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Abstract: A new chaotic system with constant Lyapunov exponent spectrum is presented, two system 

parameters of which remain constant exponent characteristics. The basic dynamic properties of the new 

system are analyzed by Poincar section, Lyapunov exponent and dimension and the signal power spectrum. 

Based on the Lyapunov exponent spectrum, bifurcation diagrams and state variable amplitude with respect 

to system parameters show that the new system has two parameters with globally nonlinear modulation 

characteristic. Based on the Lyapunov stability theory and the improvement of the traditional method, 

through constructing a Lyapunov function with containing a positive constant that the complete 

synchronization with single controllers are achieved by means of nonlinear active feedback, adaptive, 

backstepping and passive control theory, respectively. And the designed single controllers are verified via 

numerical simulation. Because of single controller, synchronous switch circuit consists of four 

synchronization schemes is implemented, which further validate the correctness and practicability of the 

single controllers.  
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1. Introduction 

Chaotic system is discovered by America meteorologist Lorenz in the last century 60's [1]. Subsequently, 

the research and application of chaos theory in many fields has attracted much attention. Until the early 

ninety's Pecoro and Carroll firstly achieved synchronization of chaotic system and implementation of 

synchronous circuit [2], [3] by using variable substitution method. Research on chaos synchronization has 

been found extensive application prospect in secure communication, bioengineering, image encryption and 

other disciplines [4]-[6], so more and more scholars devoted to the research of chaos synchronization. 

Studies on chaos are mainly including the dynamic characteristics of the system analysis, synchronization 

control of chaotic system, and circuit design and physically implemented [7]-[9]. 

With the development of chaos theory and computer technology, various kinds of new chaotic systems 

have been found in [10]-[13]. To the best of our knowledge, the reports and variety about a chaotic system 

with constant Lyapunov exponent spectrum are rare. Li Chunbiao et al proposed several kinds of chaotic 

systems with constant Lyapunov exponent spectrum, which have common characteristics that strange 

attractor is generated from the absolute terms[14]-[16]. Zhou Xiaoyong presented a new chaotic system 
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with constant Lyapunov exponent spectrum and investigated the functional relationship between the 

constant exponent parameters and the amplitude of the signal of the system[17]. Because of the chaotic 

system with constant Lyapunov exponent spectrum has more special dynamic characteristics than the 

general one, which has great application prospect in the circuit realization and cost control in industrial 

application, so discovery and study of chaotic system with constant LE spectrum become another one 

research hotspot of chaos theory. Chaotic synchronization achieved fruitful results in recent years. Hybrid 

phase synchronization for a three-dimensional chaotic system was discussed with active feedback control 

method in literature [18]. References therein [19] achieved synchronous control of Chua's circuit based on 

the symbol function. Synchronization of chaotic systems with unknown parameters was investigated by 

utilizing adaptive method [20], and passive synchronization control, backstepping method [21]-[23], and so 

on. However, during the above employed approaches, controllers are designed more than one, which will be 

difficult in industrial implementation and cost control in the future. To the best of our knowledge, a 

synchronous circuit implemented contains adaptive synchronization, active synchronization, backsteeping 

synchronization and passive synchronization has never been reported ever. And the synchronous 

performance of single controller or multi-controller is the same. Therefore decrease the number and 

simplify the structure of synchronization controllers are the research objectives of chaos synchronization 

theory. 

This paper presents a new three-dimensional autonomous chaotic system with constant Lyapunov 

exponent spectrum of double parameters contains five variable parameters, and the dynamic 

characteristics of the system is generated through the cross-product terms and a quadratic component. 

First, the dynamic characteristics of the new system are investigated by means of theoretical derivation, 

numerical simulation, Lyapunov dimension and exponent, Poincare section, power spectrum, LE spectrum 

and bifurcation diagram. And the characteristics for amplitude and phase inversion of the parameters with 

constant exponent are studied. Because of the improvement of the traditional method and the particularity 

of system structure, based on Lyapunov stability theory, the new system can be successively synchronized 

with a single controller by means of active control, adaptive control, passive control, backstepping control 

and so on. The numerical simulation is carried out to verify the validity of the above approaches of 

synchronization. Due to the single controllers, the switching synchronization can be easily realized via 

experimental circuit. Finally, the design of synchronous switch circuit was realized including four 

synchronization schemes and operated through different combination of switches, which further illustrate 

the practicability of synchronization. 

This paper is organized as follows. In Section 2, the basic dynamic characteristics of the system are given. 

In Section 3, four kinds of synchronization schemes of the system are given, and the correctness of the 

schemes are proved through Lyapunov stability theorem. In Section 4, the correctness of the designed 

controllers are proved via the numerical simulation. In Section 5, synchronous switching circuit is designed. 

2. The New System 

In [24], Lü presented a chaotic system, which connects the Lorenz system and Chen system and 

represents the transition from one to the other. Lü system is described by 

( )x a x y

y xz cy

z bz xy

  

  

  

 

We replace ax and xz with y2 and dz, respectively. And introducing a system parameter g to the third 

equation of the above system, a new three-dimensional continuous autonomous system with five 
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parameters is obtained as 

2( )x a x y

y cz by

z dz gxy

  

  

  

             (1) 

where a, b, c, d, g are constant parameters of system, x, y, z are state variables. The system has two strange 

attractors are shown in Fig. 1 with a=1, b=2, c=1, d=4, g=1. The existence of the attractors is illustrated via 

analysing the basic dynamic properties of the system. 

 

 
Fig. 1. Attractor of system (1) (a) 3D phase diagram (b) projection x-y plane(c) projection in z-x plane (d) 

projection in z-y plane. 
 

Remark 1: The literature [13] proposes a three-dimensional chaotic system with multiple attractors in 

case of different system parameters, which contains only the cross quadratic terms and four system 

parameters. However, system (1) also has multiple chaotic attractors with selecting the proper system 

parameters, and which is a system with constant Lyapunov exponent spectrum of double-parameters.  

1) Poincaré cross section and the signal power spectrum of the system are shown in Fig.2. The poincaré 

maps projected on different planes are shown in Fig. 2 (a) (b) (c) where there exist patches of dense 

points with fractal structure [12] and Fig. 2 (d) (e) (f) are the continuous power spectrum of different 

system signals which imply the system (1) is a chaotic system. 

2) The divergence of system (1) is given by 
x y z

V a b d
x y z

  
       

  
, clearly, we have 0V   

with a=1, b=2, d=4. Therefore, system (1) is dissipative. Dissipative exponential convergence rate is 

e-3[12]. The volume element of system shrinks to a specific subset of zero volume at an exponential 

rate e-3 with the time evolution, that is to say the motion of the system can be fixed to a strange 

attractor. Three equilibria of the system obtained by sloving the equation =0x y z  , which are 

described respectively as：
1 (0,0,0)s  ,

3

2 3
( , , )
db db db

s
cg gc gc

 , 
3

2 3
( , , )
db db db

s
cg gc gc

   .The Jacobian 
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matrix J obtained by linearing system (1) about equilibrium points is defined as J =

1 2 3, ,

2 0

0

S S S

a ay

b c

gy gx d

 
 


 
  

. In order to calculate conveniently, substitute a=1, b=2, c=1, d=4 and g=1 into 

equilibrium points such that S2=(8, 2 2 , 2 3 ), S3=(8,- 2 2 , - 2 3 ). The eigenvalues of J correspond 

to equilibrium point S1 are obtained as
1=-1 , 

2 =2 , 
3= 4  , and eigenvalues correspond to 

equilibrium points S2 S3 are as λ1=-3.6520, λ2= 0.3260 + 2.0676i, λ3=0.3260-2.0676i. According to the 

Routh-Hurwitz condition, the equilibrium point is stable only when all of eigenvalues for the Jacobian 

matrix correspond to the equilibrium points have negative real part, so S1, S2, S3 are unstable the 

system can produce chaotic. 

3) Lyapunov exponents are used to measure the exponential rates of divergence and convergence of 

nearby trajectories, which is an important characteristic to judge the system whether is in a chaotic 

state or not. The existence of at least one positive Lyapunov exponent implies the system is chaos 

system. 

Three Lyapunov exponents to system (1) were obtained using Jacobi matrix method as: λ1=0.241188, 

λ2=0.000925, λ3=-3.242113, λ1>0 implies system(1) is chaotic system. The same can be determined 

according to the Lyapunov dimension: 

11

0.241188 0.000925

3.242113

1
2 2.074

j

L i

ij

D j 
 


      

According to the above computational formula of Lyapunov dimension, Lyapunov dimension is fractal 

which illustrates system (1) is chaotic system. 

 

Fig. 2. Poincare section and power spectrum (a) z=0 (b) x=3 (c) y=0 (d) x(t) (e) y(t) (f) z(t). 

3. Constant Exponent Characteristic 

According to the Jacobi matrix J to find out the characteristic polynomial: 

2( ) ( )( )( ) 2 ( )f a b d acgy a cgx                   (2) 
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Substituting the three equilibrium points into (2), we get 

1( ) ( )( )( )sf a b d                (3) 

1 2,( ) ( )( )( ) ( ) 2s sf a b d a db adb                     (4) 

According to (3), (4), eigenvalues of Jacobi matrix corresponding to equilibrium points of the system have 

nothing to do with the values of system parameters c and g , the same as the eigenvalues of J obtained from 

system (1) linearized at any points, that is to say changes of parameters c, g will not affect the dynamic 

characteristics of system (1) at the equilibrium point and any points in the phase space. When a=1, b=2,  

d=4, g=1, 1≤c≤10, Lyapunov exponents of the system and the bifurcation diagram are shown in Fig. 3. When 

a=1, b=2, c=1, d=4, 1≤g≤10, Lyapunov exponents of the system and the bifurcation diagram are described in 

Fig. 4. 

 

 
Fig. 3. Lyapunov exponents spectrum and bifurcation diagram (a) Lyapunov exponents spectrum versus 

[1 10]c  (b) bifurcation diagram versus [1 10]c . 

 
Fig. 4. Lyapunov exponents spectrum and bifurcation diagram (a) Lyapunov exponents spectrum versus

[1 10]g  (b) bifurcation diagram versus [1 10]g . 

 
Fig. 3(a) and Fig.4 (a) clearly show the value of three Lyapunov exponents unchanged vary with the time 

that one is positive, for another is close to zero and the last one is negative. Because of the influence of the 

calculation accuracy, three Lyapunov exponents of the system around a fixed value fluctuate. Three 

Lyapunov exponents remains LE1=0.25,  LE2=0,  LE3=-3.25 in the case of fixing a=1, b=2, c=1, d=4, g=1 and 

varying c and g between 1 and 10. 

Volume 11, Number 5, May 2016

Journal of Software

498



  

Only when the system parameters have constant exponent characteristics, the parameters have function 

of amplitude and phase inversion. Amplitude modulation is divided into local and global amplitude 

modulation. The modulation of local means a signal in the system changes in linear or non-linear 

transformation is equivalent to a parameter of the system changes in scale transformation, and the global 

amplitude modulation is that all signals of the system change in linear or non-linear transformation is equal 

to a parameter of the system changes in scale transformation, which provide a theoretical basis for 

communication system of multi parameter modulation. 

Theorem 1. System parameters c and g are the global nonlinear modulation parameters, and change 

with power function relation with the system output signal. 

Proof.  let x=k2x*, y=ky*, z=k3z*,(k≠0), system (1) can be rewritten as 

* * *2

* 2 * *

* * * *

( )x a x y

y ck z by

z dz gx y

  

  

  

          (5) 

Accroding to (5), parameter c has global non-linear amplitude modulation character that when the 

system signals x, y, z in turn into the original k2, k, k3 times which is equal to the parameter c becomes 2 

times of the original. Therefore, the appropriate changes in amplitude of c can adjust the system signal 

amplitude. Similarly substitute x=k2x*, y=ky*, z=kz* into the system (1) we can get the relationship between 

parameter g and the state variables of the system. When [1 10]c and [1 10]g , the maximum and the 

minimum amplitude of the signal are shown in Fig. 5. As can be seen from Fig. 5, as for the chaotic system 

with constant Lyapunov exponent spectrum, parameter changes will make the system signal amplitude at 

any size without changing the characteristics of the system, which greatly expands the scope used in secure 

communication system. The system signal can be used as carrier signal of any secret signal in theory other 

than the general chaos system. 

          

 
Fig. 5. Signal amplitude with parameters increasing (a) maximum (minimum) values of signals x, y, z versus 

[1 10]c  (b) maximum (minimum) values of signals x, y, z versus [1 10]g . 

when the signal y and the parameters c and g anti-changed in system (1), the system equations are not 

affected, namely    , , , , , , , , , , , , , ,f x y z a b c d g f x y z a b c d g    , so phase inverted of the parameters c and g 

with respect to signal y is shown in Fig. 6. 
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Fig. 6. Phase inversion control (a) y-z plane (b) signal y. 

 

Fig. 6(a) clearly shows the y-z phase diagram in the case of signal y(t) in the initial (1,1,1) and (1, -1,1), 

respectively, which implies the phase diagram on the y axis symmetry, and Fig. 6 (b) shows the polarity of 

signal y changed with a and g. During the inverting operation, the initial value polarity of y should be 

changed too, otherwise force role of the initial value will result in the phase inverted failed. 

4. Single Controller Synchronization  

With the in-depth study of chaos synchronization, more and more synchronized methods has been 

applied to chaotic synchronization, such as active feedback, adaptive, sliding mode, backstepping, and so on. 

To the best of our knowledge, in the research area of chaotic systems with constant Lyapunov spectrum, this 

is first to realize the switch synchronization with single controllers via multiple methods. But during the 

majority process of synchronization, multiple synchronization controllers will make cost increased of every 

possible industrial areas of application, and the engineering implementation become more complex and 

difficult in the future, so the development of chaotic synchronization controller will toward the fewer 

number and simpler structure direction.  

Due to the particularity of the structure of system(1), a variety of methods of single controller 

synchronization can be achieved, and synchronous switching circuit can be realized by using the 

synchronous switching toolbox. 

Consider the drive system 

2

1 1 1

1 1 1

1 1 1 1

( )x a x y

y cz by

z dz gx y

  

  

  

             (6) 

The response system 

2

2 2 2 1

2 2 2 2

2 2 2 2 3

( )+

+

+

x a x y u

y cz by u

z dz gx y u

  

  

  

            (7) 

where ui (i=1, 2, 3)are control functions to be determined for achieving synchronization between systems (6) 

and (7). By taking 1 2 1 2 2 1 3 2 1, ,e x x e y y e z z      , so the error dynamical system is described as 
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2

1 1 2 1 2 1

2 3 2 2

3 3 1 2 1 1 1 2 3

( 2 )

( )

e a e e y e u

e ce be u

e de g e e y e x e u

    

   

     

       (8) 

When the designed controllers make error system(8) asymptotic stability that implies systems (6) and (7) 

achieve synchronization. 

4.1. Active Feedback Synchronization 

Theorem 2. If the controllers are designed as 2 1 1 2 3 1 3 1 3 1 2u a e e ce ge e gx e K e      , 1 3 0u u  . 

With 1 >0, K1 >0, a, c and g are parameters of system (1), the controlled system (8) is globally asymptotic 

stability. That is to say systems (6) and (7) will achieve synchronized under any initial values. 

Proof.  The following positive Lyapunov function is described 

2 2 2

1 1 1 2 3

1 1 1

2 2 2
V e e e            (9) 

where the constant 1 >0 and will be determined later. Taking the time derivative of (9) along system (8) 

1 1 1 1 2 2 3 3

2 2 2

1 1 1 2 1 2 1 2 3 2

2

2 3 1 2 3 1 1 3 1 2 3

2 2 2

1 1 1 1 1 2 1 2 3 1 1 3

1 1 1

( 2 )

( )

2 ( )

V e e e e e e

a e e e y e e ce e be

u de g e e e y e e x e e

a e a y e e b K e de g y e e

E PE





 

  

     

    

      

 

      (10) 

where E1= 1 2 3

T

e e e   , P1=

2

1 1 2

1 2 1

2

2

0

0
2

g M
a a M

a M K b

g M
d

 



 
  

 
  
 
 
  

, 1 2y M . 

Obviously when
1 1

2 2 2
2 1 2

1 1 2 2 2

1 2

4
max min( ),min( )

4

da M
K a M b b

ad g M 






 
   

 
, and

2 2

2
1

4

g M

ad
  , matrix P is a 

positive definite matrix, so 1 0V  . System(8) is asymptotically stable, that is to say systems (6) and (7) can 

achieve synchronization with single controller. This completes the proof of Theorem 2. 

Remark 2: In [18] three controllers are used to synchronize the system. However, according to the active 

synchronization above, the system in [18] also can be synchronized with single controller. 

4.2. Adaptive Synchronization 

System (6) is referred as the drive system, which drives a similar response system (11) with system 

parameters uncertain 

2

2 2 2 1

2 2 2 2

2 2 2 2 3

ˆ( )+

ˆˆ +

ˆ ˆ +

x a x y u

y cz by u

z dz gx y u

  

  

  

          (11) 

where ˆ ˆˆ ˆ, , ,a b c d are parameters to be determined later, ui (i=1, 2, 3) are control functions to realize 
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synchronization between systems (6) and (11). Synchronous error are defined as 

1 2 1 2 2 1 3 2 1, ,e x x e y y e z z      , the error dynamic system is given by 

2 2 2

1 1 2 1 2 1 2 1 1 2 1 1

2 3 2 3 1 2 1 2

3 3 1 2 1 1 1 2 3 1 1 2 1 1 1 2 1 1 3

( 2 ) ( 2 )

( ) ( )

( ) ( ) ( )

a

c b

d g

e a e e y e e e e y y e x u

e ce be e e z e e y u

e de g e e y e x e e e z e e e y e x e x y u

         

       

           

      (12) 

where ˆ ˆˆ ˆ, , ,a b c de a a e b b e c c e d d        。 

Designing synchronous controllers as 

2 1 2 1 1 2 1 3 2 2( 2 )u a e e y e g e e k e     , 1 3 0u u          (13) 

2k is the feedback gain to be estimated later, and its updated law is 

2

2 1 2k e              (14) 

1 is a positive constant. 

The system parameter updated laws 

2 2 2

2 1 2 1 1 1 2 1 1 1 1

2

3 2 1 2

4 2 3 1 2

2

5 3 1 3

6 2 1 2 3 1 1 3 1 2 3 1 1 3

2

( )

a a

b b

c c

d d

g g

e e e e e y e e y e x e

e e e y e

e e e e z e

e e e z e

e e e e e y e e x e e x y e









 

      

   

   

   

     

      (15) 

where i >0(i=2,3,4,5,6). 

Theorem 3. Systems (6) and (11) can achieve synchronization with specified initial values under the 

action of controllers (13) and parameter updated laws (15). 

Proof. The positive Lyapunov function is chosen as  

2
2 2 2 2 2 2 2 2 2 2

2 1 2 2 3

1

( )1 1 1 1
( ) 0

2 2 2 2 2
a b c d g

k K
V e e e e e e e e




                (16) 

where K2 is a positive constant. Taking the time derivative of (16) along system(12), it yields 

2 2
1 1 2 2 2 3 3

1

2 3 2 2

1 2 3 2 2 3 2 1 1 3 1 2 3 2

2 2 2 2 2

2 3 4 5 6

2 2 2 2

( )

( )

a a b b c c d d g g

a b c d g

T T T

q q

k K k
V e e e e e e e e e e e e e e e e

ae ce e be d e g y e e x e e Ke

e e e e e

E P E E Q E




 

    


        

       

    

  

       (17) 

where 2 1 2 3[ ]TE e e e , [ ]T

q a b c d gE e e e e e , 2 2 3 4 5 6( , , , , )Q diag      , 
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2 2

2 1

2 2

2 2 2 1

2

0
2

0
2

2 2

g M
a

c g M
P K b

g M c g M
d





 


 
 

 
 

  
 

 
 
 

, 1 1x M , 1 2y M . 

And 2 2,K   are held 

2

2 1
2 2 2 2

2 2 2

( )

4

ad c g M
K

ad g M



 





, 2 2 2

2

4ad

g M
           (18) 

Now the matrix 2P  is positive definite. Obviously, the error system (12) is asymptotically stable, so the 

systems (6) and (11) can achieve synchronization under the action of controller(13) and adaptive law of 

parameters (15). This completes the proof of Theorem 3. 

Remark 3: The classical system like Lorenz system and lü system can be synchronized via adaptive 

method with single controller. Do not need to construct multiple controllers like the literature [20]. 

4.3. Backstepping Synchronization 

In order to realize synchronization with backstepping method, which is equivalent to control the error 

system (8). When the system (8) is controlled to zero, then the synchronization between systems (6) and (7) 

can be achieved. 

Step 1: 

Consider a positive Lyapunov function 2

1 1

1

2
SV e .Its derivative is given by 

2

1 1 1 1 1 2 1 2 1[ ( 2 ) ]SV e e e a e e y e u                 (19) 

When 1u =0,and define artificial function 1 1( )e =0,then 
2

1 1 0SV ae    

Let 2 2 1 1 2( )e e e     

Step 2: 

Define 2 2

2 1 2

1 1

2 2
SV e   . Its derivative is given by 

2

2 1 2 2 1 2 3 2 2( )S SV V ae ce b u                 (20) 

When 2u =0, 2 1 2 2( , )e k   , so 
2 2

2 1 3 2( )SV ae b ck      

where 
3

b
k

c
 , then 2 0SV   

Define 3 3 2 1 2 3 3 2( , )e e e k       . 

Step 3: 

Choose Lyapunov function 2 2 2

3 1 2 3

1 1 1

2 2 2
SV e     . Its derivative is expressed as 

2 2

3 2 3 3 1 3 2 3 3 3 2 1 2 1 1 1 2 3 3 2( ) [ ( ) ( ) ]S SV V ae b ck d k g e y e x u k                        (21) 
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When 3 1 2 1 1 1 2 3 2( ) ( 1)u g e y e x d k         

2 2 2

3 1 3 2 3( ) ( 1) 0SV ae b ck d                 (22) 

According to LaSalle-Yoshizawa theorem it follows lim 0i
t

e


 （i=1,2,3）,  and systems（6）and（7）

are globally synchronized. 

4.4. Passsive Synchronization 

Consider the following nonlinear system 

( ) ( )

( )

x f x g x u

y h x

 


          (23) 

where x is system state variable. u is controller to be determined later. y is the output variable. f (x) and g(x) 

are smooth vector fields. h(x) is a smooth mapping. The system (17) should hold two conditions such that 

realize the passive synchronization control [22] 

1) The controlled system is minimum phase system； 

2) For the controlled system if exists a real value constant   such that for any 0t  , the （24） holds. 

0
( ) ( )

t
Tu y d                   (24) 

Or exists 0  and a real constant   for any 0t   such that  

0 0
( ) ( ) ( ) ( )

t t
T Tu y d y y d                       (25) 

Theorem 4. System (8) is a minimum phase system. 

Proof.  Suppose 2e  as system output, and 1 1 2 3 2, ,Z e Z e Y e   , 1 3 0u u  ,then the system (11) 

can be rewritten as 

2

1 1 1

2 2 1 1 1 1

2 2

( 2 )

( )

Z a Z Y y Y

Z dZ g Z Y y Z x Y

Y cZ bY u

   

    

   

           (26) 

System (26) can be described by 

0

2

( ) ( , )

( , ) ( , )

z f z p z y y

y b z y a z y u

 

 
             (27) 

where 

 1 2= ,
T

z Z Z y Y  

 0 1 2 1 1( )
T

f z aZ dZ gy Z    , 

 1 1 1( , ) 2
T

p z y aY ay gZ gx    

2( , )b z y cZ bY   , 

( , ) 1a z y  , 

Define a storage function candidate  
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2

( , ) ( )
2

y
V z y W z                (28) 

where ( )W z is the  positive Lyapunov function for 0 ( )f z , which is designed to make 0 ( )f z  globally 

asymptotically. 

Set  

2 2

1 2

1 1
( )

2 2
W z Z Z    (0) 0W  ,  is a positive constant     (29) 

The zero dynamics of system (27) describes the internal dynamics, which is consistent with external 

constraint y=0, i.e.  

0 ( )z f z  

The derivative of ( )W z  

  

0

1 2 1 2 1 1

2 2

1 2 1 1 2

( )
( ) ( )

0

T

T

W z
W z f z

z

Z Z aZ dZ gy Z

aZ d Z g y Z Z

z P z



 






   

   

  

        (30) 

1

1

2

2

g y
a

P
g y

d






 
 

 
 
 
 

, 
2 2

1

4ad

g y
  , due to ( ) 0W z  ,therefore 0 ( )f z  is globally 

asymptotically stable, namely error system (19) is in a minimum phase. This completes the proof of 

Theorem 4. 

Theorem 5. System (26) can be equivalent to globally asymptotically stabilized by the controller 

2 3 2 1 2 1 1 1 3 3 22u ce be e e y e x e k e       in the case of any initial values. 

Proof . Derivative of (28) along the trajectory of system (26) is 

0 2

( , ) ( )

( ) ( ) ( ) ( , ) ( ( , ) ( , ) )

V z y W z z yy

W z f z W z p z y y y b z y a z y u
z


 


 
   
 

      (31) 

System（26）is minimum phase, so 

0( ) ( ) 0W z f z





 

In order to make ( , ) 0V z y  , 2u  should be holds 

1

2 3( , )[ ( , ) ( ) ( , ) ]u a z y b z y W z p z y k y
z

 
    


 

where 0k  ,  is an external signal vector. 
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Inequality (31) can be rewritten as 

2

3( , )V z y y k y       (32) 

Integrating (32) yields 

2

0 0 3
0 0

( , ) ( , ) ( ) ( ) ( )
t t

V z y V z y y d k y d                (33) 

0 0( , )V z y is constant, by taking 0 0( , )V z y  , inequality (33) can be described by 

2

3
0 0

( , ) ( ) ( ) ( )
t t

V z y k y d y d                   (34) 

( , ) 0V z y  , then 

2

3
0 0

( ) ( ) ( )
t t

y d k y d                   (35) 

Which satisfies definition (25). This completes the proof of theorem 5. 

Remark 4：It is important to prove characteristic of minimum phase system of the controlled system, 

however, because of the different system’s structures will lead to constructing W(z) function become very 

complex such as literature [21], [22]. However, in this section appropriate positive definite matrix P is 

introduced to greatly simplify the structure of W(z) function. Only need to introduce a positive constant in 

the W(z) function, when the  satisfies certain conditions, the system can be proved satisfy the minimum 

phase characteristic. Compared to the literature [21], [22]. the method presented in this paper is more 

general in the construction of W(z) function. 

5. Numerical Simulation 

 
Fig. 8. Synchronization errors and feedback gain varying with time (a) scheme 1 (b) scheme 2 (c) evolution 

of parameter estimation (d) variation of feedback gain. 
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The correctness of the controllers is proved in theory above. The following is to verify the four single 

controllers by numerical simulation. The ODE45 algorithm is applied to solve the systems based on 

MATLAB platform. The initial value of drive system and response system are set to (1, 1, 1) and (2, 0.5, -0.5), 

respectively. Scheme 1: Since the dynamic characteristics of the system has strong robustness to the system 

parameters c and g, so when a=1, b=2, c=10, d=4, g=1, 20 2M  , 1 10.5, 4K   . The synchronization 

error is shown in Fig.7 (a). Scheme 2: when a=1, b=2, c=1, d=4, g=1, 10 20M  , 20 10M  , 2 0.1  , 

(0) (0) (0) (0) (0) 0a b c d ge e e e e     , 1i  , ( 1,2,3,...,7)i  . The synchronization error are shown in 

Fig.8(a)(b)(c), the changing process of parameters of response system are shown in Fig.8(d), adaptive 

feedback gain variation in Figure 8 (e). Scheme 3: when a=1, b=2, c=1, d=4, g=1, 3 4k  . The 

synchronization error of the system is shown in Fig.9 (a). Scheme 4: a=1, b=2, c=1, d=4, g=1, 0.01  ,

3 2k  . The synchronization error of the system is shown in Fig. 9 (b). 

 
Fig. 9. Synchronization errors (a) scheme 3 (b) scheme 4. 

  
From the error figures above can be seen the error system is gradually stabilized to zero with time, which 

implies the master-slave systems reached synchronization and further illustrate the correctness of the 

above schemes. It can be drawn from the synchronization time of the four schemes. The synchronization 

time of scheme 1 and 4 is short, which can realize rapid synchronization. And the second is scheme 3. 

Scheme 2 need for the longest time. Synchronization performance of this new class of chaotic system with 

constant Lyapunov exponent is good by means of the nonlinear active control, passive control and 

backstepping approaches. Because of the new systems’ synchronization is under the effect of single 

controller so that it is easy to realized via experiment. Based on the electronic circuit, a synchronous 

switching toolbox is designed combined with four cases above to further verify the implementation of 

synchronization schemes. 

6. The Realization of Synchronous Circuit 

Synchronous switching circuit implementation can be realized via the combination of three switches that 

a single-pole single-throw, single-pole double-throw and a single-pole four-throw switch. The overall design 

of electronic circuit adopts modular design and electronic components are mainly including operational 

amplifier LM741H, multiplier AD633, linear resistors and linear capacitance. This paper presents part of 

the circuit principle diagram and circuit verification results. Part of the circuit diagram of synchronous 
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systems and controllers are shown in Fig. 10, 11. The active feedback control is realized as S2 switch to 

state 1 in the case of switch S3 is in the off state and S1 switch to state 1. Adaptive synchronization control 

can be achieved with S3 is in off state, S1 switch to the state 2, S2 action to state 2. When S1 switch to the 

state 1, S2 is in off state, backstepping synchronous control can be reached and with S3 is in closed state. 

The last passive synchronous control can be achieved with S3 disconnected, S1 switch to state 1, S2 switch 

to state 3. The synchronization results for four schemes are shown in Fig.12, which shows the phase 

diagram of synchronization signals in the shape of line segment of 45°, that implies the new system 

achieved good self-synchronization. 

 
Fig. 10. Circuit implementation of the master system and response system. 

 

 
Fig. 11. Circuit implementation of the synchronous switching toolbox. 
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Fig. 12. The synchronization results (a) active feedback control x1-x2 (b) adaptive synchronization control 

y1-y2 (c) backstepping control z1-z2 (d) passive control y1-y2. 

7. Conclusion 

This paper presents a new 3D continuous autonomous system with constant Lyapunov exponent 

spectrum. The chaotic characteristics of the new system are investigated by means of Poincar section, 

Lyapunov exponents , power spectrum. The relationship between the dynamic characteristics of the system 

and system parameters with constant Lyapunov exponent spectrum is also investigated in detail, that is 

verified there exists the global nonlinear amplitude and phase inversion. Based on the single controller the 

new system is synchronized by using active feedback, adaptive method, backstepping and passive control, 

respectively, which is helpful for engineering application in the future. The correctness of controllers is 

proved via Lyapunov stability theory and numerical simulation. In view of the above methods, the switching 

synchronization toolbox is designed for realizing the synchronization of the system by combining with the 

four methods with three switches. 
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