

Comparative Analysis of Gaussian Process Regression
Based Extreme Learning Machine

Jing Zhou1*, Rui Ying Liu1, Xu Zhou2, Rana Aamir Raza Ashfaq3*
1 College of Science, Agricultural University of Hebei, Baoding 071001, China.
2 Department of Basic Courses, Agricultural University of Hebei, Huanghua 061100, China.
3 Department of Computer Science, Bahauddin Zakariya University, Multan, Pakistan.

* Corresponding authors. Emails: csjzhou@126.com, aamir@bzu.edu.pk
Manuscript submitted August 7, 2016; accepted August 31, 2017.
doi: 10.17706/jsw.12.4.292-302

Abstract: It is an effective way to overcome the randomization sensibility of extreme learning machine (ELM)

by using Gaussian process regression (GPR) to optimize the output-layer weights. The key of GPR based ELM

(GPRELM) is the selection of kernel function which is used to measure the similarity between different

hidden-layer output vectors. In this paper, we conduct an experimental analysis to compare the classification

performances of radial basis function (RBF) kernel and polynomial (Poly) kernel based GPRELMs. The

comparative results on 24 UCI data sets reveal that: (1) GPRELMs have the serious over-fitting; (2) GPRELMs

can get the better classification accuracies with less hidden-layer nodes in comparison with the original ELM;

and (3) the smaller regularization factors usually bring about the higher training accuracies for GPRELMs,

while the larger regularization factors usually result in the higher testing accuracies. All these conclusions

provide the useful enlightenments and instructions for the theoretical studies and practical applications of

GPRELMs.

Key words: Extreme learning machine, gaussian process regression; radial basis function kernel; polynomial
Kernel.

1. Introduction

Extreme learning machine (ELM) [8]-[10] is a simple training algorithm for single hidden-layer feed-forward

neural network (SLFN), which randomly selects the input-layer weights and hidden-layer biases and analytically

determines the output-layer weights. Thus, the training speed of ELM can be thousands of times faster than

traditional back-propagation (BP) algorithm. Meanwhile, the theoretically proof guarantees the universal

approximate capability of ELM. The lower computational complexity and better generalization performance

makes ELM obtain a wide range of applications [2], [6], [7], [14], [15], [17].

However, every coin has two sides. ELM also has some obvious defects one of which is the sensibility of

prediction result to random initialization. The researchers have conducted some representative works along this

direction. For example, Ref. [16] proposed an evolutionary ELM (E-ELM) which uses the differential evolutionary

algorithm to select the input weights and hidden biases for ELM. Then, [1] improved E-ELM and developed a

self-adaptive evolutionary extreme learning machine (SaE-ELM) to optimize the hidden node parameters.

Experimental results show SaE-ELM outperforms E-ELM. An optimized extreme learning machine (O-ELM) was

designed in [12], which uses three different optimization algorithms to optimize the input weights, hidden biases,

and regularization factor, simultaneously. Ref. [5] proposed two weight initialization schemes, i.e., binary ELM

based on {0, 1}-weights and ternary ELM based on {-1, 0, 1}-weights, to improve the diversity of neurons in the

hidden layer. For binary/ternary ELMs, the necessary optimizations are also required to select the better

Journal of Software

291 Volume 12, Number 4, April 2017

parameters.

These improvements indeed make ELM more stable, but they require high computational complexities

because of the optimizations to input-layer weights and hidden-layer biases. Recently, a kind of optimization to

ELM based on Bayesian prior knowledge, i.e., One-Hidden Layer Non-parametric Bayesian Kernel Machine

(1HNBKM) [3], was proposed. Instead of the direct point-prediction, 1HNBKM estimates the posterior

probability distribution of SLFN output so that the influence of random initialization is weakened. Due to avoid

the time-consuming adjustment to random parameters, 1HNBKM saves a large amount of training time. In fact,

1HNBKM uses Gaussian Process Regression (GPR) to yield the prior distribution for output and thus stabilizes

the ELM prediction. For the convenience of discussion, we call 1HNBKM as GPRELM in this paper. In [3], the

authors investigated the classification error rate (classification task) and root mean square error (regression

task) of GPRELM with Radial Basis Function (RBF) kernel. In order to determine the necessary parameters in

GPRELM, the scaled conjugate gradient descent algorithm is employed to carry out the optimization task.

In this paper, we conduct a deeply experimental investigation to GPRELM, including its over-fitting

characteristic and impacts of different kernels and learning parameters on classification performances (e.g.,

training accuracy, testing accuracy, training time and testing time) of GPRELM. The experimental results show

that (1) the introduction of GPR leads to serious over-fitting for ELM although the randomization sensibility of

ELM is weakened to some extent; (2) GPRELM can get the better classification accuracies with less hidden-layer

nodes in comparison with original ELM; and (3) the smaller regularization factors usually bring about the higher

training accuracies for GPRELM, while the larger regularization factors usually lead to the higher testing

accuracies. These conclusions are useful to practical applications of 1HNBKM and can help users to select

appropriate kernel and learning parameters for GPR based ELM.

2. Improving Extreme Learning Machine with Gaussian Process Regression

2.1. Original ELM

Given the training data set with N distinct instances       1 2 1 21
D x ,y x , , , ,y , , ,

N

i i i i i iD i i i iMi
x x x y y y


   ,

ELM [9], [10] calculates the output-layer weight matrix as

†H Y  , (1)

where

     
     

     

1 1 1 2 1 2 1

† 1 2 1 2 2 2 2

1 1 2 2

w x w x w x

w x w x w x
H

w x w x w x

L L

L L

N N L N L

g b g b g b

g b g b g b

g b g b g b

   
 

   
  
 
    

is Moore-Penrose generalized inverse of hidden-layer output matrix,  
 

 
1

, ,
1 exp

g v v
v

   
 

is sigmoid

activation function, L is the number of hidden-layer nodes of ELM, the input-layer weight matrix

11 21 1

12 22 2
1 2

1 2

W w ,w , ,w

D

D
L

L L DL

w w w

w w w

w w w

 
 
       
 
  

and hidden-layer bias vector  1 2
b , , ,

L
b b b are randomly selected according to any continuous probability

distribution [10], and the training output matrix is

Journal of Software

292 Volume 12, Number 4, April 2017

1 11 12 1

2 21 22 2

1 2

y

y
Y

y

M

M

N N N NM

y y y

y y y

y y y

   
   
    
   
   
      

.

For an unseen instance  1 2
x , , ,

D
x x x , ELM predicts its output as:

    †y h x h x H Y   , (2)

where         1 1 2 2
h x w x , w x , , w x

L L
g b g b g b    is the hidden-layer output vector of x . Due to avoid

the iterative adjustments to weights and biases of SLFN, ELM's training speed can be thousands of times faster

than BP [10]. ELM can achieve the equal generalization performances with Support Vector Machine (SVM) and

Least Square SVM (LSSVM) [9]. From Eq. (2), we can find the predictive accuracy of ELM mainly depends on the

calculation of †H . Sometimes, the random selections to input-layer weights W and hidden- layer biases b can

produce nonsingular hidden-layer output matrix H which causes no solution of linear system H Y  and lowers

the predictive accuracy of ELM [13]. This makes the prediction of ELM unstable and indicates that ELM is

sensitive to random initialization.

2.2. Gprelm

GPRELM [3] is a recently proposed method to improve ELM's random sensitivity, which predicts the

output y for unseen instance x according to the following joint Gaussian distribution:

    
       

TH,H k h x ,HY
0,

y k h x ,H h x ,h x

              

, (3)

where         1 1 2 2
h x w x , w x , , w x

i i i L i L
g b g b g b    is the hidden-layer output vector of i-th training

instance (1,2, ,i N),

 

              
              

              

1 1 1 2 1

2 1 2 2 2

1 2

h x ,h x h x ,h x h x ,h x

h x ,h x h x ,h x h x ,h x
H,H

h x ,h x h x ,h x h x ,h x

N

N

N N N N

   
 
   

   
 
 
    

is the kernel matrix,                   1 2
k h x ,H h x ,h x , h x ,h x , , h x ,h x

N
    is the kernel vector,

and      
2

RBF 1 2 1 22

u v
u,v exp ,u , , , ,v , , ,

2
D D

u u u v v v
 
     
 
 

 (4)

is Radial Basis Function (RBF) kernel.

From Eq. (3), we can derive the posterior distribution of predicted output y as

    2P y h x ,H,Y ,   , (5)

where the mean and variance of this Gaussian distribution are

     2k h x ,H H,H I Y
N

      (6)

Journal of Software

293 Volume 12, Number 4, April 2017

and

            2 2 Th x ,h x k h x ,H H,H I k h x ,H
N

        , (7)

Table 1. Details of 24 UCI Data Sets

 Data sets Attributes Classes Class distribution Instances
1 Auto Mpg 5 3 245/79/68 392

2 Blood Transfusion 4 2 570/178 748

3 Breast Cancer 10 2 458/241 699

4 Breast Cancer W-D 30 2 357/212 569

5 Breast Cancer W-P 33 2 151/47 198

6 Cleveland 13 5 160/54/35/35/13 297

7 Credit Approval 15 2 383/307 690

8 Cylinder Bands 20 2 312/228 540

9 Ecoli 5 8 143/77/52/35/20/5/2/2 336

10 Glass Identification 9 7 76/70/29/17/13/9/0 214

11 Haberman's Survival 3 2 225/81 306

12 Heart Disease 13 2 150/120 270

13 Image Segment 19 7 3307 2310

14 Ionosphere 33 2 225/126 351

15 Iris 4 3 503 150

16 Magic Telescope 10 2 12332/6688 19020 (10%)

17 New Thyroid Gland 5 3 150/35/30 215

18 Page Blocks 10 5 4913/329/115/88/28 5473 (10%)

19 Parkinsons 22 2 147/48 195

20 Pima Indian Diabetes 8 2 500/268 768

21 Sonar 60 2 111/97 208

22 SPECTF Heart 44 2 212/55 267

23 Vehicle Silhouettes 18 4 218/217/212/199 846

24 Vowel Recognition 10 11 4811 528

respectively, I is a N-by-N identity matrix. In GPRELM,  is used as the prediction output of unseen instance x , i.e.,

let

     2y k h x ,H H,H I Y
N

     . (8)

Meanwhile, GPRELM also defines the 95% confidence region for the estimation of unknown y as

1.96 , 1.96     .

So far, there is a parameter about which we don't discuss, that is the regularization factor 2

N
 in Eqs. (6)-(8).

This parameter is related to Gaussian Process Regression (GPR) which assumes that

 y h x   , (9)

where the noise  obeys Gaussian distribution  20,
N

   .

3. Experimental Analysis on Prediction Performance of GPRELM

3.1. Experimental Setup

In this comparative study, we use 24 UCI [11] classification data sets to validate the prediction performance of

Journal of Software

294 Volume 12, Number 4, April 2017

GPRELM. The details of these 24 UCI data sets are summarized in Table 1. The data sets are firstly.

Table 2. Training Accuracies of ELM, GPRELMRBF and GPRELMPoly on 24 UCI Data Sets

ELM GPRELMRBF GPRELMPoly
Training
accuracy

 ,
N

L 
Training
accuracy  2, ,

N
L  

Training
accuracy

 , ,
N

L b

1 0.918 (150, 2-19) 1.000 (10, 2-24, 2-9) 0.949 (30, 211, 15)

2 0.824 (150, 2-24) 0.956 (50, 2-14, 2-6) 0.834 (90, 2-4, 10)

3 1.000 (150, 2-14) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 10)

4 1.000 (150, 2-14) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 95)

5 1.000 (90, 2-24) 1.000 (10, 2-24, 2-9) 1.000 (20, 2-24, 55)

6 0.869 (130, 2-24) 1.000 (10, 2-24, 2-9) 0.976 (60, 2-9, 25)

7 0.854 (120, 2-24) 1.000 (10, 2-24, 2-9) 0.894 (150, 26, 15)

8 0.935 (130, 2-19) 1.000 (10, 2-24, 2-9) 1.000 (30, 2-24, 80)

9 0.946 (100, 2-24) 1.000 (10, 2-24, 2-9) 0.991 (140, 2-4, 45)

10 0.995 (130, 2-24) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 15)

11 0.846 (80, 2-19) 1.000 (60, 2-19, 2-8) 0.892 (60, 2-14, 30)

12 1.000 (100, 2-24) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 5)

13 0.974 (130, 2-14) 1.000 (10, 2-24, 2-9) 0.992 (80, 221, 20)

14 0.946 (120, 2-24) 1.000 (50, 2-19, 2-8) 0.997 (140, 2-14, 100)

15 1.000 (50, 2-24) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 5)

16 0.913 (150, 2-24) 1.000 (10, 2-24, 2-9) 0.976 (100, 2-4, 40)

17 1.000 (50, 2-24) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 5)

18 0.985 (90, 2-24) 1.000 (10, 2-19, 2-5) 0.995 (80, 2-19, 15)

19 1.000 (50, 2-19) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 5)

20 0.887 (150, 2-19) 1.000 (10, 2-24, 2-9) 0.987 (50, 2-19, 25)

21 0.952 (150, 2-19) 1.000 (70, 2-24, 2-9) 1.000 (140, 2-9, 100)

22 0.794 (90, 2-4) 0.831 (140, 2-19, 2-9) 0.794 (80, 2-4, 95)

23 0.928 (150, 2-24) 1.000 (10, 2-24, 2-9) 0.993 (130, 211, 15)

24 1.000 (130, 2-19) 1.000 (10, 2-24, 2-9) 1.000 (10, 2-24, 35)

preprocessed as the following procedures: (1) deleting the discrete-valued attributes. ELMs are mainly used to

handle the classification and regression problems with continuous-valued attributes. (2) filling in the missing

attribute-values. We use the unsupervised filter named ReplaceMissingValues in Weka [4] to fill in all the missing

attribute-values in each data set. It replaces all missing values of continuous attributes with the means of the

training data. (3) reducing the large data sets. To compromise the running time, we adopt the unsupervised filter

named Resample with the sampleSizePercent 10 in Weka to randomly reduce the sizes of 2 large data sets: Magic

Telescope and Page Blocks.

For ELM, we use the method proposed in [9] to calculate the Moore-Penrose generalized inverse †H of

hidden-layer output matrix H as follows:

 

 

1
2 T T

†

1
T 2 T

I H H H , if
H

H I HH , if

N

N

N L

N L





   
 
   


. (10)

Besides RBF kernel used in GPRELM [3], we also consider using another kernel to construct GPRELM model, i.e.,

polynomial kernel

       Poly 1 2 1 2
u,v u v+1 ,u , , , ,v , , ,

b

D D
u u u v v v    . (11)

Journal of Software

295 Volume 12, Number 4, April 2017

Table 3. Testing Accuracies of ELM, GPRELMRBF and GPRELMPoly on 24 UCI Data Sets

ELM GPRELMRBF GPRELMPoly
Testing
accuracy

 ,
N

L 
Testing
accuracy  2, ,

N
L  

Testing
accuracy

 , ,
N

L b

1 0.819 (30, 2-14) 0.824 (40, 2-4, 2-4) 0.809 (30, 21, 5)

2 0.802 (80, 2-9) 0.806 (100, 2-24, 28) 0.803 (40, 2-9, 10)

3 0.971 (130, 21) 0.974 (140, 211, 2-5) 0.970 (90, 216, 5)

4 0.974 (150, 2-9) 0.977 (40, 2-4, 2-6) 0.977 (60, 26, 5)

5 0.763 (10, 2-14) 0.773 (50, 2-9, 24) 0.768 (40, 26, 5)

6 0.579 (20, 2-4) 0.592 (40, 2-4, 21) 0.579 (40, 21, 5)

7 0.777 (80, 2-19) 0.781 (80, 2-14, 23) 0.780 (10, 21, 10)

8 0.678 (150, 2-9) 0.687 (70, 2-9, 2-1) 0.689 (40, 211, 10)

9 0.875 (30, 2-9) 0.881 (140, 2-9, 28) 0.878 (70, 221, 10)

10 0.673 (30, 2-9) 0.715 (150, 2-4, 2-2) 0.701 (10, 2-4, 5)

11 0.771 (120, 2-9) 0.775 (20, 2-14, 22) 0.771 (130, 221, 10)

12 0.837 (30, 2-4) 0.841 (100, 2-4, 21) 0.833 (20, 26, 5)

13 0.951 (130, 2-14) 0.969 (90, 2-4, 2-5) 0.961 (110, 2-9, 5)

14 0.838 (50, 2-14) 0.846 (50, 2-14, 2-4) 0.840 (40, 2-19, 85)

15 0.980 (80, 2-9) 0.987 (100, 2-14, 27) 0.987 (100, 26, 5)

16 0.840 (40, 2-19) 0.855 (80, 2-4, 2-4) 0.845 (10, 21, 10)

17 0.953 (90, 2-14) 0.963 (140, 21, 2-9) 0.930 (100, 21, 5)

18 0.936 (110, 2-9) 0.947 (20, 2-9, 2-1) 0.945 (110, 21, 5)

19 0.933 (140, 2-9) 0.938 (130, 2-24, 2-1) 0.923 (100, 221, 10)

20 0.779 (90, 2-4) 0.784 (20, 2-9, 210) 0.783 (60, 221, 10)

21 0.745 (90, 2-14) 0.784 (150, 2-14, 23) 0.774 (140, 216, 20)

22 0.794 (90, 2-4) 0.794 (110, 2-9, 21) 0.794 (70, 21, 5)

23 0.768 (120, 2-14) 0.792 (110, 2-14, 25) 0.783 (90, 21, 5)

24 0.881 (150, 2-14) 0.956 (130, 2-24, 2-9) 0.911 (150, 21, 5)

We term GPRELMs with RBF kernel in Eq. (4) and polynomial kernel in Eq. (11) as GPRELMRBF and GPRELMPoly,

respectively.

There are four parameters that require to be determined in our experiment, i.e., the number L of hidden-layer

nodes, regularization factor
N

 , 2 in RBF kernel, and b in polynomial kernel. We set them

as:  10,20, ,140,150L  ,  24 19 16 212 ,2 , ,2 ,2
N

   ,  2 9 8 9 102 ,2 , ,2 ,2   ,and  5,10, ,95,100b  . We

compare the training accuracy, testing accuracy, training time and testing time of ELM, GPRELMRBF and

GPRELMPoly. For any given  ,
N

L  ,  2, ,
N

L   , and  , ,
N

L b , the experimental results corresponding to ELM,

GPRELMRBF and GPRELMPoly are obtained based on the procedure of 10-times 10-fold cross-validation.

3.2. Experimental Result and Analysis

For 150 pairs of  ,
N

L  , 3000 triples of  2, ,
N

L   , and 3000 triples of  , ,
N

L b , Tables 2 and 3

respectively present the best training and testing accuracies of ELM, GPRELMRBF and GPRELMPoly. Meanwhile,

Table 4 gives the training and testing times of ELM, GPRELMRBF and GPRELMPoly on 24 UCI data sets

corresponding to the best training and testing accuracies. From Table 2, we can see that (1) GPRELMRBF and

GPRELMPoly obtain the better training accuracies than ELM; (2) RBF kernel make GPRELM get the better training

accuracy than polynomial kernel; (3) GPRELMRBF obtains the better training accuracy with less hidden-layer

nodes than ELM and GPRELMPoly on 23 data sets; and (4) GPRELMRBF obtains the better training accuracy with

smaller regularization factor
N

 than ELM and GPRELMPoly. From Table 3, we can see that (1) GPRELMRBF and

Journal of Software

296 Volume 12, Number 4, April 2017

GPRELMPoly obtain the better testing accuracies than ELM; (2) RBF kernel make GPRELM get the better testing

accuracy than polynomial kernel; (3) GPRELMRBF obtains the better testing accuracy with more hidden-layer

nodes than ELM and GPRELMPoly on 16 data sets; and (4) GPRELMRBF obtains the better training accuracy with

smaller regularization factor
N

 than ELM and GPRELMPoly. From Table 4, we can see the training and testing

times of GPRELMRBF and GPRELMPoly are all higher than ELM, because the calculations of kernel matrix and

kernel vector are time-consuming.

Table 4. Training/testing times of ELM, GPRELMRBF and GPRELMPoly on 24 UCI Data Sets

ELM GPRELMRBF GPRELMPoly
Training
time

Testing
time

Training
time

Testing
time

Training
time

Testing
time

1 0.047 0.008 0.117 0.141 0.148 0.125

2 0.078 0.000 0.523 0.328 0.555 0.375

3 0.078 0.016 0.328 0.187 0.344 0.336

4 0.078 0.016 0.258 0.266 0.320 0.305

5 0.016 0.000 0.023 0.023 0.047 0.031

6 0.031 0.000 0.063 0.078 0.125 0.094

7 0.047 0.008 0.328 0.313 0.461 0.391

8 0.047 0.000 0.258 0.242 0.430 0.313

9 0.008 0.000 0.055 0.102 0.109 0.133

10 0.008 0.000 0.031 0.023 0.063 0.063

11 0.008 0.000 0.086 0.063 0.109 0.078

12 0.016 0.000 0.055 0.047 0.078 0.078

13 0.125 0.031 6.031 3.266 6.133 3.766

14 0.031 0.000 0.125 0.125 0.156 0.125

15 0.000 0.000 0.023 0.016 0.016 0.016

16 0.070 0.000 0.555 0.461 0.656 0.508

17 0.008 0.000 0.031 0.07 0.023 0.047

18 0.016 0.000 0.242 0.242 0.234 0.273

19 0.008 0.008 0.031 0.031 0.047 0.031

20 0.070 0.008 0.430 0.367 0.563 0.430

21 0.023 0.000 0.055 0.047 0.078 0.086

22 0.016 0.000 0.094 0.063 0.070 0.078

23 0.070 0.000 0.570 0.531 0.875 0.609

24 0.047 0.000 0.320 0.227 0.242 0.305

In addition, we also check the impact of different parameter pairs on the training and testing accuracies of

GPRELMRBF and GPRELMPoly. Taking the famous Iris data set as an example, we validate the impact of
N

 and

2 on GPRELMRBF (Fig. 1), impact of
N

 and b on GPRELMPoly (Fig. 2), impact of L and
N

 on GPRELMRBF (Fig. 3),

impact of L and
N

 on GPRELMPoly (Fig. 4), impact of L and 2 on GPRELMRBF (Fig. 5), and impact of L and

Journal of Software

297 Volume 12, Number 4, April 2017

(a) L=50 (b) L=150

Fig. 1. Impact of parameters
N

 and 2 on GPRELMRBF for Iris data set

(a) L=50 (b) L=150

Fig. 2. Impact of parameters
N

 and b on GPRELMPoly for Iris data set

b on GPRELMPoly (Fig. 6). From Fig. 1, we can know the smaller regularization factor
N

 and 2 bring about the

higher training and testing accuracies for GPRELMRBF. From Fig. 2, we can find the regularization factor

N
 doesn't influence the training and testing accuracies for GPRELMPoly remarkably. The smaller b leads to the

higher training and testing accuracies for GPRELMPoly. By comparing the Fig. 3-(a) with Fig. 3-(b), we know that

when 2 is small, the training and testing accuracies for GPRELMRBF are not remarkably impacted by L and
N

 .

Fig. 4 tells us that when b is large, L and
N

 can't observably impact the training and testing accuracies for

GPRELMPoly. From Figs. 5 and 6, we know when the smaller
N

 is selected, the training and testing accuracies of

GPRELMRBF and GPRELMPoly can't be influenced by parameters L, 2 , and b.

4. Conclusion

In this paper, we empirically investigate the classification performances of two kinds of Gaussian Process

Regression based Extreme Learning Machine (GPRELM), i.e., GPRELM with Radial Basis Function kernel

(GPRELMRBF) and GPRELM with polynomial kernel (GPRELMPoly). The final results tell us that (1) GPRELMs can

obtain the better generalization performances than ELM and meanwhile exist the serious over-fitting; (2) the

number of hidden-layer nodes can't remarkably impact the training and testing accuracies of GPRELMRBF and

GPRELMPoly; (3) the smaller regularization factors usually make the prediction of GPRELMs more stable. All these

results provide the useful enlightenments and instructions for the theoretical studies and practical applications

of GPRELMs.

Journal of Software

298 Volume 12, Number 4, April 2017

(a) 2 92  (b) 2 102 

Fig. 3. Impact of parameters L and
N

 on GPRELMRBF for Iris data set.

(a) b=5 (b) b=100

Fig. 4. Impact of parameters L and
N

 on GPRELMPoly for Iris data set.

(a) 242
N

  (b) 212
N

 

Fig. 5. Impact of parameters L and 2 on GPRELMRBF for Iris data set

(a) 242
N

  (b) 212
N

 

Fig. 6. Impact of parameters L and b on GPRELMPoly for Iris data set

Journal of Software

299 Volume 12, Number 4, April 2017

Acknowledgment

We thank the Editor and anonymous reviewers very much for their valuable comments which help us to

improve this paper significantly. This paper was supported by Science and Technology Foundation of

Agricultural University of Hebei (LG201634), China Postdoctoral Science Foundation (2016T90799), and

National Natural Science Foundation of China (61503252).

References

[1] Cao, J., Lin, Z., & Huang, G. B. (2012). Self-adaptive evolutionary extreme learning machine. Neural

Processing Letters, 36(3), 285-305.

[2] Chacko, B. P., Krishnan, V. R. V., Raju, G., & Anto, P. B. (2012). Handwritten character recognition using

wavelet energy and extreme learning machine. International Journal of Machine Learning and

Cybernetics, 3(2), 149-161.

[3] Chatzis, S. P., Korkinof, D., & Demiris, Y. (2011). The one-hidden layer non-parametric Bayesian kernel

machine. Proceedings of IEEE International Conference on Tools with Artificial Intelligence.

[4] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten I. H. (2009). The WEKA data mining

software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18.

[5] Heeswijk, M. V., & Miche, Y. (2015). Binary/ternary extreme learning machines. Neurocomputing, 149,

187-197.

[6] Heeswijk, M., Miche, Y., Lindh-Knuutila, T., Hilbers, P. A. J., Honkela, T., Oja, E., & Lendasse, A. (2009).

Adaptive ensemble models of extreme learning machines for time series prediction. Lecture Notes in

Computer Science, 5769, 305-314.

[7] Helmy, T., & Rasheed, Z. (2009). Multi-category bioinformatics dataset classification using extreme

learning machine. Proceedings of IEEE Congress on Evolutionary Computation.

[8] Huang, G. B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: a survey. International Journal of

Machine Learning and Cybernetics, 2(2), 107-122.

[9] Huang, G. B., Zhou, H. M., Ding, X. J., & Zhang, R. (2012). Extreme learning machine for regression and

multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(2),

513-529.

[10] Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications.

Neurocomputing, 70(1), 489-501.

[11] Lichman, M. (2013). UCI machine learning repository. Irvine, CA: University of California, School of

Information and Computer Science.

[12] Matias, T., Souza, F., Araújo, R., & Antunes, C. H. (2014). Learning of a single-hidden layer feedforward

neural network using an optimized extreme learning machine. Neurocomputing, 129, 428-436.

[13] Wang, Y. G., Cao, F. L., & Yuan Y. B. (2011). A study on effectiveness of extreme learning machine.

Neurocomputing, 74(16), 2483-2490.

[14] Zhang, Y., Xu, B., & Li., H. B. (2015). Adaptive neural control of a quadrotor helicopter with extreme

learning machine. Proceedings in Adaptation, Learning and Optimization.

[15] Zheng, W. B., Qian, Y. T., & Lu, H. J. (2013). Text categorization based on regularization extreme learning

machine. Neural Computing and Applications, 22(3-4), 447-456.

[16] Zhu, Q. Y., Qin, A., Suganthan, P., & Huang, G. B. (2005). Evolutionary extreme learning machine. Pattern

Recognition, 38(10), 1759-1763.

[17] Zong, W. W., & Huang, G. B. (2011). Face recognition based on extreme learning machine.

Neurocomputing, 74(16), 2541-2551.

Journal of Software

300 Volume 12, Number 4, April 2017

Jing Zhou received her bachelor degree in mathematics and applied mathematics from

Hebei Normal University in June 2003, and received her Master degree in Fundamental

Mathematics from Hebei University in June 2010. She has been engaged in the teaching

and research of mathematics in Hebei Agricultural University since July 2003. Her

research interests include extreme learning machine, artificial neural networks, probability

density function estimation, and Bayesian network.

Ruiying Liu received her bachelor degree in information and computing science from

Yanshan University in June 2004,and received her Master degree in Applied Mathematics

from Hebei University in June 2009. She has been teaching in Hebei Agricultural University

since July 2004. Her research interests include artificial neural networks and their practical

applications.

Xu Zhou received his Bachelor's degree in mathematics and application from Agricultural

University of Hebei, Baoding, China, in June 2010. He received his Master degree in

Application Mathematics from Hebei University of Hebei, Baoding, China, in June 2013. He is

currently a mathematics teacher in Agricultural University of Hebei, Baoding, China. His

research interests include artificial neural networks, machine learning, extreme learning

machine, and support vector machine.

Rana Aamir Raza Ashfaq received his master degree in computer science from Blekinge

Tekniska Hgskola (BTH), Sweden. He also received his Bachelor and Master Degrees in

Computer Science from Bahauddin Zakariya University, Multan, Pakistan. Since 2010 he is

working as Assistant Professor in Department of Computer Science, Bahauddin Zakariya

University, Multan, Pakistan. He is currently a Ph.D. student in College of Computer Science

& Software Engineering, Shenzhen University, Shenzhen, Guangdong, China. His main

research interests include machine learning and big data mining.

Journal of Software

301 Volume 12, Number 4, April 2017

