportion	 of	 tags	 in	 common	

between	two	pages	given	their	overall	length.	Keeping	track	of	the	relative	ordering	of	the	tags	in	the	pages	
requires	 using	 the	 quadratic	 algorithm	 described	 in	 [37].	 However,	 can	 be	 estimated	 with	 a	

computationally	less	expensive	function	 that	(ignoring	the	relative	ordering	of	the	tags)	computes	the	

Jaccard	score	of	the	frequency	vector	(a	vector	that	for	each	tag	counts	the	number	of	occurrences)	of	the	
pages.	Since	it	holds	that	 ,	if	the	value	of	 is	high	enough	to	decide	that	a	certain	page	

is	too	far	from	a	center,	the	computation	of	 becomes	unnecessary.	
3.2.2. Detecting	non-NS	based	spam	websites	
The	 method	 described	 in	 [31]	 focuses	 only	 on	 spam	 websites	 parked	 through	 DNS-level	 redirection.	

Narrowing	only	to	crawling	purposes,	this	choice	is	agreeable	because	classification	can	be	done	before	the	
download,	 thus	 preventing	 wasting	 space	 and	 bandwidth.	 For	 BI	 applications,	 however,	 all	 types	 of	
redirections	must	be	taken	into	account.	Besides	DNS-based,	there	are	two	other	possible	redirection	types	
(see	[35]	for	details):	at	HTTP	level	and	at	HTML	level.	
HTTP	redirections	are	directly	managed	by	web	servers	that	return	a	3XX	class	status	code	and	a	target	

URL	while	HTML	redirections	are	small	pieces	of	code	aimed	at	causing	the	browser	not	to	generate	output,	
but	 immediately	 load	 another	 web	 page	 following	 the	 appropriate	 URL	 (i.e.	 using	 the	 tag	meta	 setting	
refresh	 at	 zero	 time,	 calling	 a	 JavaScript	 function	 updating	 either	 the	 href	 or	 the	 location	 variable,	 or	
introducing	 a	 full-window	 iframe	 tag).	 Independently	 from	 the	 type,	 both	 redirection	 types	 cause	 the	
browser	to	land	to	a	target	URL	belonging	to	a	DPP	website	[38].	
Spam	 websites	 using	 non-DNS	 redirections	 can	 still	 be	 detected	 and	 filtered	 out	 through	 some	

considerations	on	the	distribution	of	 in-links	per	host.	According	to	the	 famous	model	of	websites	 in	[39]	
there	 exist	 two	 important	 categories	 of	websites:	 hubs	 (websites	with	 several	 out-links)	and	authorities	
(websites	with	several	 in-links).	Let	 be	 the	set	of	pages	belonging	an	authority	website	 .	We	can	

suppose	that	 is	a	spam	provider	if	it	satisfies	the	following	conditions:	

1) Most	of	the	in-links	of	 are	due	to	redirections	

2) The	pages	in	 cluster	evenly.	

Condition	1	prevents	from	considering	spam	those	pages	that	link	to	popular	services,	while	condition	2	

k

P C ={c1,...ck)⊂ P
P

p ∈ P min
j
d(p,c j)

P
d()

d()
f ()

f (x, y) ≤ d(x, y) f ()
d()

C(γ) γ

γ

γ

C(γ)

Journal of Software

311 Volume 13, Number 5, May 2018

is	the	same	hypothesis	at	the	base	of	our	approach.	

Fig.	5.	Number	of	hosts	per	Name	Server	(NS).	The	blue	bar	indicates	regular	websites,	the	red	bar	indicates	

parked	domains.	The	red	boxes	on	the	x	axe	represent	DPP	NSs,	the	black	box	a	misclassified	NS.	
	

3.2.3. Evaluation	
We	performed	 an	 experiment	 to	 quantify:	 the	 fraction	 of	 relevant	 pages	 that	 would	 be	 lost	 using	 our	

approach	 and	 the	 volume	 of	 irrelevant	 pages	 that	 would	 be	 wrongly	 left	 in	 the	 corpus.	We	 analyzed	 a	
crawling	 of	 about	 2	million	 valid	web-pages	 hosted	by	more	 than	 100	 thousand	 different	primary	 name	
servers	(NS)	and	distributed	among	the	four	TLDs	“.it”,	“.com”,	“.org”	and	“.net”.	We	than	focused	on	the	most	
represented	NS,	which	are,	 indeed,	 those	that	more	 likely	could	host	spam	websites,	removing	those	with	
less	 than	 1000	 pages.	 We	 obtained	 a	 corpus	 of	 541,138	 valid	 home	 pages	 distributed	 among	 38	 name	
servers.	Subsequently,	we	used	the	computer-aided	approach	described	in	[31]	to	classify	the	home	pages	
in	two	categories:	 irrelevant/relevant.	 	 As	 figure	5	confirms,	most	NSs	(we	obfuscated	the	 full	names	for	
privacy	 reasons)	 focus	 only	 on	 one	 business,	 either	 regular	 hosting	 or	 domain	 parking,	 with	 only	 four	
notable	 exceptions:	 NS10,	 NS11,	 NS19	 and	 NS36.	 NS10	 and	 NS19	 are	 two	 medium-size	 private	 NSs	
belonging	to	two	Italian	TV	production	companies	that	registered	a	large	number	(respectively	87.15%	and	
89.19%)	 of	 dictionary-based	 domain	names	 for	 own	 future	 use.	NS11	 and	NS36,	 instead,	 are	 specialized	
companies	for	domain	parking	that	also	hosts	a	fraction	(6.23%	and	11.43%)	of	own	regular	pages.	Notice	
that	NS11	is	the	only	NS	misclassified	using	our	method.	 	
	

Table	1.	Per-Website	Confusion	Matrix	

	
Human	Classification	

Total	
Relevant	 Irrelevant	

Algorithm	 Relevant	 430,676	 25,464	 456,140	
Irrelevant	 253	 84,745	 84,998	

Total	 430,929	 110,209	 541,138	

In	 Table	 1	we	 show	 in	 detail	 the	 benefits	 of	 using	 our	method	 to	 filter	 out	 spam	websites.	Out	 of	 the	
25,464	irrelevant	pages	misclassified,	7408	comes	from	NS10	and	4897	comes	from	NS19.	Although	these	
pages	are	 indeed	not	 interesting	 for	 the	human	judge,	 they	 cannot	properly	be	 considered	as	 spam	since	
they	are	 not	 simple	 lists	 of	 ads	 but	 still	 contain	 human-generated	 text.	 Only	 7118	 pages	 can	 directly	 be	
ascribed	to	software	misclassification.	 	
The	fraction	of	relevant	content	that	would	be	lost	is	negligible	and	consists	only	in	253	pages.	This	result	

is	 particularly	 important	 for	 the	 class	 BI	 applications	 in	 which	 the	 discovery	 of	 not	 yet	 emerging	 new	
phenomena	is	crucial.	

0

1

10

100

1.000

10.000

100.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

ISP DPP

Journal of Software

312 Volume 13, Number 5, May 2018

As	 a	 further	 important	 observation,	 since	a	NS-based	 classification	 does	not	 require	 downloading	and	
storing	webpages,	 in	 the	 case	of	our	experiment	 the	elements	of	 the	NSs	 classified	as	DPP	would	not	be	
downloaded,	thus	saving	15.7%	of	crawling	resources.	
Summarizing:	 experiments	 show	 that	using	 the	NS	to	 classify	whether	 the	 corresponding	websites	are	

regular	 or	 spam	 provides	 a	 reasonable	 accuracy	 (as	 high	 as	 95.25%)	 as	 well	 as	 it	 is	 computationally	
convenient.	

4. Classification	
Letting	a	general-purpose	crawler	loose,	it	will	start	downloading	the	web	without	discriminating	among	

topics	 until	 stopped	 or	 until	 its	 storage/bandwidth	 resources	 are	 completely	 exhausted.	 The	 resulting	
corpus	will	consist	in	a	huge	mass	of	documents	spreading	on	almost	all	the	human	knowledge.	However,	
since	typical	BI	applications	need	to	focus	only	on	documents	about	the	investigated	topic,	a	mechanism	to	
filter	out	unnecessary	websites	is	necessary.	 	
Filtering	 can	 be	applied	either	at	 crawling	 time	 (focused	 crawling)	 or	 ex	 post.	 In	 the	 first	 case,	 once	a	

website	 is	 discovered,	 the	 crawler	 classifies	 it	 and	 decides	 whether	 to	 download	 it	 or	 not.	 The	 most	
important	advantage	of	this	strategy	is	that	of	saving	resources.	In	fact,	if	a	website	is	classified	as	off	topic,	
it	 is	neither	 crawled	nor	 stored.	On	the	other	hand,	discarding	a	website	 could	 cause	 links	 to	 interesting	
pages	to	be	irreparably	lost.	A	posteriori	filtering	is	much	more	resource	demanding	than	focused	crawling	
and	 should	 be	preferred	 only	 in	 those	 situations	 in	which	 the	 application	 requires	 to	 crawl	a	 sample	as	
complete	 as	 possible.	 Independently	 from	 the	 approach,	 however,	 a	 mechanism	 to	 classify	 websites	 is	
necessary.	

4.1. Creation	of	the	Training	Set	
Supervised	classification	 is	 the	task	of	assigning	a	document	to	a	class	based	on	pre-existing	examples.	

This	 tool	 has	 successfully	 been	 used	 in	 focused	 crawling	 as	well	 as	 in	 general	website	 classification.	 The	
hunger	 of	 classifiers	 for	 training	 examples,	 however,	 poses	 severe	 limitations	 to	 the	 practical	 usage	 of	
supervised	 classification.	 In	 fact,	 building	a	 large-enough	high	quality	 training	 set	 can	 require	a	 long	and	
tedious	manual	classification	by	a	domain	expert.	In	order	to	reduce	human	involvement	in	the	labeling	of	
examples,	some	authors	proposed	approaches	that	leverage	on	existing	knowledge	bases.	 	 In	[40]	and	[41]	
the	 authors	 use	 ontologies	 to	 drive	 crawling.	 In	 particular,	 in	 [40]	 the	 authors	 show	 how	 to	 exploit	 the	
newly	discovered	documents	to	extend	the	ontology	obtaining	an	 increasingly	more	accurate	training	set;	
while	in	[41]	the	authors	describe	a	framework	to	compute	the	relevance	of	a	document	with	an	ontology	
entity.	 In	[42]	the	authors	experimentally	prove	that	website	classification	can	be	done	without	scarifying	
accuracy	but	only	using	positive	examples.	All	those	works,	however,	have	in	common	the	assumption	that	
such	form	of	domain	knowledge	exists	and	is	available.	
The	above	assumption	is	acceptable	dealing	with	general	topics	that	are	more	likely	to	be	covered	by	such	

a	 knowledge	 base.	 Small	 and	medium	 enterprises,	 instead,	may	 be	 interested	 in	 uncommon	 specialized	
topics	 not	 enough	 represented	 in	 the	 existing	 freely	 available	 datasets.	 Using	 clustering	 in	 place	 of	 a	
supervised	approach	would	mean	trading	the	classification	accuracy	with	the	simplicity	and	ubiquity	of	the	
methodology.	
In	 [20]	 we	 faced	 the	 problem	 of	 using	 a	 small	 description	 of	 a	 class	 (as	 small	 as	 a	 weighted	 list	 of	

keywords)	to	automatically	derive	from	the	Web	a	list	of	pages	that	are	more	likely	to	be	good	examples	to	
train	a	 classifier.	As	most	 semi-supervised	methods,	our	approach	attempts	 to	balance	 the	use	of	human	
resources	 with	 the	 decrease	 of	 classification	 accuracy.	 In	 fact,	 to	 the	 easy	 task	 of	 compiling	 a	 list	 of	
keywords	corresponds	the	 introduction	of	some	misclassified	examples	and,	 in	turn,	a	slight	reduction	of	
accuracy.	

Journal of Software

313 Volume 13, Number 5, May 2018

Fig.	6.	Graphical	representation	of	the	labeling	pipeline.	

	

4.1.1. A	semi	supervised	pipeline	for	the	extraction	of	training	examples	
In	this	section	we	sketch	out	our	pipeline	leaving	details	to	the	original	work	in	[20].	Both	the	plethora	of	

informal	guides	on	how	to	choose	a	domain	name	and	the	scientific	literature	on	the	psychological	effects	of	
brand	names	agree	that	a	successful	brand	should	consist	in	the	juxtaposition	of	few	words.	In	particular,	in	
[43]	the	authors	perform	an	experiment	in	which	they	discuss	the	effects	of	using	meaningful	brand	names.	
Results	 show	how	names	 conveying	 the	 benefits	 of	 the	product	 (i.e.	 smart	phone)	 achieve	 a	 commercial	
advantage	on	other	brands.	Going	a	step	further,	in	[44]	the	authors	analyze	the	linguistic	characteristics	of	
brand	names	 concluding	 that	 semantic	 appositeness	 is	 one	 of	 the	 three	main	 features	 that	 contribute	 to	
make	the	brand	familiar	and,	in	turn,	successful.	Although	popular	brands	of	the	net	economy	coined	in	the	
mid-nineties	represent	eminent	exceptions	to	the	above	studies,	it	is	realistic	to	hypothesize	the	abundance	
of	domain	names	consisting	in	meaningful	short	sentences	semantically	related	to	the	website	content.	

Given	a	set	 of	 classess,	each	of	which	described	as	a	document,	and	a	URL	tokenized	as	a	

list	of	keywords,	our	approach	maps	the	problem	of	assigning	a	website	to	a	class	as	the	problem	of	ranking	
classes	according	to	their	relevance	to	the	URL	text.	Figure	6	graphically	depicts	 the	sequence	of	steps	of	
our	pipeline.	 	
We	used	a	dictionary-based	greedy	algorithm	to	distill	a	 list	of	words	 from	a	URL.	The	domain	name	is	

scanned	from	left	to	right	until	a	dictionary	word	is	found,	then	the	word	is	extracted	and	the	procedure	is	
recoursively	invoked	on	the	ramaining	part	of	the	URL.	In	order	to	avoid	misleading	or	trivial	tokenizations	
(i.e.	“an	acid”	instead	of	“anacid”),	our	algorithm	searches	words	in	length	decreasing	order.	If	the	procedure	
does	not	succeed	to	use	all	 the	 characters	of	 the	domain	 it	backtracks	 to	test	different	alternatives.	 If	no	
complete	tokenization	is	found,	the	URL	is	discarded	and	the	corresponding	website	is	no	longer	considered	
as	a	potential	candidate	to	be	added	to	the	training	set.	
URL	labeling	 is	done	using	a	 learning	to	rank	approach	[45].	This	 framework	provides	a	background	to	

solve	 the	problem	of	sorting	a	 set	of	documents	according	 to	a	pool	of	measures	of	 relevance	to	a	query.	
Each	relevance	measure	induces	a	ranking	that	is	averaged	with	the	others	in	order	produce	a	final	ranking.	
In	our	case,	we	used	the	class	descriptions	in	place	of	the	set	of	documents	and	the	text	extracted	from	the	
URL	as	 the	 query.	 Relecance	 is	 computed	 through:	 cosine	 similarity,	 generalized	 Jaccard	 coefficient	 [46],	
dice	coefficient,	overlap	coefficient,	Weighted	Coordination	Match	Similarity	[47],	BM25	[48],	and	LMIRDIR	
[49].	As	label	we	chose	the	class	with	highest	ranking,	while	as	a	degree	of	membership	we	used	the	average	
of	the	relevance	measures	normalized	to	the	range	[0,1].	 	
In	order	to	minimize	the	number	of	mislabelled	examples,	and	in	turn	bias	the	subsequent	learning,	the	

labelling	pipeline	 implements	two	filters:	after	 tokenization	and	after	ranking.	 	 The	first	 filter	consists	 in	
measuring	the	degree	of	page/URL	coherence:	our	algorithm	computes	the	cosine	similarity	between	the	
text	derived	from	the	URL	and	the	page	content,	 then	 it	verifies	that	 this	measure	exceeds	a	user-defined	

Discard

n

C
1P

ag
e

Page/URL

coherence

R
an

k
in

g

Quality

filter

description

Class

description

Class

..
.

Relevane

Relevance
URL Tokenizer

Class

Discard

<
 t

h
re

sh
o
ld

Classified

example URLs

>
=

 th
resh

o
ld<

 th
resh

o
ld

C

C ={c1,...cn} n

Journal of Software

314 Volume 13, Number 5, May 2018

threshold.	The	second	filter	ensures	that	the	class	assignment	is	neither	weak	nor	ambiguous.	In	particular,	
weakness	 is	measured	 as	 the	 inverse	 degree	 of	membership	with	 the	 labelling	 class,	 while	 ambiguity	 is	
evaluated	as	the	number	of	classes	such	that	the	degree	of	membership	exceeds	a	pre-defined	threshold.	
Experiments	in	[20]	over	20,016	webpages	belonging	to	9	non-overlapping	categories	show	that	32.36%	

of	the	URLs	succeed	to	be	tokenized	and	26.33%	of	the	pages	are	labeled	with	an	accuracy	of	85.8%.	 	

5. Conclusion	
In	 this	paper	we	addressed	 the	problem	of	 enabling	BI	 and	big	data	analytics	also	 for	 those	 small	and	

medium	enterprises	that,	because	of	 their	 limited	budget	and	IT	resources,	until	now	have	been	excluded	
from	the	benefits	of	these	activities.	In	particular,	we	observed	that,	despite	morphologically	different	from	
standard	 text	 corpora,	using	 the	Web	as	a	 source	of	 information	does	not	necessarily	 lead	to	 low	quality	
data.	 In	 fact,	applying	convenient	template	removal	 filters	as	well	as	spam	filters,	 it	 is	possible	to	remove	
undesired	 text/pages	 without	 altering	 the	 useful	 informative	 content	 of	 the	 Web.	 We	 also	 showed	 how	
careful	 design	 choices	 can	 contribute	 to	 drastically	 reduce	 the	 cost	 of	 crawling,	 and	 in	 turn,	 allow	 to	
download	a	large-enough	portion	of	the	Web	so	as	to	make	BI	statistically	significant.	Finally,	we	dealt	with	
the	problem	of	per-topic	website	classification	showing	that	a	good	tradeoff	between	the	human	effort	of	
creating	a	manual	description	of	 the	classes	and	the	classification	accuracy	 is	possible.	Summarizing:	our	
experience	shows	that	accurate	resource-driven	design	choices	can	lead	to	a	satisfactory	BI	activity	also	for	
small	and	medium	businesses	without	sacrificing	quality.	

Acknowledgment	
This	work	was	supported	by:	the	Regione	Toscana	of	Italy	under	the	grant	POR	CRO	2007/2013	Asse	IV	

Capitale	Umano	and	the	Italian	Registry	of	the	ccTLD	.it"	Registro.it.	

References	
[1] Luhn,	H.	P.	(1958).	A	business	intelligence	system.	IBM	J.	Res.	Dev,	314-319.	 	
[2] Hsinchun,	C.,	Chiang,	R.	H.	L.,	&	Storey,	V.	C.	(2012).	Business	intelligence	and	analytics:	From	big	data	to	

big	impact.	MIS	quarterly	36.	
[3] Hu,	H.,	Wen,	Y,	Chua,	T.,	&	Li,	X.	 (2014).	Toward	scalable	systems	for	big	data	analytics:	A	technology	

tutorial.	IEEE	Access.	Vol.	2,	652-687.	 	
[4] Kumar,	M.,	 Bhatia,	 R.,	 &	Rattan	D.	 (2017).	 A	 survey	 of	Web	 crawlers	 for	 information	 retrieval.	Wiley	

Interdisciplinary	Reviews:	Data	Mining	and	Knowledge	Discovery.	 	
[5] Broder,	 A.,	 Kumar,	 R.,	 Maghoul,	 F.,	 Raghavan,	 P.,	 Rajagopalan,	 S.,	 Stata,	 R.,	 Tomkins,	 A.,	 &	Wiener,	 J.	

(2000).	Graph	structure	in	the	web.	Computer	Networks,	33(1),	309-320.	 	
[6] Rowlands,	 T.,	 Hawking,	 D.,	 &	 Sankaranarayana.	 R.	 (2010).	 New-web	 search	 with	 microblog	

annotations.	Proceedings	of	the	19th	International	Conference	on	World	Wide	Web.
[7] Aiello,	L.	M.,	Petkos,	G.,	Martin,	C.,	Corney,	D.,	Papadopoulos,	S.,	Skraba,	R.,	Oker,	A.,	Kompatsiaris,	I.,	&	

Jaimes,	A.	(2013).	Sensing	trending	topics	in	Twitter.	IEEE	Trans.	on	Multimedia.
[8] Wang,	D.,	Navathe,	S.	B.,	Liu,	L.,	Irani,	D.,	Tamersoy,	A.,	&	Pu,	C.	(2013).	Click	traffic	analysis	of	short	url	

spam	on	twitter.	Proceedings	of	the	9th	Int.	Conf.	on	Collaborative	Computing:	Networking,	Applications	
and	Worksharing	(Collaboratecom).	

[9] Cho,	 J.,	 Garcia-Molina	 H.,	 &	 Page,	 L.	 (1998).	 Efficient	 crawling	 through	 URL	 ordering.	 Computer	
Networks	and	ISDN	Systems.	 	

[10] Najork,	 M.,	 &	Wiener,	 J.	 L.	 Breadth-first	 crawling	 yields	 high-quality	 pages.	 Proceedings	 of	 the	 10th	
international	conference	on	World	Wide	Web	(WWW	'01).	 	

Journal of Software

315 Volume 13, Number 5, May 2018

[11] Baeza-Yates,	 R.,	 &	 Castillo,	 C.,	 Marin,	 M.,	 &	 Rodriguez,	 A.	 Crawling	 a	 country:	 Better	 strategies	 than	
breadth-first	for	web	page	ordering.	Proceedings	of	the	Special	interest	tracks	and	posters	of	the	14th	Int.	
Conf.	on	World	Wide	Web	(WWW	'05).	 	

[12] Castillo,	C.,	Marin,	M.,	Rodrıguez,	A.,	&	Baeza-Yates,	R.	(2004).	Scheduling	algorithms	for	Web	crawling.	
[13] Fielding,	R.,	Gettys,	J.,	Mogul,	J.,	Frystyk,	H.,	Masinter,	L.,	Leach,	P.,	&	Berners-Lee,	T.	(1999).	RFC	2616	-	

HTTP/1.1,	the	hypertext	transfer	protocol.	http://w3.org/Protocols/rfc2616/rfc2616.html	
[14] Baeza-Yates,	R.,	&	Castillo,	C.	(2004).	Crawling	the	infinite	web:	Five	levels	are	enough.	Algorithms	and	

Models	for	the	Web-Graph.	 	
[15] Iyengar,	A.	K.,	Squillante,	M.	S.,	&	Zhang,	L.	(1999).	Analysis	and	characterization	of	large	¾ Scale	Web	

server	access	patterns	and	performance.	
[16] Adamic	L.	A.,	&	Huberman,	B.	A.	(2001).	The	Web's	hidden	order.	Commun.	
[17] Gomes,	 D.,	 Nogueira,	 A.,	 Miranda,	 J.,	 &	 Costa,	 M.	 (2009).	 Introducing	 the	 Portuguese	 web	 archive	

initiative.	In	8th	International	Web	Archiving	Workshop.	
[18] William,	 A.,	 &	 Tullis,	 T.	 (2013).	Measuring	 the	 user	experience:	 collecting,	 analyzing,	 and	 presenting	

usability	metrics.	Newnes.	
[19] Lopes,	 R.,	 Gomes,	 D.,	 &	 Carriço,	 L.	 (2010).	Web	 not	 for	 all:	 A	 large	 scale	 study	 of	 web	 accessibility.	

Proceedings	of	the	Int.	Cross	Disciplinary	Conference	on	Web	Accessibility.	
[20] Geraci,	F.,	&	Papini,	T.	(2017).	Approximating	multi-class	text	classification	via	automatic	generation	of	

training	examples.	Proceedings	of	 the	18th	 International	Conference	on	Computational	Linguistics	and	
Intelligent	Text	Processing.

[21] Boldi,	 P.,	 Codenotti,	 B.,	 Santini,	 M.,	 &	 Vigna,	 P.	 (2004).	 Ubicrawler:	 A	 scalable	 fully	 distributed	 web	
crawler.	Software:	Practice	and	Experience.	 	

[22] Olston,	C.,	&	Najork,	M.	(2010).	Web	crawling.	Foundations	and	Trends®	in	Information	Retrieval	4.3.	
[23] Felicioli,	 C..,	 Geraci,	 F..,	 &	 Pellegrini,	 M.	 (2011).	 Medium	 sized	 crawling	made	 fast	 and	 easy	 through	

Lumbricus	webis.	Int.	Conf.	on	Machine	Learning	and	Cybernetics.	 	 	
[24] Gyongyi,	 Z.,	 &	 Garcia-Molina,	 H.	 (2005).	 Web	 spam	 taxonomy.	 1st	 Int.	 Workshop	 on	 Adversarial	

Information	Retrieval	on	the	Web	AIRWeb.	
[25] Benko,	V.	(2017).	Are	web	corpora	inferior?	The	case	of	Czech	and	Slovak.	Proceedings	of	the	Workshop	

on	Challenges	in	the	Management	of	Large	Corpora	and	Big	Data	and	Natural	Language	Processing.	 	
[26] Khokhlova,	 M.	 (2016).	 Large	 corpora	 and	 frequency	 nouns.	 Proceedings	 of	 the	 Int.	 Conf.	 on	

Computational	Linguistics	and	Intellectual	Technologies:	“Dialogue	2016.	
[27] Zhou,	L.,	&	Burgoon,	J.	K.,	Nunamaker,	J.	F.,	&	Twitchell,	D.	(2004).	Automating	linguistics-based	cues	for	

detecting	deception	 in	text-based	asynchronous	 computer-mediated	 communications.	Group	decision	
and	Negotiation.	 	

[28] Piskorski,	 J.,	 Sydow,	M.,	 &	Weiss,	 D.	 (2008).	 Exploring	 linguistic	 features	 for	 web	 spam	 detection:	 A	
preliminary	study.	Proceedings	of	 the	4th	International	Workshop	on	Adversarial	 Information	Retrieval	
on	the	Web	(AIRWeb	'08).	

[29] Geraci,	 F.,	 &	 Maggini,	 M.	 (2011).	 A	 fast	 method	 for	 web	 template	 extraction	 via	 a	 multi-sequence	
alignment	 approach.	 International	 Joint	 Conference	 on	 Knowledge	 Discovery,	 Knowledge	 Engineering,	
and	Knowledge	Management.	 	

[30] Schafer,	 R.	 (2017).	 Accurate	 and	 efficient	 general-purpose	 boilerplate	 detection	 for	 crawled	 web	
corpora.	Language	Resources	and	Evaluation,	51(3),	873-889.	

[31] Geraci,	F.	 (2015).	 Identification	of	web	spam	through	clustering	of	website	 structures.	Proceedings	of	
the	24th	International	Conference	on	World	Wide	Web.	 	

[32] W3Techs,	 Usage	 of	 content	 management	 systems	 for	 websites.	

Journal of Software

316 Volume 13, Number 5, May 2018

https://w3techs.com/technologies/overview/content_management/all/	
[33] Martin,	L.,	&	Gottron,	T.	(2012).	Readability	and	the	Web.	Future	Internet	4.1.	 	
[34] Needleman,	S.	B.,	&	Wunsch,	C.	D.	(1970).	A	general	method	applicable	to	the	search	for	similarities	in	

the	amino	acid	sequence	of	two	proteins.	Journal	of	Molecular	Biology.	 	
[35] Almishari,	 M.,	 &	 Yang,	 X.	 (2010).	 Ads-portal	 domains:	 Identification	 and	measurements.	ACM	 Trans.	

Web,	4(2).	 	
[36] Gonzalez,	 T.	 F.	 (1985).	 Clustering	 to	 minimize	 the	 maximum	 intercluster	 distance.	 In	 Theoretical	

Computer	Science.	 	
[37] Myers,	E.	W.	(1986).	An	O	(ND)	difference	algorithm	and	its	variations.	Algorithmica	1.1	(1986).	
[38] Li,	 Z.,	Alrwais,	 S.,	 Xie,	Y.,	Yu,	F.,	&	Wang,	X.	 (2013).	Finding	 the	 linchpins	of	 the	dark	web:	 a	 study	on	

topologically	 dedicated	 hosts	 on	 malicious	 web	 infrastructures.	 IEEE	 Symposium	 on	 Security	 and	
Privacy.	 	

[39] Kleinberg,	J.	M.	(1999).	Authoritative	sources	in	a	hyperlinked	environment.	Journal	of	ACM.	 	
[40] Luong,	H.	P.,	Gauch,	S.,	&	Wang,	Q.	(2009).	Ontology-based	focused	crawling.	Proceedings	of	the	Int.	Conf.	

on	Information,	Process,	and	Knowledge	Management.	 	
[41] Ehrig,	M.,	&	Maedche,	A.	(2003).	Ontology-focused	crawling	of	Web	documents.	Proceedings	of	the	2003	

ACM	symposium	on	Applied	computing	(SAC	'03).	
[42] Yu,	H.,	 Han,	 J.,	 &	 Chang,	 K.	 C.	 (2004).	 Pebl:	Web	page	 classification	without	 negative	 examples.	 IEEE	

Transactions	on	Knowledge	and	Data	Engineering,	16(1).	
[43] Keller,	 K.	 L.,	 Heckler,	 S.	 E.,	 &	 Houston,	 M.	 J.	 (1998).	 The	 effects	 of	 brand	 name	 suggestiveness	 on	

advertising	recall.	The	Journal	of	Marketing.	 	
[44] Lowrey,	 T.	 M.,	 Shrum,	 L.	 J.,	 &	 Dubitsky,	 T.	 M.	 (2003).	 The	 relation	 between	 brand-name	 linguistic	

characteristics	and	brand-name	memory.	Journal	of	Advertising.	
[45] Hang,	L.	(2011).	A	short	introduction	to	learning	to	rank.	IEICE	TRANS.	on	Information	and	Systems.
[46] Charikar,	M.	S.	 (2002).	Similarity	estimation	techniques	 from	rounding	algorithms.	Proceedings	of	the	

Thiry-Fourth	Annual	ACM	Symposium	on	Theory	of	Computing.	
[47] Wilkinson,	R.,	Zobel,	J.,	&	Sacks-Davis,	R.	(1995).	Similarity	measures	for	short	queries.
[48] Robertson,	S.	E.	(1997).	Overview	of	the	okapi	projects.	Journal	of	Documentation.
[49] Bennett,	G.,	Scholer,	F.,	&	Uitdenbogerd,	A.	(2008).	A	comparative	study	of	probabilistic	and	 language	

models	for	information	retrieval.	Proceedings	of	the	19th	Cconf.	on	Australasian	Database.	
	

Loredana	M.	Genovese	was	born	 in	Crotone,	 Italy,	 in	 June	1971.	She	received	her	master	
degree	 in	Computer	Science	 from	 the	University	of	Pisa	 in	2002	with	a	 thesis	on	parallel	
replicated	databases.	She	was	also	awarded	a	``laurea	specialistica''	degree	in	Informatics	in	
2004.	After	several	years	spent	on	a	private	 internet	company,	she	joined	the	Institute	 for	
Informatics	 and	 Telematics	 of	 the	 Italian	 National	 Research	 Council	 in	 2013	 with	 the	
position	of	research	assistant.	 	

	
Filippo	 Geraci	 was	 born	 in	 Sicily,	 Italy,	 in	 September	 1977.	 He	 received	 his	 degree	 in	
computer	science	from	the	University	of	Pisa	and	his	Ph.D.	in	information	engineering	from	
the	 University	 of	 Siena.	 He	 is	 currently	 researcher	 at	 the	 Institute	 for	 Informatics	 and	
Telematics	of	the	Italian	National	Research	Council	in	Pisa.	He	held	the	chair	of	the	course	of	
Information	systems	for	business	management	at	the	University	of	Siena.	He	is	tutor	of	the	

course	of	Algorithm	Design	at	 the	University	of	Pisa.	His	 research	 fields	are:	algorithms	 for	 the	web,	and	
bioinformatics.	

