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Abstract: This paper investigates how grammatical genetic programming performs for evolving simple 

integer list manipulation functions. We propose three sub-problems which are related to, or component of 

integer sorting problem as defined by genetic programming literature. We further investigate the effects of 

modifying evolutionary parameters, such as the number of generations allowed, number of populations, 

and number of test cases, on the number and distribution of successful solutions. Finally, we propose an 

AST based dead-code removal for the intron induced non-functional codes on evolved individuals.  
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1. Introduction 

Genetic programming (GP) is a population based evolutionary search technique similar to genetic 

algorithms, where evolved objects are “programs” of varying forms, like a simple mathematical expression, 

a complete decision tree, or the source code of a complete program. Fitness functions are commonly lists of 

test cases in form of (input, output) pairs, along with a distance function to serve as a metric between the 

computed output and expected output; these two are the only apriori information available to guide the 

search in the space of valid programs belonging to language defined by given grammar. 

As expected the fitness landscape of such a space is not smooth. For GP and especially grammatical GP, 

fitness landscapes are not differentiable to exploit gradients. They also have very poor locality and structure. 

It is hard to define closeness in the infinite space of programs belonging to a language and conserving some 

attributes so that locality can be exploited to guide the search towards the solution, at the same time. 

Grammatical GP is a form of GP where the search space is reduced to the space of syntactically valid 

programs according to a given a formal grammar. Excluding invalid programs dramatically reduce the 

search space, which is still infinite but has a lower dimensionality. On the other hand a syntactically valid 

program is not necessarily semantically meaningful too; as a matter of fact most of them are not.  

In this paper we propose three algorithmic problems on manipulating integer lists as sub components of 

integer sort problem; and evolve solutions for them using grammatical GP. We define a high level algorithmic 

problem as those which involve loops and internal state variables, as opposed to just evolving expressions 

or decision trees. According to survey [1], almost 90% of the papers published in EuroGP and GECCO GP 

between years 2009-2012 belonged to Symbolic regression, Classification or Boolean functions (i.e. parity, 

multiplexers) domains, which aren’t of algorithmic nature on this sense.  

The difficulty of evolving a high level algorithm like sort, using a grammar consisting of low level 
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constructs only, has been identified on [2], where a successful integer sort algorithm can be evolved only 

when the high level swap operation is introduced to the grammar, even though the grammar used is already 

highly customized towards sorting. Evolving a general integer sort algorithm that run correctly on 

arbitrarily sized lists, using only low level syntactic constructs is still an open problem. 

2. Search Space, Grammars and Difficulty 

2.1. Generality of a Grammar 

Let us define what we mean by the generality of a grammar. High level programming languages contain 

constructs such as assignments, loops and conditionals as building blocks; they are declared as an ordered 

list of statements and can be grouped in code blocks which may contain other code blocks. Furthermore 

assignments are made towards variables which hold the algorithm state, with expressions producing new 

values by combining other values and variables through some operators. 

We use the term “unconstrained grammar” to describe the general case where there are no bounds on the 

number of statements in a code block, on the number of code blocks which can be nested, on the number of 

operands and operators forming an expression and on the number of variables to hold the program state. 

Almost all programming languages have unconstrained general grammars. Some constrained processing 

hardware impose limits on the number of variables based on available registers, on number of statements 

based on instruction pointer width, and on number of nested function calls based on hardware stack size; 

also heterogeneous computing platforms (i.e. OpenCL, CUDA) have limits on number of local variables, 

availability of array indexing and total number of statements based on underlying hardware, but these are 

enforced at compiler level as compilation errors, instead of grammar level as syntax errors. 

Conversely we define a grammar as constrained, when these limits are incorporated explicitly on the BNF 

definition of the grammar. The purpose of using a constrained grammar in GP is to prune the search space 

by incorporating some apriori constraints to the language, based on how the answer being searched is 

supposed to look like. This specialization of grammar biases the language towards the answer. 

2.2. Problem Difficulty in Genetic Programming 

Difficulty in GP has been a popular subject of study [3]–[7], and difficulty of evolving an integer sort code 

has been identified relatively early [8]. We have replicated the results in [2] where it is stated that if a high 

level construct like a built in swap function is not provided as part of the language defined by grammar the 

evolution does not converge to a solution for the case of integer sort problem. To the best of authors’ 

knowledge [2] dated 2014 is the most recent work on literature dealing with the integer sort problem. 

2.3. Unbounded Expansions on General Grammars 

A grammar is defined as a set of production rules which maps tokens to strings of tokens and literal 

characters; this in turn defines a language which is a set of programs. In the case of an unconstrained 

grammar the language defined has infinitely many elements, as you can write infinitely many different 

programs which are valid in the defined language. Then the natural question that arises is about identifying 

the dimensionality of this set. 

When expanding the production tree having the start token of a grammar as the root node, leaf nodes 

with tokens corresponding to non-terminal production rules expand to child nodes consisting of literal 

strings and other tokens. If a non-terminal token contains itself in one of its expansion rules, or a loop can 

be constructed by cycling through a set of non-terminals referring each other in their expansions, then it 

means that some infinite expansions are also part of the language along with the programs they represent. 

Such infinite trees do not represent any program, as some branches never reach terminal tokens; but in 

the same time each different ways to construct them represent a different axis corresponding to a 
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dimension of the space of programs in the defined language. A first example comes from the allowed 

number of statements in a code block; on an unconstrained grammar this can be expressed with a recursive 

expansion rule, such as “<statements> ::= <statement> | <statement><statements>”. The statements token has 

50% chances to get expanded to itself along with a new statement token. Even though the expected value of 

the number of statement tokens generated by this rule is   
 

  
 
     , the distribution of it has a long tail; 

therefore arbitrarily large number of consecutive statements can be observed, but with exponentially 

decaying probabilities. A further complication is that what we have isn't a real random process, and the 

source of randomness to choose from possible expansion rules is provided by the finite genome of an 

individual, which is a random list of integers with length in the order of hundreds. When a request for next 

random value exhaust the values on the genotype of individual, the list is recycled and used again from the 

start; this is the most common solution employed, called wrap around in the literature, but it generate a 

periodic correlation on the stream of values read. When hundreds of individuals over hundreds of 

generations are considered, the periodicity due to size of the genome, and periodicities that arise due to 

cyclic arrangements of non-terminal expansion rules, may coincide on a common period and form an 

infinite expansion loop without ever reaching a terminal rule. This is a known phenomenon; some 

alternatives to wrap-around reuse of genotype has been studied and proposed in [9] and [10]. 

The number of statements growing unbounded is one of the dimensions a general grammar can go 

expanding indefinitely; the other two dimensions are the number of nested code blocks and expression 

length, as shown on Fig.1. In the ideal case of genotypes with no periodicity (i.e. infinitely long random 

genotype) expansion trees are expected to stop eventually before diverging to infinity, as the probability of 

having the same non-terminal expansion sequence decays exponentially at each step; yet it is a very large 

space with no hope for success while employing exhaustive search or random search. 

 
Fig. 1. Two unbounded expansion trees. 

2.4.  Expansion Order 

Another issue with applying expansion rules is how to select the next non-terminal to expand when there 

is more than one. Obviously a depth first selection will always expand the left-most non-terminal node. A 

breadth first traversal order is possible but tricky, as each expansion also modifies the tree. It can be 

implemented by tracking all non-terminal child nodes in a FIFO queue to impose an order, with new 

non-terminals added to the end of the queue, and the next non-terminal to expand is retrieved from the 

front; when the queue becomes empty it means that all leaf nodes of the tree are terminal nodes. 
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Independent of in which order we choose the next non-terminal leaf to expand, without some extra 

information about the rest of the tree or at least of the branch, it is impossible to limit the unbounded 

expansion as the grammar doesn't have that information. 

2.5. Setting Hard Limits on Expansions 

A way to provide depth information at expansion time is to introduce redundant copies of expansion 

rules to the BNF differentiated by their depth. Let’s consider the expansion rule “<expr> ::= <expr> <bi-op> 

<expr> | <int> | <var>” with possible infinite expansions as illustrated no Fig.2(b) Its first production rule is 

both left-recursive and right-recursive. To exclude infinite expansions of this type from the language, and 

limit the maximum depth up to a constant K, we replace this rule with multiple depth annotated copies of 

the form “<expr-N> ::= <expr-N+1> <bi-op> <expr-N+1> | <int> | <var>” for each               and a 

last rule of form “<expr-K> ::= <int> | <var>” which omits the recursive part. This new set of K rules allows 

expressions consisting of an integer, a variable, or a combination of those with up to K-1 binary operators. 

The same annotation can be extended to bound the expansion depth of cyclical self-references involving 

multiple non-terminals as illustrated on Fig.2. 

 
Fig. 2. Depth information by duplication of rules in BNF. 

 

The information provided by this static bounding by duplication of rules with counters, is the current 

depth on the branch. This allows tracking expansion depth on a derivation branch involving multiple types 

of non-terminals, but it requires a consistent numbering across duplicates of all types of tokens involved, 

but still the information is branch local and doesn't provide information about the rest of the tree. 

3. Proposed Problems 

3.1. Min Problem 

As an easier alternative to integer sort, we considered the Min Problem as a good candidate to evolve; 

which consists of finding the minimum value in a given list of integers. It can also be thought as a 

components of integer sort; if we compose the sort as “for each position of the list, swap the value at that 

position with the minimum value at the rest of the list” which is equivalent to insertion sort. We devised a 

static bounding grammar for the Min Problem which is a compromise between being a general enough 

grammar, and not expanding too much in terms of tree size. See Appendix for the proposed BNF grammar. 

3.2. Search Problem 

Search Problem consists of identifying whether a given search value is present in an integer list and 

return true or false accordingly. It is not a component of integer sort, but still an elementary function that 

can be evolved with GP. We implemented the Search Problem with a static bounding grammar. As the Search 

Problem is a question with a binary answer, it is interesting for its use of both integer and boolean values. 
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3.3. Search with Position Problem 

The hardest problem we managed to evolve correct solution is Search with Position finding a function 

which searches for a value in an integer list, and returns its position if present, or return -1 if number is not 

present. See Appendix for the proposed BNF grammar to evolve solutions for this problem. 

4. Experiment Results 

4.1. Baseline Experiment 

We used 50 populations for the evolution of Search With Position grammar, using a population size of 100 

individuals. There were 40 test cases with half of them containing the searched integer; lists had length 

varying between 3 to 7. Same test cases have been used for all populations; crossover and mutation rate 

were both set to 0.7. We employed elitism and two way tournament selection on all experiments.  

It can be seen on Fig.3 that 12 out of 50 populations managed to evolve a successful individual that can 

return the position of the searched value or -1 if it isn’t in the list. Fig.3 consists of two fitness trace plots; 

one for successful populations (those who managed to evolve an individual with zero error before 500 

generations) and another for failed populations. This separation of plots is purely to better portray the 

difference of distribution characteristics in successful and unsuccessful populations. Each trace line 

corresponds to a population, and values attained by a line are the fitness values of the best individual of that 

population at that generation. Therefore vertical jumps mean a new best individual has evolved in that 

population which has lower error than previous best; and horizontal segments mean the population 

couldn’t evolve a new best individual, so the one from previous generation has been preserved by elitism. 

 
Fig. 3. Fitness traces of best individuals of 50 runs for 500 generations. 

 

The average fitness of best individuals is only meaningful for the failed populations; successful 

populations leave the process when a zero error individual is evolved, therefore the number of populations 

remaining (to average over) is different for different points of horizontal axis, making the same average for 

successful populations hard to define. Fig.4 shows the mentioned average fitness of best individuals of 

failed populations; jagged traces can be seen to converge to a smoother curve upon averaging. 
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Fig. 4. Fitness average of failed populations’ best individuals. 

 

4.2. More Populations, Less Generations, Same Wall-Clock Time  

The distribution of Fig.3 hints that the probability of a population to achieve zero error gets lower as the 

number of generations increase. Thus, we repeated the experiment with the same settings, except limiting 

the maximum number of generations fivefold (from 500 to 100). To obtain an equivalent computation time, 

we also increased the number of populations fivefold (from 50 to 250). Fig.5 shows the traces of the 

experiment, where 32 out of 250 populations managed to produce an error free individual. Although the 

success rate drops to 0.128 (32/250) from previous 0.24 (12/50), trying more independent populations for 

shorter times yielded 2.66 (32/12) times more error free individuals for the same computation time. Notice 

that the points where populations reach an error free individual are distributed more homogeneously 

across 100 generations, in contrast to previous experiment. Yet, the points at which zero error individuals 

are reached doesn’t get more frequent at left edge of horizontal axis neither, to the contrary the first 15 

generations see no solutions, in stark contrast to the generation range 15-100. 

 

 
Fig. 5. Fitness trace of best individuals for 250 population over 50 generations. 

 

4.3. Less Test Cases 

We conducted a third set of experiments, with the same settings as the first one, but this time decreasing 

the number of test cases from 40 to 20, which halves the computation time in exchange for an increased risk 
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of false positives labeled as successful. Figures Fig.7 and Fig.8 show the traces of best individuals of 

populations, and the average of best individuals from unsuccessful populations. The success rate became 

0.26 (13/50) with an increase of 2% success rate, which is statistically insignificant to attribute to false 

positives which may stem from a lack of test cases. 

 
Fig. 7. Fitness trace of best individuals for 50 populations using half the test cases. 

 

The traces for successful populations on figure Fig.7 shows that 38% (5/13) of solutions are concentrated 

in the narrow range of first 25 generations. It can be conjectured that the decreased number of test cases 

contributed to early success of evolution in contrast to previous two setups. 

 

 
Fig. 8. Fitness average of populations’ best individuals. 

 

The rate of false positives as a function of number of test cases will be a parameter we will further 

investigate. As the number of test cases affect the computation time linearly (i.e. doubling the test cases 

doubles the computation time), it may be beneficial to use minimum indicative number of test cases. Total 

computation time can be minimized by allowing a higher false positive rate and thoroughly checking the 

individual solutions later, instead of thoroughly checking the whole population earlier. 

Another parameter to investigate is the cumulative density of the probability distribution of having an 
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error free individual in terms of number of generations. The extreme case of allowing only one generation is 

equivalent to random search, as the populations don't get a chance to cooperate through crossover.  

5. Automated Dead Code Elimination 

Listing below shows one of the solutions evolved for Search With Position problem. It can be seen that the 

effect of many lines of the code gets overwritten by later code. Dead code is a common issue with GP [11], it 

is a byproduct of introns (non-coding parts of the genotype). For a detailed investigation of introns in 

grammatical GP see [12]. 

 

 
Listing. 1. A solution for Search With Position problem (left) with dead-code (right) dead-code removed 

 

 Dead code elimination has no effect on the end result of how the evolved code works; it just provides 

means to see more clearly the actual part of code which produces the desired result. Trying to remove each 

line of the evolved code would break the syntax on lines that defines a new code block; to prevent this we 

parse the evolved code back to AST, disable each immediate child of root node one by one to build candidate 

trees, and render them back to source code to be run against test cases. All candidate source codes are 

syntactically valid Python source codes, but functionality isn’t necessarily preserved. We run each candidate 

against same test cases, if the omission of a node still produces fully functional code we incorporate that 

omission to original tree, and call the dead code elimination routine recursively for next depth on this new 

tree to search for deeper nodes that can be eliminated. 

6. Conclusion 

In this paper we propose three integer list manipulation problems based on their relation to integer sort 

problem, and evolve solutions for those using grammatical GP. Min Problem requires finding a function 

which returns the smallest value in a list. Search Problem requires finding a binary function returning True 

only if a given value is present in a given list, and False otherwise. Finally Search with Position Problem 

requires a function which returns the position of a given value in a given list, or -1 if the value is not present. 

We have given grammars for problems and successfully evolved correct code for all three of them. 

Furthermore we investigated the effect of modifying the number of generations, populations, and test cases 

allowed, on the number and distribution of successful solutions. Finally we present a dead-code elimination 

algorithm to automatically remove nonfunctional code introduced by introns.  

Appendix (BNF Grammars) 
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