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Abstract: Fault-proneness is a software quality attribute. It refers to the extent to which a software module 

is prone to faults. In object-oriented software development, the class is the basic design unit, and its quality 

affects the software’s overall quality. Fault-proneness cannot be measured during early software 

development phases before the faults are detected and fixed. Several studies empirically explored the 

ability of statistical-based models that use other software artifacts known at early software development 

phases to predict fault-proneness. In this paper, we report a replication study that empirically investigated 

models’ ability based on six well-known and commonly applied design quality measures to predict class 

fault-proneness using five Java open-source systems. The results indicated that in most cases, the models 

based on the considered quality measures were found to be statistically significant class fault-proneness 

predictors. In addition, considering the measures in combination allows for building prediction models 

with acceptable classification performance. 
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1. Introduction 

Software quality is an important factor considered in software engineering. During software 

development stages, software engineers apply various measures and tools for assessing software quality 

and indicating software weaknesses. Identifying such weaknesses helps software developers to improve 

the software quality in early stages instead of facing related problems after the software release.  

Researchers have identified several software quality attributes and classified them into two categories: 

internal and external [1]. Internal quality attributes, such as cohesion, coupling, and complexity, are those 

that can be measured using design or code artifacts, which are typically available before the software is 

released. External quality attributes, such as maintainability, reliability, and testability, are those that 

depend on software environment factors that are determined during software use and cannot be measured 

using design and software artifacts. Therefore, these attributes cannot be measured before the software is 

released, although they are the ones of interest for software users. To overcome this problem, researchers 

have studied the relationship between internal and external quality attributes and have construct 

statistical-based models that use internal quality measures to estimate or predict external quality 

attributes. In this case, software engineers can apply these constructed models before releasing software 

to predict external quality attributes and to take necessary actions to improve the software quality. 
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Several empirical studies investigated the ability of design and code-based measures to estimate class 

fault-proneness (e.g., [2]-[10]). Some of these studies obtained different, and sometimes conflicting, results 

due to the different characteristics of the selected systems. Generalizing the results requires performing 

several replication studies. In this paper, we report a replication study exploring the impact of six design 

quality measures known as Chidamber and Kemerer (CK) measures [11] on class fault-proneness using 

five Java open-source systems of various domains and sizes. In addition, we built statistical-based 

prediction models based on the measures considered individually and in combination.  

This paper is organized as follows. Section 2 provides an overview of the CK measures and a summary of 

some existing results. Section 3 describes the considered systems, the data collection process, and the 

analysis method. Sections 4 and 5 report and discuss the empirical study results. Finally, Section 6 

concludes the paper and discusses future work. 

2. Related Work 

Researchers have proposed several measures that quantify various quality attributes. CK measures are 

the most frequently studied and referenced suite of measures [12]. This suite of measures include the 

weighted methods per class (WMC), depth of inheritance tree (DIT), response for a class (RFC), number of 

children (NOC), coupling between object classes (CBO), and a lack of cohesion between methods (LCOM). 

Several studies investigated these measures’ abilities to predict different external quality attributes, such 

as fault-proneness (e.g., [2]-[10]), reuse-proneness (e.g., [1], [13]), and maintainability (e.g., [14], [15]). In 

addition, several studies explored the abilities of the statistical models that use these measures or some of 

them to predict refactoring opportunities (e.g., [16]-[19]).  

Table 1 summarizes the direction of the impact of the CK measures on fault-proneness as reported in 17 

existing studies, where “0” indicates that the measure was found to be a statistically insignificant class 

fault-proneness predictor. A positive (resp., negative) sign indicates that the models based on the measure 

were found to be statistically significant fault-proneness predictors, and the relationship between the 

measure and fault-proneness was found to be positive (resp., negative). 

 

Table 1. Summary of Empirical Studies of CK Measures 
Empirical study WMC DIT NOC CBO RFC LCOM 
[8] +/0 + - + + 0 
[26] + + - + + 0 
[27] + 0  + +  
[28] + - 0 + + + 
[9]  0 0    
[29] +/0 -/0  0   
[30] + + 0 + + + 
[31] + +/0 +/0 +/0 + +/0 
[32] + + + + + + 
[33] +   + + + 
[34] + +/0 0 + +  
[2] + 0 0 + + + 
[35] + 0 0 + +  
[36] 0   0   
[10] +      
[37] + 0 -/0 + + +/0 
[7] + - + + + + 

3. Design of the Empirical Study 

The goal of the empirical study was to explore the ability of the CK measures considered both 

individually and in combination to predict the fault-proneness of object-oriented classes. To perform the 
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empirical study, we randomly chose five Java open-source systems of various application domains. The 

first system is Art of Illusion v.2.5.1 [20] released on October 22, 2007. It is a three-dimensional (3D) 

rendering and modeling studio application consisting of 471 classes. The second system is DrJava 

v.beta-20090505-r4932 [21], which was released on May 5, 2009. It is a Java development environment 

consisting of 1036 classes. The third system is Eclipse v.1.0.1 [22], which was released on September 8, 

2009. It is a multi-language software development environment consisting of 1438 classes. The fourth 

system is FreeMind v.0.8.1 [23], which was released on February 26, 2008. It is a mind-mapping software 

including 223 classes. The fifth system is JHotDraw v.7.4.1 [24], which was issued on January 17, 2010. It is 

a graphical user interface framework with 576 classes.  

Building statistical prediction models requires collecting two pieces of data for each class in each of the 

selected systems. The first piece of data is CK values, and the second piece of data is the data related to 

whether the class has a fault detected during the maintenance phase. To collect the first piece of data, we 

used the CKJM tool [25]. To collect the second piece of data, we manually traced the maintenance history of 

the classes reported in the Concurrent Versions System (CVS) from Sourceforge. 

To build the prediction models, we applied logistic regression analysis (LRA) [38], which is a statistical 

technique based on maximum likelihood estimation. The considered variables are classified into 

dependent and independent. In LRA, one or more independent variables are used to predict the dependent 

variable. The dependent variable has a binary value. LRA is called univariate LRA when one independent 

variable is considered in the analysis, and it is called multivariate LRA when two or more independent 

variables are considered.  

In our context, CK measures were the independent variables, and the variable related to whether the 

class was found faulty was the dependent variable; it had a value of 1 if the class had at least one fault, and 

a value of 0 otherwise. The probability that a class is estimated as faulty is obtained using the following 

formula: 
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where Xis are the CK measures, and the Ci coefficients are estimated using LRA. In univariate models, the 

absolute value of C1 indicates the strength of impact (positive or negative, according to the sign of C1) of 

the independent variable on the probability of the class to be faulty. In addition, the sign of C1 indicates 

whether the independent variable has a positive or negative impact on the probability of the class to be 

faulty. The p-value is the probability that the coefficient is different from zero by chance. In our analysis, 

we considered a typical significance threshold (α=0.05) to determine whether a measure was a statistically 

significant fault predictor. 

To test the classification performance of a prediction model, we applied the above formula to obtain the  

value for each class. A threshold was considered to classify the class as estimated to be faulty if the  was 

greater than or equal to the threshold value, or not faulty otherwise. With knowledge of the actual "faulty" 

values of the classes, the prediction models were constructed, and the classes in the system were 

accordingly classified based on the confusion matrix provided in Table 2. 

 

Table 2. Confusion Matrix 
  Actual faulty  
  0 1  

Estimated faulty 
0 True Negatives (tn) False Negatives (fn) Estimated Negatives 

1 
False Positives 
(fp) 

True Positives 
(tp) 

Estimated Positives 

  Actual Negatives Actual Positives  
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In our analysis, we considered the following classification performance criteria: 

• Recall = tp/(fn + tp);  
• Precision = tp/(tn + fn);  
• Fmeasure = 2×Precision×Recall/(Precision + Recall); 
In addition, for each constructed prediction model, we obtained the area under the receiver operating 

characteristic curve (AUC) [38], which assesses the classification performance of the prediction model 

regardless of any threshold. 

4. Univariate Analysis Results 

Using the data of the classes in each system, we built a univariate prediction model based on each of the 

six CK measures. Therefore, the total number of constructed models is 30 (i.e., 5 systems × 6 measures). 

The coefficients and classification performance results of each of the constructed models are reported in 

Tables 3-7. 

Table 3. Univariate Logistic Regression Results for Classes of Art of Illusion System 
Measure C0 C1 p-value Recall Precision Fmeasure AUC 
WMC -2.909 0.068 < 0.01 0.609 0.333 0.431 0.778 
DIT -2.656 0.354 < 0.01 0.493 0.337 0.400 0.698 
NOC -1.760 -0.006 0.905 0.942 0.146 0.253 0.515 
CBO -2.470 0.025 < 0.01 0.623 0.350 0.448 0.763 
RFC -2.932 0.018 < 0.01 0.667 0.348 0.458 0.804 
LCOM -2.065 0.003 < 0.01 0.449 0.403 0.425 0.727 

 

Table 4. Univariate Logistic Regression Results for Classes of Drjava System 
Measure C0 C1 p-value Recall Precision Fmeasure AUC 
WMC -1.706 0.014 < 0.01 0.471 0.417 0.442 0.751 
DIT -1.649 0.063 0.175 0.361 0.160 0.222 0.493 
NOC -1.487 0.000 0.997 1.000 0.184 0.311 0.503 
CBO -1.963 0.032 < 0.01 0.508 0.458 0.481 0.756 
RFC -2.154 0.018 < 0.01 0.602 0.509 0.552 0.823 
LCOM -1.497 0.000 0.153 0.147 0.538 0.230 0.708 

 

Table 5. Univariate Logistic Regression Results for Classes of Eclipse System 
Measure C0 C1 p-value Recall Precision Fmeasure AUC 
WMC -1.041 0.055 < 0.01 0.519 0.689 0.592 0.750 
DIT -0.887 0.290 < 0.01 0.367 0.534 0.435 0.593 
NOC -0.366 0.173 < 0.01 0.255 0.633 0.364 0.577 
CBO -1.009 0.056 < 0.01 0.517 0.708 0.598 0.751 
RFC -1.125 0.024 < 0.01 0.543 0.717 0.618 0.774 
LCOM -0.451 0.001 < 0.01 0.317 0.747 0.445 0.709 

 

Table 6. Univariate Logistic Regression Results for Classes of Freemind System 
Measure C0 C1 p-value Recall Precision Fmeasure AUC 
WMC -2.309 0.044 < 0.01 0.400 0.326 0.359 0.695 
DIT -1.817 0.053 0.636 0.457 0.176 0.254 0.557 
NOC -1.685 0.010 0.922 0.171 0.240 0.200 0.541 
CBO -2.169 0.030 < 0.01 0.343 0.245 0.286 0.609 
RFC -2.679 0.021 < 0.01 0.486 0.327 0.391 0.721 
LCOM -1.924 0.001 < 0.01 0.286 0.476 0.357 0.719 

 

Table 7. Univariate Logistic Regression Results for Classes of Jhotdraw System 
Measure C0 C1 p-value Recall Precision Fmeasure AUC 
WMC -0.080 0.054 < 0.01 0.457 0.713 0.557 0.627 
DIT 0.056 0.173 < 0.01 0.518 0.732 0.607 0.557 
NOC 0.431 0.225 0.017 0.164 0.766 0.271 0.496 
CBO -0.249 0.079 < 0.01 0.521 0.779 0.624 0.703 
RFC -0.212 0.023 < 0.01 0.490 0.762 0.597 0.660 
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LCOM 0.291 0.003 < 0.01 0.304 0.807 0.441 0.610 

 

The results provided in Tables 3–7 led to the following observations: 

1) Most of the models were found to be statistically significant predictors of fault-proneness. 

Specifically, the WMC, CBO, and RFC were always found to be statistically significant predictors of 

fault-proneness, and the DIT and LCOM were mostly found to be statistically significant predictors 

of fault-proneness. In contrast, the NOC was found to be a statistically insignificant predictor of 

fault-proneness most of the time. The next observations consider only the statistically significant 

predictor models. 

2) All of the CK measures had a positive impact on fault-proneness. That is, increasing the complexity, 

coupling, depth of inheritance relations, and lack of cohesion caused the class to be more prone to 

faults.  

3) The inheritance measures (i.e., the DIT and NOC) were always found to have the strongest impact on 

class fault-proneness, whereas the lack of cohesion measure (i.e., the LCOM) was always found to 

have the weakest impact on class fault-proneness. The complexity (i.e., the WMC) and coupling (i.e., 

the CBO and REF) measures alternated between the second and third positions when ordering the 

measures from the strongest to weakest impact on class fault-proneness. 

4) Based on the Fmeasure and AUC values, the univariate prediction models based on REF were found 

to be the best classifier for classifying the classes into faulty and non-faulty most of the time. They 

had Fmeasure and AUC values that ranged within the interval of [0.391, 0.618] and [0.66, 0.823] 

respectively. The univariate prediction models based on inheritance measures were found to be the 

worst classifiers most of the time. The Fmeasure and AUC values for statistically significant models 

were based on the DIT range within the interval of [0.4, 0.607] and [0.557, 0.698] respectively. The 

Fmeasure and AUC values for statistically significant models were based on the NOC range within 

the interval of [0.271, 0.364] and [0.496, 0.577] respectively. Based on the average values of 

Fmeasure, the measures were ordered from the best to the worst corresponding model classifier as 

follows: the REF, CBO, DIT, WMC. LCOM, and NOC. In addition, based on the average values of the 

AUC, the measures were ordered from the best to the worst corresponding model classifier as 

follows: the REF, WMC, CBO, LCOM, DIT, and NOC. 

5. Multivariate Analysis Results 

 

Table 8. Multivariate Logistic Regression Results 

System 
Art of 
Illusion 

DrJav
a 

Eclipse 
FreeMin
d 

JHotDraw 

c0 -3.739 -2.325 -1.866 -2.679 -0.442 
WMC 0.053 -0.065 0.025 - - 

DIT 0.304 - 0.263 - - 

NOC - - - - - 

CBO 0.011 - 0.019 - 0.052 
RFC - 0.049 0.015 0.021 0.014 
LCOM - - < 0.001 - - 
Recall 0.710 0.644 0.598 0.486 0.540 
Precision 0.350 0.554 0.706 0.327 0.798 
Fmeasure 0.469 0.596 0.648 0.391 0.645 
AUC 0.817 0.799 0.784 0.721 0.716 

 

For each of the five considered systems, we constructed a multivariate prediction model based on the 

values of the CK measures and fault data. When building a model, we proceeded in a stepwise fashion via 
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the backward elimination of independent variables. We started with the entire set of independent variables, 

and we removed the independent variable whose coefficient was not statistically significant and was 

associated with the largest p-value. In the following step, we built a model based on the set of remaining 

independent variables, and we removed the variable that was not statistically significant and had the 

largest p-value. We continued this stepwise removal of independent variables until the remaining 

independent variables were all statistically significant, and we used them to build the final model. The 

coefficients and classification performance results of the constructed models are provided in Table 8. 

The results reported in Table 8 provide evidence that CK measures can be used in building multivariate 

prediction models with acceptable and sometimes excellent abilities to classify classes into faulty and 

non-faulty. Specifically, the results showed that the Fmeasure and AUC values for the constructed models 

ranged within the interval of [0.391, 0.648] and [0.716, 0.817] respectively. The averages of the Fmeasure 

and AUC values were 0.55 and 0.767. 

6. Conclusion 

In this paper, we reported the results of an empirical study that investigated the abilities of CK measures, 

considered individually and in combination, to predict class fault-proneness. Five open-source Java systems 

were considered in the study. The key results of the study provide evidence that in most cases, CK 

measures can be used in building models that are statistically significant predictors of class 

fault-proneness. All of the constructed multivariate models were found to be acceptable classifiers for the 

classes as faulty and non-faulty. The univariate models based on CK measures were found to have different 

prediction abilities, where models based on the RFC measure were mostly found to be the best predictors. 

The direction of the impact of the CK measures on fault-proneness was found to be positive most of the 

time, which matches the majority of the results reported in the literature.  

All of the selected systems are open-source Java systems. To generalize the results, more studies 

considering systems developed using various programming languages and including industrial systems 

should be performed. 
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