

Memory Allocation Vulnerability Analysis and Analysis
Optimization for C Programs Based on Formal Methods

Deng Hui*, Liu Hui, Guo Ying, Zhang Baofeng

China Information Technology Security Evaluation Center, Beijing, 100085, China.

* Corresponding author. Email: gcdh2014@126.com
Manuscript submitted January 10, 2015; accepted April 20, 2015.
doi: 10.17706/jsw.10.9.1079-1085

Abstract: The information security problems caused by the software vulnerabilities have became more and

more complex. Among these vulnerabilities, the ones existing in memory allocations appear to be difficult

to diagnose due to the absence of an appropriate method. In order to solve this problem, we introduce a

methodology including four novel frameworks in this paper. The formalization for a program called

algebraic transition system is proposed first. It aims to transform the data exchange process and its security

attribute of a program into algebraic systems which are able to be considered as objection functions and

constraint conditions, respectively. Based on the systems, the behavior and structure of formalization are

optimized with bisimulation to reduce the computing cost in the subsequent processes. The determination

of bisimulation is implemented by numerical and symbolic computation. Finally, the specific detection of

the memory allocation vulnerability in the C program can be changed into a constraints solving problem

called Max function which is able to be resolved with the filled function method. The experiment results

represent that our approach is feasible.

Key words: C program, memory allocation vulnerability, algebraic transition system, bisimulation, formal
method.

1. Introduction

The increasing development of the computer technology brings convenience for us. Unfortunately, the

instability of software always brings information security problems. A tiny vulnerability of software could

lead to a great harm [1]. A memory allocation known as a design vulnerability refers to performing manual

memory management in C programs for dynamic memory allocation in C programming language via a

group of function in C standard library, namely malloc(), realloc(), calloc() and free(). This vulnerability

will lead to information security problems when they are exploited, just like Dos which can cause execute

arbitrary commands and so on [2], [3].

Unfortunately, there doesn't exist an appropriate method to analyze memory allocation vulnerability for C

programs. In order to deal with this problem, this paper proposes a novel framework to analyze this kind of

vulnerabilities on the basis of the formal methods, for instance, numerical and symbolic computation

[4]-[6], constraints solving [7], [8] and so on. In this framework, an algebraic transition system is applied to

describe all behavior and the structure of a C program [9], [10]. Besides, bisimulation is used to optimize

system to make vulnerability analysis cost less computing efforts which has already been applied to

optimize behavior and structure of dynamical systems [11]-[13]. On basis of formalization, all of the data

exchange processes of a program are modeled by the algebraic systems and considered as objection

Journal of Software

1079 Volume 10, Number 9, September 2015

functions; the formalizations of their security attributes are also called algebraic systems and considered as

constraint conditions. Then, a problem called constraint solving is obtained and solved by the filled function

method which is made up of an objection function and a series of constraint conditions. The results of

examples in the last section verify that the memory allocation vulnerabilities of C programs are detected by

the constraint solving, named Max function. In this process, if the objection function is satisfied, it means

that there is no vulnerability.

 The Formalization of a C Program

Each data exchange process of the source codes of a C program represents the interactive processes

among variables which contain conditional statements and assignment statements. They are expressed by

algebraic systems from the point view of formal method. The specific process is described by rule1.

Rule 1: The transformation between every data exchange processes in a C program and their

formalizations called algebraic system M.

Step 1: For conditional statements of a data exchange process, go to Step 1.1.

Step 1.1: Add them directly into the algebraic system M, go to Step 2.

Step 2: For assignment statements of a data exchange process, go to Step 2.1.

Step 2.1: If there exist assignment statements that assign values to the same variable, and this variable

doesn’t appear on the right side of the assignment statements, then, remove these assignment statements

except the last one and go to Step 2.2.

Step 2.2: Change the symbol of variables on the left side of the assignment statements by adding

intermediate variables after Step 2.1; then go to Step 2.3.

Step 2.3: if a variable on the right side of the assignment statements is the same as the variable on the left

side of the assignment statements before Step 2.2, then, change the symbol of the variable on the left side of

the assignment statements by the symbol of this variable on the right side of statement after Step 2.2, and

go to Step 2.4.

Step 2.4: Add all of the assignment statements processed by Step 2.1, 2.2, 2.3 into M, end.

On the basis of the above process, all the behaviors of the C program are able to be described by algebraic

systems which mean the whole structure of the program can be formalized by an algebraic transition

system. The definition is established as follows:

Definition1: An algebraic transition system is showed as a tuple 0, , ,V S T Q  , which consists of:

 A setV of variables (possibly infinite);

 A set S of states, which is the value ofV ;

 A set T of transitions: A transition is a four tuple 1 2 0, , ,s s AS v  ; 1s and 2s are pre- and post- states,

respectively; A transition relation AS is an algebraic system; 0v represents the initial states of this

transition;

 0
Q is the initial global state of the transition system;

3. The Optimization of a C Program

In the existing methods, memory allocation vulnerability analysis are performed in the given programs

without any optimization which could cause unnecessary computing since there always exist numbers of

extra data exchange processes called nondeterminism factors. In order to solve this problem, this section

applies bisimulation to optimize all of the behavior and the whole structure of algebraic transition system of

the C program whose data exchange processes are modeled by polynomial systems.

Journal of Software

1080 Volume 10, Number 9, September 2015

Definition2: Bisimulation between C programs 1LS and 2LS is a binary relation 1 2S S R , for a AS , and

(,)p q R , there is

 If
'a

p p , then
'q ,

'a
q q and

' '(,)p q R ;

 If
'a

q q , then
'p ,

'a
p p and

' '(,)p q R ;

That is to say, two C programs are bisimular means that their behaviors are equivalent and the structures

are isomorphism, namely 1 2BELS LS . For behavior equivalence detection, the numerical and symbolic

computations are applied in the next two theorems. Since a non-homogeneous linear algebraic system can

be transformed into a homogeneous linear algebraic system, so if its data exchange processes is able to be

formalized by linear algebraic systems, the equivalence detection process can be described by theorem1

based on matrix.

Theorem1: If the reduced row echelon forms of matrix A and B are the same, then, the solutions of the

homogeneous linear polynomial systems 0X A and 0X B are the same.

Proof: Sufficient condition: If the reduced row echelon forms of matrixes A and B are the same, then,

there is an invertible matrix P , and  B P A . Thus, if 0X A , there is 0X X   B P A .

Conversely, if 0X B , then 1 0X X   A P B , thus, the solutions of homogeneous linear polynomial

systems 0X A and 0X B are the same.

Necessary condition: If the solutions of homogeneous linear polynomial systems 0X A and 0X B are

the same, then, one of A and B can be linearly represented by the other. Thus, the reduced row echelon

forms of matrixes A and B are the same.

If the data exchange processes are formalized by nonlinear algebraic systems, equivalence detection is

described by theorem2 on the basis of Ritt-wu's method.

Theorem2: If there are irreducible characteristic sets that (x)M corresponds to ()A x and ()N x

corresponds to ()B x are the same, then, the solutions of two nonlinear polynomial systems () 0A x  and

() 0B x  are the same.

Proof: In Ritt-Wu's method, there is a solution relation between the given polynomial system and its

characteristic set:

 (()) (() ())A x C x I xV V ; (1)

where ()C x is the characteristic set, ()I x represents the set of initials of the characteristic set, and ()V x is

the solution of function x . In this relation, the irreducible characteristic set is unique; thus, it can be used to

determine the equivalence relation for the given nonlinear algebraic systems.

4. The Formalization of the Security Attribute

Usually in the C programs, the function malloc() is used to apply memory, but if free() is not called after

finishing using the memory, there will be a memory leak. It can diminish the performance of the computer

by reducing the amount of available memory. Eventually, too much of the available memory may become

allocated and part of the system or device stops working correctly. However, in the worst case, this flaw

could be exploited by attackers. In fact, the allocation vulnerability occurs or not depends on whether

security attributes are satisfied or not. Thus, before analyzing vulnerabilities, the security attributes of the

program must be worked out.

Rule 2: The transformation rule between security attributes in a data exchange process of a C program

and its algebraic system N.

Step 1: If there is malloc(x) in program, then, add an inequality 0x  which represents a conditional

Journal of Software

1081 Volume 10, Number 9, September 2015

statement into the set of security attributes to determine whether the memory is released or not.

Step 2: Change the security attributes into algebraic formulas, add them into N, then end.

5. Memory Allocation Vulnerability Analysis

In the above sections, the formalizations of the data exchange process of C program and its security

attribute are algebraic systems; then, if there is no memory allocation vulnerability for the given program, it

means that the security attributes are satisfied. Or say differently in a mathematical level, it represents that

the all the solutions of the algebraic system according to security attribute is the subset of the solutions of

the algebraic system according to program. The whole process is considered as a constrained global

optimization, called Max function in this section. In the process of forming this function, there are three

different cases corresponding to the specific form of algebraic system.

Framework 1: Assume the algebraic systems corresponding to the data exchange process and its

security attribute are M and N as follows, respectively.

M:



























0)(

0)(

0)(

0)(

0)(

xP

xP

xP

xP

xP

k

n

m

j

i





; N:



























0)(

0)(

0)(

0)(

0)(

xQ

xQ

xQ

xQ

xQ

e

d

c

b

a





; (2)

In order to describe Max function expressing memory allocation vulnerability easier, the inequalities in a

program of data exchange process are picked up, and then added into algebraic system which corresponds

to the security attribute; then, formula (2) is changed into formula (3).

 M:














0)(xPi ; N:










































0)(

0)(

0)(

0)(

0)(

0)(

0)(

0)(

0)(

xQ

xQ

xQ

xQ

xQ

xP

xP

xP

xP

e

d

c

b

a

k

n

m

j





; (3)

In this case, the Max function used to analysis vulnerability is (4) and (5).

Max 0))((

1

2




s

l

l xP ; (4)

 s. t. N; (5)

Framework 2: If there exists a rule to define that how to change a semi-algebraic system into a

polynomial system, then, (2) is changed into a polynomial system. In a semi-algebraic system, inequalities

always have four different types: , , ,    . By adding temporary variables, inequalities are transformed

into equations, respectively. Assume there are variables ,x mR :

Journal of Software

1082 Volume 10, Number 9, September 2015

 If 0x  , then, there is
2()

0
x m

x


 ;

 If 0x  , then, there is 2 0x m  ;

 If 0x  , then, there is
2()

0
x m

x


 ;

 If 0x  , then, there is 2 0x m  ;

With this rule, the formula (2) turns into formula (6) when temporary variables are m , n , c and d .

M:



























0)(

0)(

0)(

0)(

0)(

xW

xW

xW

xW

xP

k

n

m

j

i





; N:









































dd

cc

nn

mm

xQ

xQ

xQ

xQ

xQ

e

d

c

b

a

0)(

0)(

0)(

0)(

0)(





; (6)

Then, the Max function used to detect memory allocation vulnerability is:

Max 2 2 2 2 2

1

(() () () () ()) 0
s

i j m n k
i

P x W x W x W x W x

      ; (7)

s. t. N; (8)

In the process of solving this constraints solving problem called Max function, the filled function method

is priority selected because it has less unknown variables [14], [15]. With applying filled function method to

solve Max functions in the above three different frameworks, there is a memory allocation vulnerability or

not can be determined. The whole process is implemented by a mathematical tool called Matlab.

6. Examples

In this section, a parallel C program existed memory allocation vulnerably in figure1 is used to verify the

feasibility of our approach;

The range of variables belongs to [1], [2]. With frameworks proposed in this paper, the results of memory

allocation vulnerability analysis in C programs are showed in Table 1.

Table 1. The Results

Framework Bisimulation Vulnerability
Founded

vulnerability

Precision

(%)

Time

(s)

1 Yes 3 3 100 320.8

1 No 3 3 100 962.4

2 Yes 3 2 66.7 973.5

2 No 3 2 66.7 1113.7

The results represent that the optimized framework based on bisimulation costs less computing efforts.

Simper data exchange processes of C programs cost less computing efforts. The precision of vulnerability

analysis for the C program is decreased when its data exchange process is formalized by a semi-algebraic

system. The reason is that the range of constraint conditions in this case is uncertain so that vulnerability

Journal of Software

1083 Volume 10, Number 9, September 2015

may be able to be founded before the end of iteration in the filled function method.

Fig. 1. A parallel C program.

7. Conclusion

In this paper, a novel framework for memory allocation vulnerability analysis and analysis optimization

for the C programs on basis of formal methods is established. The results of the examples prove the

framework is feasible. More verification work will be researched in the future, such as the efficiency of our

approach compared with other analysis methods.

Acknowledgements

The research work was supported by National Natural Science Foundation of China under Grant No.

61202493.

References

[1] Shahzad, M., Shafiq, M. Z., & Liu, A. X. (2012). A large scale exploratory analysis of software

vulnerability life cycles. Proceedings of the 2012 International Conference on Software Engineering (pp.

771-781).

[2] Godefroid, P., Levin, M. Y., & Molnar, D. (2012). SAGE: Whitebox fuzzing for security testing. Queue.

[3] Xu, G., Bond, M. D., Qin, F. et al. (2011). Leak chaser: Helping programmers narrow down causes of

memory leaks. ACM SIGPLAN Notices.

[4] İlarslan, K., & Yildirim, M. (2011). An application of Ritt-Wu’s zero decomposition algorithm to the

pseudo null Bertrand type curves in Minkowski 3-space. Journal of Systems Science and Complexity.

[5] Xiaoshan, G., Chunming, Y., & Guilin, Z. (2009). Ritt-Wu's characteristic set method for ordinary

difference polynomial systems with arbitrary ordering. Acta Mathematica Scientia.

[6] Hammer, R., Hocks, M., Kulisch, U. et al. (2012). Numerical toolbox for verified computing I: Basic

numerical problems theory, algorithms, and pascal-XSC programs.

[7] Gotlieb, A. (2012). TCAS software verification using constraint programming. The Knowledge

Engineering Review.

Journal of Software

1084 Volume 10, Number 9, September 2015

[8] Taly, A., Gulwani, S., & Tiwari, A. (2011). Synthesizing switching logic using constraint solving.

International Journal on Software Tools for Technology Transfer.

[9] Sobociński, P. (2012). Relational presheaves as labelled transition systems. Coalgebraic Methods in

Computer Science.

[10] Ehrig, H., & Mahr, B. (2011). Fundamentals of Algebraic Specification 1: Equations and Initial Semantics.

Springer Publishing Company.

[11] Van, G. R. J., & Weijland, W. P. (1996). Branching time and abstraction in bisimulation semantics. Journal

of the ACM.

[12] Girard, A. (2012). Controller synthesis for safety and reachability via approximate bisimulation.

Automatica.

[13] Girard, A, & Pappas, G. J. (2011). Approximate bisimulation: A bridge between computer science and

control theory. European Journal of Control.

[14] Zhu, W. (2006). Globally concavized filled function method for the box constrained continuous global

minimization problem. Optimization Methods and Software.

[15] Bai, F. S., Mammadov, M., Wu, Z. Y. et al. (2008). A filled function method for constrained nonlinear

equations. Pac. J. Optim.

Hui Deng received the Ph.D. degree in computer science and technology from Beijing Jiaotong University.

Her research areas include information security and formal methods.

Hui Liu received her Ph.D. degree in computer science and technology from Huazhong University of Science

and Technology. Her research area is information security.

Ying Guo received the B.S. degree in computer network from Beijing University of Posts and

Telecommunications. Her research area is information security.

 received his M.S. degree in information and communication technology from North China

Electric Power University. His research area is information security.

Journal of Software

1085 Volume 10, Number 9, September 2015

Baofeng Zhang

