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Abstract: It is an effective way to overcome the randomization sensibility of extreme learning machine (ELM) 

by using Gaussian process regression (GPR) to optimize the output-layer weights. The key of GPR based ELM 

(GPRELM) is the selection of kernel function which is used to measure the similarity between different 

hidden-layer output vectors. In this paper, we conduct an experimental analysis to compare the classification 

performances of radial basis function (RBF) kernel and polynomial (Poly) kernel based GPRELMs. The 

comparative results on 24 UCI data sets reveal that: (1) GPRELMs have the serious over-fitting; (2) GPRELMs 

can get the better classification accuracies with less hidden-layer nodes in comparison with the original ELM; 

and (3) the smaller regularization factors usually bring about the higher training accuracies for GPRELMs, 

while the larger regularization factors usually result in the higher testing accuracies. All these conclusions 

provide the useful enlightenments and instructions for the theoretical studies and practical applications of 

GPRELMs. 

 
Key words: Extreme learning machine, gaussian process regression; radial basis function kernel; polynomial 
Kernel. 

 

1. Introduction 

Extreme learning machine (ELM) [8]-[10] is a simple training algorithm for single hidden-layer feed-forward 

neural network (SLFN), which randomly selects the input-layer weights and hidden-layer biases and analytically 

determines the output-layer weights. Thus, the training speed of ELM can be thousands of times faster than 

traditional back-propagation (BP) algorithm. Meanwhile, the theoretically proof guarantees the universal 

approximate capability of ELM. The lower computational complexity and better generalization performance 

makes ELM obtain a wide range of applications [2], [6], [7], [14], [15], [17]. 

However, every coin has two sides. ELM also has some obvious defects one of which is the sensibility of 

prediction result to random initialization. The researchers have conducted some representative works along this 

direction. For example, Ref. [16] proposed an evolutionary ELM (E-ELM) which uses the differential evolutionary 

algorithm to select the input weights and hidden biases for ELM. Then, [1] improved E-ELM and developed a 

self-adaptive evolutionary extreme learning machine (SaE-ELM) to optimize the hidden node parameters. 

Experimental results show SaE-ELM outperforms E-ELM. An optimized extreme learning machine (O-ELM) was 

designed in [12], which uses three different optimization algorithms to optimize the input weights, hidden biases, 

and regularization factor, simultaneously. Ref. [5] proposed two weight initialization schemes, i.e., binary ELM 

based on {0, 1}-weights and ternary ELM based on {-1, 0, 1}-weights, to improve the diversity of neurons in the 

hidden layer. For binary/ternary ELMs, the necessary optimizations are also required to select the better 
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parameters. 

These improvements indeed make ELM more stable, but they require high computational complexities 

because of the optimizations to input-layer weights and hidden-layer biases. Recently, a kind of optimization to 

ELM based on Bayesian prior knowledge, i.e., One-Hidden Layer Non-parametric Bayesian Kernel Machine 

(1HNBKM) [3], was proposed. Instead of the direct point-prediction, 1HNBKM estimates the posterior 

probability distribution of SLFN output so that the influence of random initialization is weakened. Due to avoid 

the time-consuming adjustment to random parameters, 1HNBKM saves a large amount of training time. In fact, 

1HNBKM uses Gaussian Process Regression (GPR) to yield the prior distribution for output and thus stabilizes 

the ELM prediction. For the convenience of discussion, we call 1HNBKM as GPRELM in this paper. In [3], the 

authors investigated the classification error rate (classification task) and root mean square error (regression 

task) of GPRELM with Radial Basis Function (RBF) kernel. In order to determine the necessary parameters in 

GPRELM, the scaled conjugate gradient descent algorithm is employed to carry out the optimization task.  

In this paper, we conduct a deeply experimental investigation to GPRELM, including its over-fitting 

characteristic and impacts of different kernels and learning parameters on classification performances (e.g., 

training accuracy, testing accuracy, training time and testing time) of GPRELM. The experimental results show 

that (1) the introduction of GPR leads to serious over-fitting for ELM although the randomization sensibility of 

ELM is weakened to some extent; (2) GPRELM can get the better classification accuracies with less hidden-layer 

nodes in comparison with original ELM; and (3) the smaller regularization factors usually bring about the higher 

training accuracies for GPRELM, while the larger regularization factors usually lead to the higher testing 

accuracies. These conclusions are useful to practical applications of 1HNBKM and can help users to select 

appropriate kernel and learning parameters for GPR based ELM. 

2. Improving Extreme Learning Machine with Gaussian Process Regression 

2.1. Original ELM 

Given the training data set with N distinct instances       1 2 1 21
D x ,y x , , , ,y , , ,

N

i i i i i iD i i i iMi
x x x y y y


   , 

ELM [9], [10] calculates the output-layer weight matrix as 

 
†H Y  , (1) 

where 

     
     

     

1 1 1 2 1 2 1

† 1 2 1 2 2 2 2

1 1 2 2

w x w x w x

w x w x w x
H

w x w x w x

L L

L L

N N L N L

g b g b g b

g b g b g b

g b g b g b

   
 

   
  
 
    
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activation function, L is the number of hidden-layer nodes of ELM, the input-layer weight matrix 
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and hidden-layer bias vector  1 2
b , , ,

L
b b b are randomly selected according to any continuous probability 

distribution [10], and the training output matrix is 
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For an unseen instance  1 2
x , , ,

D
x x x , ELM predicts its output as: 

    †y h x h x H Y   , (2) 

where         1 1 2 2
h x w x , w x , , w x

L L
g b g b g b    is the hidden-layer output vector of x . Due to avoid 

the iterative adjustments to weights and biases of SLFN, ELM's training speed can be thousands of times faster 

than BP [10]. ELM can achieve the equal generalization performances with Support Vector Machine (SVM) and 

Least Square SVM (LSSVM) [9]. From Eq. (2), we can find the predictive accuracy of ELM mainly depends on the 

calculation of †H . Sometimes, the random selections to input-layer weights W and hidden- layer biases b can 

produce nonsingular hidden-layer output matrix H which causes no solution of linear system H Y  and lowers 

the predictive accuracy of ELM [13]. This makes the prediction of ELM unstable and indicates that ELM is 

sensitive to random initialization. 

2.2. Gprelm 

GPRELM [3] is a recently proposed method to improve ELM's random sensitivity, which predicts the 

output y for unseen instance x according to the following joint Gaussian distribution: 

    
       

TH,H k h x ,HY
0,
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              

, (3) 

where         1 1 2 2
h x w x , w x , , w x

i i i L i L
g b g b g b    is the hidden-layer output vector of i-th training 

instance ( 1,2, ,i N ), 
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is the kernel matrix,                   1 2
k h x ,H h x ,h x , h x ,h x , , h x ,h x

N
    is the kernel vector, 

and                   
2

RBF 1 2 1 22

u v
u,v exp ,u , , , ,v , , ,

2
D D

u u u v v v
 
     
 
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 (4) 

is Radial Basis Function (RBF) kernel. 

From Eq. (3), we can derive the posterior distribution of predicted output y as 

    2P y h x ,H,Y ,   , (5) 

where the mean and variance of this Gaussian distribution are 

     2k h x ,H H,H I Y
N

       (6) 
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and 

            2 2 Th x ,h x k h x ,H H,H I k h x ,H
N

        , (7) 

Table 1. Details of 24 UCI Data Sets 

 Data sets Attributes Classes Class distribution Instances 
1 Auto Mpg  5 3 245/79/68  392  

2 Blood Transfusion  4 2 570/178  748  

3 Breast Cancer  10 2 458/241  699  

4 Breast Cancer W-D  30 2 357/212  569  

5 Breast Cancer W-P  33 2 151/47  198  

6 Cleveland  13 5 160/54/35/35/13  297  

7 Credit Approval  15 2 383/307  690  

8 Cylinder Bands  20 2 312/228  540  

9 Ecoli  5 8 143/77/52/35/20/5/2/2  336  

10 Glass Identification  9 7 76/70/29/17/13/9/0  214  

11 Haberman's Survival  3 2 225/81  306  

12 Heart Disease  13 2 150/120  270  

13 Image Segment  19 7 3307  2310  

14 Ionosphere  33 2 225/126  351  

15 Iris  4 3 503  150  

16 Magic Telescope  10 2 12332/6688  19020 (10%) 

17 New Thyroid Gland  5 3 150/35/30  215  

18 Page Blocks  10 5 4913/329/115/88/28  5473 (10%) 

19 Parkinsons  22 2 147/48  195  

20 Pima Indian Diabetes  8 2 500/268  768  

21 Sonar  60 2 111/97  208  

22 SPECTF Heart  44 2 212/55  267  

23 Vehicle Silhouettes  18 4 218/217/212/199  846  

24 Vowel Recognition  10 11 4811  528  

 

respectively, I is a N-by-N identity matrix. In GPRELM,  is used as the prediction output of unseen instance x , i.e., 

let 

     2y k h x ,H H,H I Y
N

     . (8) 

Meanwhile, GPRELM also defines the 95% confidence region for the estimation of unknown y as 

1.96 , 1.96     . 

So far, there is a parameter about which we don't discuss, that is the regularization factor 2

N
 in Eqs. (6)-(8). 

This parameter is related to Gaussian Process Regression (GPR) which assumes that 

 y h x   , (9) 

where the noise  obeys Gaussian distribution  20,
N

   . 

3. Experimental Analysis on Prediction Performance of GPRELM 

3.1. Experimental Setup 

In this comparative study, we use 24 UCI [11] classification data sets to validate the prediction performance of 
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GPRELM. The details of these 24 UCI data sets are summarized in Table 1. The data sets are firstly. 

 

Table 2. Training Accuracies of ELM, GPRELMRBF and GPRELMPoly on 24 UCI Data Sets 

 
ELM GPRELMRBF GPRELMPoly 
Training 
accuracy 

 ,
N

L   
Training 
accuracy  2, ,

N
L    

Training 
accuracy 

 , ,
N

L b  

1 0.918 (150, 2-19) 1.000 (10, 2-24, 2-9) 0.949 (30, 211, 15) 

2 0.824 (150, 2-24) 0.956 (50, 2-14, 2-6) 0.834 (90, 2-4, 10) 

3 1.000 (150, 2-14) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 10) 

4 1.000 (150, 2-14) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 95) 

5 1.000 (90, 2-24) 1.000 (10, 2-24, 2-9) 1.000 (20, 2-24, 55) 

6 0.869 (130, 2-24) 1.000 (10, 2-24, 2-9) 0.976 (60, 2-9, 25) 

7 0.854 (120, 2-24) 1.000 (10, 2-24, 2-9) 0.894 (150, 26, 15) 

8 0.935 (130, 2-19) 1.000 (10, 2-24, 2-9) 1.000 (30, 2-24, 80) 

9 0.946 (100, 2-24) 1.000 (10, 2-24, 2-9) 0.991 (140, 2-4, 45) 

10 0.995 (130, 2-24) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 15) 

11 0.846 (80, 2-19) 1.000 (60, 2-19, 2-8) 0.892 (60, 2-14, 30) 

12 1.000 (100, 2-24) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 5) 

13 0.974 (130, 2-14) 1.000 (10, 2-24, 2-9) 0.992 (80, 221, 20) 

14 0.946 (120, 2-24) 1.000 (50, 2-19, 2-8) 0.997 (140, 2-14, 100) 

15 1.000 (50, 2-24) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 5) 

16 0.913 (150, 2-24) 1.000 (10, 2-24, 2-9) 0.976 (100, 2-4, 40) 

17 1.000 (50, 2-24) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 5) 

18 0.985 (90, 2-24) 1.000 (10, 2-19, 2-5) 0.995 (80, 2-19, 15) 

19 1.000 (50, 2-19) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 5) 

20 0.887 (150, 2-19) 1.000 (10, 2-24, 2-9) 0.987 (50, 2-19, 25) 

21 0.952 (150, 2-19) 1.000 (70, 2-24, 2-9) 1.000 (140, 2-9, 100) 

22 0.794 (90, 2-4) 0.831 (140, 2-19, 2-9) 0.794 (80, 2-4, 95) 

23 0.928 (150, 2-24) 1.000 (10, 2-24, 2-9) 0.993 (130, 211, 15) 

24 1.000 (130, 2-19) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 35) 

 

preprocessed as the following procedures: (1) deleting the discrete-valued attributes. ELMs are mainly used to 

handle the classification and regression problems with continuous-valued attributes. (2) filling in the missing 

attribute-values. We use the unsupervised filter named ReplaceMissingValues in Weka [4] to fill in all the missing 

attribute-values in each data set. It replaces all missing values of continuous attributes with the means of the 

training data. (3) reducing the large data sets. To compromise the running time, we adopt the unsupervised filter 

named Resample with the sampleSizePercent 10 in Weka to randomly reduce the sizes of 2 large data sets: Magic 

Telescope and Page Blocks. 

For  ELM, we use the method proposed in [9] to calculate the Moore-Penrose generalized inverse †H of 

hidden-layer output matrix H as follows: 

 

 

1
2 T T

†

1
T 2 T

I H H H , if
H

H I HH , if

N

N

N L

N L





   
 
   


. (10) 

Besides RBF kernel used in GPRELM [3], we also consider using another kernel to construct GPRELM model, i.e., 

polynomial kernel 

       Poly 1 2 1 2
u,v u v+1 ,u , , , ,v , , ,

b

D D
u u u v v v    . (11) 
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Table 3. Testing Accuracies of ELM, GPRELMRBF and GPRELMPoly on 24 UCI Data Sets 

 
ELM GPRELMRBF GPRELMPoly 
Testing 
accuracy 

 ,
N

L   
Testing 
accuracy  2, ,

N
L    

Testing 
accuracy 

 , ,
N

L b  

1 0.819 (30, 2-14) 0.824 (40, 2-4, 2-4) 0.809 (30, 21, 5) 

2 0.802 (80, 2-9) 0.806 (100, 2-24, 28) 0.803 (40, 2-9, 10) 

3 0.971 (130, 21) 0.974 (140, 211, 2-5) 0.970 (90, 216, 5) 

4 0.974 (150, 2-9) 0.977 (40, 2-4, 2-6) 0.977 (60, 26, 5) 

5 0.763 (10, 2-14) 0.773 (50, 2-9, 24) 0.768 (40, 26, 5) 

6 0.579 (20, 2-4) 0.592 (40, 2-4, 21) 0.579 (40, 21, 5) 

7 0.777 (80, 2-19) 0.781 (80, 2-14, 23) 0.780 (10, 21, 10) 

8 0.678 (150, 2-9) 0.687 (70, 2-9, 2-1) 0.689 (40, 211, 10) 

9 0.875 (30, 2-9) 0.881 (140, 2-9, 28) 0.878 (70, 221, 10) 

10 0.673 (30, 2-9) 0.715 (150, 2-4, 2-2) 0.701 (10, 2-4, 5) 

11 0.771 (120, 2-9) 0.775 (20, 2-14, 22) 0.771 (130, 221, 10) 

12 0.837 (30, 2-4) 0.841 (100, 2-4, 21) 0.833 (20, 26, 5) 

13 0.951 (130, 2-14) 0.969 (90, 2-4, 2-5) 0.961 (110, 2-9, 5) 

14 0.838 (50, 2-14) 0.846 (50, 2-14, 2-4) 0.840 (40, 2-19, 85) 

15 0.980 (80, 2-9) 0.987 (100, 2-14, 27) 0.987 (100, 26, 5) 

16 0.840 (40, 2-19) 0.855 (80, 2-4, 2-4) 0.845 (10, 21, 10) 

17 0.953 (90, 2-14) 0.963 (140, 21, 2-9) 0.930 (100, 21, 5) 

18 0.936 (110, 2-9) 0.947 (20, 2-9, 2-1) 0.945 (110, 21, 5) 

19 0.933 (140, 2-9) 0.938 (130, 2-24, 2-1) 0.923 (100, 221, 10) 

20 0.779 (90, 2-4) 0.784 (20, 2-9, 210) 0.783 (60, 221, 10) 

21 0.745 (90, 2-14) 0.784 (150, 2-14, 23) 0.774 (140, 216, 20) 

22 0.794 (90, 2-4) 0.794 (110, 2-9, 21) 0.794 (70, 21, 5) 

23 0.768 (120, 2-14) 0.792 (110, 2-14, 25) 0.783 (90, 21, 5) 

24 0.881 (150, 2-14) 0.956 (130, 2-24, 2-9) 0.911 (150, 21, 5) 

 

We term GPRELMs with RBF kernel in Eq. (4) and polynomial kernel in Eq. (11) as GPRELMRBF and GPRELMPoly, 

respectively. 

There are four parameters that require to be determined in our experiment, i.e., the number L of hidden-layer 

nodes, regularization factor
N

 , 2 in RBF kernel, and b in polynomial kernel. We set them 

as:  10,20, ,140,150L  ,  24 19 16 212 ,2 , ,2 ,2
N

   ,  2 9 8 9 102 ,2 , ,2 ,2   ,and  5,10, ,95,100b  . We 

compare the training accuracy, testing accuracy, training time and testing time of ELM, GPRELMRBF and 

GPRELMPoly. For any given  ,
N

L  ,  2, ,
N

L   , and  , ,
N

L b , the experimental results corresponding to ELM, 

GPRELMRBF and GPRELMPoly are obtained based on the procedure of 10-times 10-fold cross-validation. 

3.2. Experimental Result and Analysis 

For 150 pairs of  ,
N

L  , 3000 triples of  2, ,
N

L   , and 3000 triples of  , ,
N

L b , Tables 2 and 3 

respectively present the best training and testing accuracies of ELM, GPRELMRBF and GPRELMPoly. Meanwhile, 

Table 4 gives the training and testing times of ELM, GPRELMRBF and GPRELMPoly on 24 UCI data sets 

corresponding to the best training and testing accuracies. From Table 2, we can see that (1) GPRELMRBF and 

GPRELMPoly obtain the better training accuracies than ELM; (2) RBF kernel make GPRELM get the better training 

accuracy than polynomial kernel; (3) GPRELMRBF obtains the better training accuracy with less hidden-layer 

nodes than ELM and GPRELMPoly on 23 data sets; and (4) GPRELMRBF obtains the better training accuracy with 

smaller regularization factor
N

 than ELM and GPRELMPoly. From Table 3, we can see that (1) GPRELMRBF and 
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GPRELMPoly obtain the better testing accuracies than ELM; (2) RBF kernel make GPRELM get the better testing 

accuracy than polynomial kernel; (3) GPRELMRBF obtains the better testing accuracy with more hidden-layer 

nodes than ELM and GPRELMPoly on 16 data sets; and (4) GPRELMRBF obtains the better training accuracy with 

smaller regularization factor
N

 than ELM and GPRELMPoly. From Table 4, we can see the training and testing 

times of GPRELMRBF and GPRELMPoly are all higher than ELM, because the calculations of kernel matrix and 

kernel vector are time-consuming. 

 

Table 4. Training/testing times of ELM, GPRELMRBF and GPRELMPoly on 24 UCI Data Sets 

 
ELM GPRELMRBF GPRELMPoly 
Training 
time 

Testing 
time 

Training 
time 

Testing 
time 

Training 
time 

Testing 
time 

1 0.047 0.008 0.117 0.141 0.148 0.125 

2 0.078 0.000 0.523 0.328 0.555 0.375 

3 0.078 0.016 0.328 0.187 0.344 0.336 

4 0.078 0.016 0.258 0.266 0.320 0.305 

5 0.016 0.000 0.023 0.023 0.047 0.031 

6 0.031 0.000 0.063 0.078 0.125 0.094 

7 0.047 0.008 0.328 0.313 0.461 0.391 

8 0.047 0.000 0.258 0.242 0.430 0.313 

9 0.008 0.000 0.055 0.102 0.109 0.133 

10 0.008 0.000 0.031 0.023 0.063 0.063 

11 0.008 0.000 0.086 0.063 0.109 0.078 

12 0.016 0.000 0.055 0.047 0.078 0.078 

13 0.125 0.031 6.031 3.266 6.133 3.766 

14 0.031 0.000 0.125 0.125 0.156 0.125 

15 0.000 0.000 0.023 0.016 0.016 0.016 

16 0.070 0.000 0.555 0.461 0.656 0.508 

17 0.008 0.000 0.031 0.07 0.023 0.047 

18 0.016 0.000 0.242 0.242 0.234 0.273 

19 0.008 0.008 0.031 0.031 0.047 0.031 

20 0.070 0.008 0.430 0.367 0.563 0.430 

21 0.023 0.000 0.055 0.047 0.078 0.086 

22 0.016 0.000 0.094 0.063 0.070 0.078 

23 0.070 0.000 0.570 0.531 0.875 0.609 

24 0.047 0.000 0.320 0.227 0.242 0.305 

 

 

In addition, we also check the impact of different parameter pairs on the training and testing accuracies of 

GPRELMRBF and GPRELMPoly. Taking the famous Iris data set as an example, we validate the impact of 
N

 and 

2 on GPRELMRBF (Fig. 1), impact of 
N

 and b on GPRELMPoly (Fig. 2), impact of L and
N

 on GPRELMRBF (Fig. 3), 

impact of L and
N

 on GPRELMPoly (Fig. 4), impact of L and 2 on GPRELMRBF (Fig. 5), and impact of L and 
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(a) L=50 (b) L=150 

Fig. 1. Impact of parameters
N

 and 2 on GPRELMRBF for Iris data set 

  
(a) L=50 (b) L=150 

Fig. 2. Impact of parameters
N

 and b on GPRELMPoly for Iris data set 

 

b on GPRELMPoly (Fig. 6). From Fig. 1, we can know the smaller regularization factor 
N

 and 2 bring about the 

higher training and testing accuracies for GPRELMRBF. From Fig. 2, we can find the regularization factor 

N
 doesn't influence the training and testing accuracies for GPRELMPoly remarkably. The smaller b leads to the 

higher training and testing accuracies for GPRELMPoly. By comparing the Fig. 3-(a) with Fig. 3-(b), we know that 

when 2 is small, the training and testing accuracies for GPRELMRBF are not remarkably impacted by L and
N

 . 

Fig. 4 tells us that when b is large, L and
N

 can't observably impact the training and testing accuracies for 

GPRELMPoly. From Figs. 5 and 6, we know when the smaller
N

 is selected, the training and testing accuracies of 

GPRELMRBF and GPRELMPoly can't be influenced by parameters L, 2 , and b. 

4. Conclusion 

In this paper, we empirically investigate the classification performances of two kinds of Gaussian Process 

Regression based Extreme Learning Machine (GPRELM), i.e., GPRELM with Radial Basis Function kernel 

(GPRELMRBF) and GPRELM with polynomial kernel (GPRELMPoly). The final results tell us that (1) GPRELMs can 

obtain the better generalization performances than ELM and meanwhile exist the serious over-fitting; (2) the 

number of hidden-layer nodes can't remarkably impact the training and testing accuracies of GPRELMRBF and 

GPRELMPoly; (3) the smaller regularization factors usually make the prediction of GPRELMs more stable. All these 

results provide the useful enlightenments and instructions for the theoretical studies and practical applications 

of GPRELMs. 
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(a) 2 92   (b) 2 102   

Fig. 3. Impact of parameters L and
N

 on GPRELMRBF for Iris data set. 

 

  
(a) b=5 (b) b=100 

Fig. 4. Impact of parameters L and
N

 on GPRELMPoly for Iris data set. 

 

  

(a) 242
N

   (b) 212
N

   

Fig. 5. Impact of parameters L and 2 on GPRELMRBF for Iris data set 

  

(a) 242
N

   (b) 212
N

   

Fig. 6. Impact of parameters L and b on GPRELMPoly for Iris data set 
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