

Developing Abuse Cases Based on Threat Modeling and
Attack Patterns

* Corresponding author. Tel.: 1(336)2853700; email: xhyuan@ncat.edu.
Manuscript submitted February 20, 2015; accepted April 20, 2015.

Abstract: Developing abuse cases help software engineers to think from the perspective of attackers, and

therefore allow them to decide and document how the software should react to illegitimate use. This paper

describes a method for developing abuse cases based on threat modeling and attack patterns. First

potential threats are analyzed by following Microsoft’s threat modeling process. Based on the identified

threats, initial abuse cases are generated. Attack pattern library is searched and attack patterns relevant to

the abuse cases are retrieved. The information retrieved from the attack patterns are used to extend the

initial abuse cases and suggest mitigation method. Such a method has the potential to assist software

engineers without high expertise in computer security to develop meaningful and useful abuse cases, and

therefore reduce the security vulnerabilities in the software systems they develop.

Key words: Abuse case, threat modeling, attack patterns, secure software development.

1. Introduction

To secure cyberspace, it is critical to engineer secure software. Security-related activities and deliverables

need to be integrated into each of the phases of software development life cycle [1]-[3]. One of the

security-related activities is to develop abuse or misuse cases. Abuse case is a use case from an attacker

perspective with the intent to harm the system [4]. An abuse case might harm an actor of the system, a

stakeholder or the system itself [5]. Abuse cases threaten use cases and serve as a support for developers to elicit

security requirements. Developing abuse cases allow software engineers to think from the perspective of

attackers, and decide and document a priori how the software should react to illegitimate use [6].

Countermeasures can be developed to mitigate misuse cases in the form of security use cases [7].

Hope, McGraw & Anton [8] suggested that abuse cases can be created through informed brainstorming.

However, high expertise and experience in security is required to produce meaningful and useful abuse cases

using brainstorming method. It has also been suggested that abuse cases be developed based on a set of

requirements and standard use cases, and a list of attack patterns [6]. However, specific processes for developing

abuse cases are lacking. This paper describes a method for developing abuse cases based on threat modeling and

attack patterns. Such a method allows software developers who do not have high expertise and experience in

security to develop abuse cases by following specific steps.

The rest of the paper is organized as follows. Section 2 provides background information on threat modeling

and attack patterns. Section 3 describes the proposed method for developing abuse cases based on threat

modeling and attack patterns. Section 4 illustrates the proposed method with an example. Section 5 concludes

Volume 10, Number 4, April 2015491

Journal of Software

doi: 10.17706/jsw.10.4.491-498

Xiaohong Yuan*, Emmanuel Borkor Nuakoh, Imano Williams, Huiming Yu

Department of Computer Science, North Carolina A&T State University, 1601 East Market St., Greensboro, North
Carolina, USA.

the paper.

2. Background

2.1. Threat Modeling

Threat modeling is a process proposed by Microsoft for identifying and ranking risks to architecture and

design level artifacts [9], [10]. It follows the process of hypothesizing potential security threats, evaluating the

threats, ranking the threats and suggesting mitigation strategies. Security threats are classified into five general

categories: Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of

privilege (STRIDE). The security threats identified in the system are ranked based on their Damage potential,

Threat modeling process starts with creating a data flow diagram (DFD) model for the software system. A DFD

includes the following elements: data flows, data stores, processes, interators, and trust boundaries. Each of the

elements is susceptible to a set of threats. The elements of a DFD and the STRIDE threat types that affect the

elements are listed below [10]:

1) Data Flow: Tampering, Information Disclosure, Denial of Service

2) Data Stores: Tampering, Information Disclosure, Denial of Service

3) Processes: Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of

Privilege

4) Interactors: Spoofing, Repudiation

Based on Microsoft’s threat modeling process, Microsoft Security Development Lifecycle (SDL) threat

modeling tool is provided as a free tool to assist software developers to identify potential threats and suggest

mitigation strategies [11], [12]. With the tool, a developer first draws a data flow diagram (DFD) model depicting

the design of the software system. The tool provides guidance and feedback in drawing the model. The tool then

guides the developer to analyze threats and mitigations according to STRIDE framework for each element of the

DFD model. Finally the tool generates a report for the threat model.

2.2. Attack Patterns

Derived from the concept of design patterns, attack patterns describe common methods for exploiting

software. Attack patterns capture and communicate the attacker’s perspective, which can help software

developers to think like an attacker. The following information is typically included in an attack pattern:

Pattern Name and Classification, Attack Prerequisites, Description, Related Vulnerabilities or Weaknesses,

Method of Attack, Attack Motivation-Consequences, Attacker Skill or Knowledge Required, Resources Required,

Solutions and Mitigation, etc. [13]. Hoglund & McGraw [14] described 49 attack patterns. The Common Attack

Pattern Enumeration and Classification (CAPEC) repository includes 463 publicly available attack patterns along

with a comprehensive schema and classification taxonomy [15].

Sethi & Barnum [16] illustrated that attack patterns have the potential to be used in each phase of the secure

software development life cycle. Gegick and Williams [17] constructed attack patterns based on existing

vulnerability databases using regular expressions and used these attack patterns for identifying security

vulnerabilities during software design. Pauli and Engebretson [18] proposed a software tool to retrieve related

CAPEC attack patterns based on system prerequisite in order to use the mitigation strategies for the retrieved

attack patterns during system design and implementation.

3. The Proposed Method for Developing Abuse Cases

We propose a method for developing abuse cases based on Microsoft’s threat modeling and attack patterns as

show in Fig. 1.

The steps in Fig. 1 are explained below:

1) Develop use cases for the system.

Volume 10, Number 4, April 2015492

Journal of Software

Reproducibility, Exploitability, Affected users, and Discoverability (DREAD) [9], [10].

2) Draw DFD for the system which implements the use cases.

3) Identify potential threats for each element in the DFD following Microsoft’s threat modeling approach.

Microsoft SDL threat modeling tool can be used for threat modeling.

4) Identify abuse cases based on the threats identified in step 3). At this stage, only the names of the abuse

cases, and the goal of each abuse case are identified.

5) Retrieve attack patterns that are relevant to the abuse cases. CAPEC attack patterns as well as other attack

pattern sources can be utilized. Attack patterns can be retrieved based on keywords.

6) Use the retrieved attack patterns to extend the abuse cases identified in step 4). The attack execution flow

information in an attack pattern can be used to derive the “abusive interaction” section of an abuse case.

Relevant attack patterns may also allow developers to see different ways an abuse case can be realized, i.e.,

sub abuse cases can be derived.

4. Illustrating the Proposed Method with an Example

In this section, an example is used to illustrate the proposed method for developing abuse cases. The example

system is a health information system (HIS) that keeps track of a patient’s information, appointments,

appointment findings, prescriptions, lab results, etc.

Use CasesDevelop Use Cases

Draw DFD from Use
Cases

DFDs

Run MSDL Tool on DFDs List of Threats

Identify Abuse Case
Names from Threats

Abuse Case
Names

Retrieve attack patterns
relevant to Abuse Cases

using kewords

Attack
Patterns

Input Activity Output

1

2

2

2

3

3
3

4
4

4

5

5

6

Requirements
Team

Create Abuse Cases/
Extend Abuse Case

6
List of Abuse

Cases

1

CAPEC/Other
Sources

5

Fig. 1. The method for developing abuse cases based on Microsoft threat modeling and attack patterns.

4.1. Developing Abuse Cases

The HIS has many users which may include secretaries, nurses, doctors, pharmacists, IT personnel, business

office personnel and administrative personnel [19]. This system can include the following use cases: 1)

Secretary entering patient information; 2) Nurse entering preliminary appointment information; 3) Doctor

entering appointment findings; 4) Doctor transmitting pharmacy orders to the pharmacy; 5) Pharmacist

receiving pharmacy order. For the purpose of illustrating the proposed method, only the doctor’s role of entering

appointment findings is considered. Abuse cases will be developed for the use case “Enter Appointment

Findings”. The description of this use case is as follows:

The doctor logs into HIS server using a secure browser. The server authenticates the Doctor and opens a

session for him. The Doctor enters patient appointment findings and then logs out.

4.2. Drawing DFD

Next, the DFD of the HIS is drawn. For simplicity, only the part of the DFD that implements the use case “Enter

Volume 10, Number 4, April 2015493

Journal of Software

Appointment Findings” is drawn (see Fig. 2).

Doctor (D)
Findings (F) Findings Data

(FD)

View (V)

Update (U)
Enter (E)

Retrieve (R)

Fig. 2. DFD for the use case “enter appointment findings”.

In Fig. 2, the doctor has the ability to enter or retrieve appointment findings after he is successfully

authenticated and authorized (the dashed vertical line represents authentication and authorization) by the

system. The Findings process takes the data from doctor, processes it and sends it to the findings data store. The

arrows show the data flow between the doctor, the Findings process and the data store

4.3. Threat Modeling

Following Microsoft’s threat modeling process, security threats are analyzed for each elements of the DFD. For

the elements shown in Fig. 1., the threats each element is susceptible to is shown in Table 1.

Table 1. Threats Affecting Elements in Fig. 1.

Element Spoofing Tampering Repudiation
Information

Disclosure

Denial of

Service

Elevation of

Privilege

Data Flows

X

X X

Findings Data

Stores
X

X X

Findings

Process
X X X X X X

Doctor X

X

4.4. Identifying Abuse Cases

Based on the threats listed in Table 1 that affect each elements of the DFD, abuse cases can be identified. The

abuse cases identified are explained below:

1) The “Finding Process” is susceptible to spoofing, that is, an attacker can implement a fake “finding process”

and use it to replace the legitimate one. The doctor may be tricked to enter appointment findings to the fake

“Finding Process”. Therefore, a “Spoof Finding Process” abuse case is identified. The “Doctor” is also

susceptible to spoofing; therefore, an “Impersonate Doctor” abuse case is identified.

2) The “Data Flows”, “Findings Data Store”, and the “Finding Process” are susceptible to tampering. Tampering

all these elements will allow attackers to change the findings the doctor entered. Therefore a “Change

Doctor’s Findings” abuse case is identified.

3) The “Finding Process” and the “Doctor” are susceptible to Repudiation. A “Repudiate Entering Findings”

abuse case is identified.

4) The “Data Flows”, “Findings Data Store”, and the “Finding Process” are susceptible to information disclosure.

An “Intercept Packets” abuse case and a “View Findings without Authorization” abuse case are identified.

5) The “Data Flows”, “Findings Data Store”, and the “Finding Process” are susceptible to denial of service. A

“Make Finding Process Unavailable” and a “Corrupt Findings Data store” abuse case can be identified.

6) The “Finding Process” is susceptible to elevation of privilege; therefore a “Non-doctor Enter Appointment

Findings” abuse case is identified.

Fig. 3 shows the abuse cases and the elements of the DFD they affect.

Volume 10, Number 4, April 2015494

Journal of Software

Attacker

Doctor

Impersonate Doctor

Repudiate Entering
Findings

Non-doctor Enters
Appointments Findings

Spoof Finding
Process

Make Findings
Process Unavailable

Intercept Packets

Change Doctor's
Findings

Corrupt Findings
Datastore

Impersonate Doctor

Affects

Affects

Affects

Affects

Affects

Affects

Affects

R
etrieves

V
iew

s

Enters
U

pdates

Affects

Affects

Affects

Findings

Findings Data

Fig. 3. Abuse cases and the elements of the DFD they affect.

4.5. Retrieving Relevant Attack Patterns

Even though abuses cases were generated based on threat models, how are these abuse cases realized is not

clear. For a software engineer without high security expertise, it is challenging to describe the interactions of the

actor and the system for the abuse cases. We propose to utilize the knowledge provided in attack patterns to

assist in this step. Information in attack patterns relevant to the abuse case being considered will be used to

develop the description of abusive interaction of the abuse case. There are different methods to realize an abuse

case, these different methods can be described as sub abuse cases.

In our example, we retrieve relevant CAPEC attack patterns and use the information in these attack patterns to

generate abuse case description and/or find sub abuse cases. Relevant attack patterns can be retrieved through

keywords. For example, for the “Impersonate Doctor”, we can use the keyword “impersonate” to search CAPEC

attack pattern catalog. This search by keyword function is provided by CAPEC website. CAPEC search function

returns several pages of results. The results from the first page are examined and the most relevant attack

patterns are listed below:

1) CAPEC – 98: Phishing

2) CAPEC-218: Spoofing UDDI/ebXML Messages

3) CAPEC-151: Identity Spoofing

4) CAPEC-415: Pretexting via Phone

5) CAPEC-102: Session Sidejacking

6) CAPEC-21: Exploitation of Session Variables, Resources IDs and other Trusted Credentials

7) CAPEC-272: Protocol Manipulation

8) CAPEC-194: Fake the Source of Data

Reading the description of these attack patterns, it can be reasoned that CAPEC-218 is not relevant because

Volume 10, Number 4, April 2015495

Journal of Software

UDDI/ebXML Messages are not used in the example HIS system. CAPEC-415 is not relevant because it is a social

engineering attack. The rest of attack patterns can be studied in detail to find whether they provide information

to provide detailed description of an abuse case.

4.6. Using the Relevant Attack Patterns to Extend Abuse Cases

As an example, CAPEC-21 is selected to extend the abuse case “Impersonate Doctor”. Exploitation of session

variables is one way of impersonating the doctor role. Therefore a sub abuse case “Impersonate Doctor through

Session Exploitation” is derived. Using the information in the “Description” and “Example Instance”, the sub

abuse case “Impersonate Doctor through Session Exploitation” can be described as follows:

Name: Impersonate Doctor through Session Exploitation

Objective: To impersonate the doctor and change appointment findings.

Prerequisites: Server software must rely on weak session IDs proof and/or verification schemes

Abusive Interaction:

An attacker fetches many samples of a session ID. This may be through legitimate access (logging in, legitimate

connections, etc), systematic probing, or eavesdropping.

An attacker repeatedly attempting to query the system with a spoofed session header in the HTTP request.

Post Condition: Attacker assumes the identity of a doctor.

Similarly, other sub abuse cases for “Impersonate Doctor” can be found and described, for example,

“Impersonate Doctor through Phishing”, “Impersonate Doctor through Session Sidejacking”.

The mitigation strategy information in the CAPEC attack patterns can be used to inform the development of

security requirements and design of the system.

5. Conclusion

This paper describes a method for developing abuse cases based on Microsoft’s threat modeling and attack

patterns. An example health information system is used to illustrate the process. CAPEC attack patterns are used

in the proposed method, though other attack pattern libraries can also be used in the proposed method. This

method leverage the knowledge base of Microsoft threat modeling and attack patterns with the goal of enabling

software engineers, especially those without high expertise in computer security to develop meaningful and

useful abuse cases, and develop secure software.

The proposed method has the following limitations:

1) Based on the initial abuse cases, the software developer uses keywords to search for relevant CAPEC attack

patterns. The quality of the keywords will affect the relevance of the attack patterns being retrieved.

Further research needs to be done to investigate how to generate keywords that will retrieve the most

relevant attack patterns.

2) When attack patterns are retrieved from CAPEC library, the software developer needs to judge which ones

are most relevant. Sometimes a lot of attack patterns are retrieved, it will be time assuming to examine each

one to determine which ones apply to the current situation, and can be used to extend the abuse cases. Our

future work includes designing and implementing a mechanism to rank the relevance of the retrieved attack

patterns.

3) The method illustrated here is mostly a manual process. Our future plan is to design and implement a tool

that automates part of the process to make it easier for software engineers to use this method in their

software development.

4) Though an example is used to illustrate the proposed method, the effectiveness and efficacy of the proposed

method need to be further researched. We plan to ask students in a software engineering class at our

university to follow the proposed method to develop abuse cases as a way to evaluate the proposed method.

Acknowledgment

This work is partially supported by National Science Foundation under the grant HRD-1137516. Any opinions,

Volume 10, Number 4, April 2015496

Journal of Software

findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

References

[1] Howard, M., & Lipner, S. (2006). The Security Development Lifecycle: SDL: A Process for Developing

Demonstrably More Secure Software, Microsoft Press.

[2] Build security in: Setting a higher standard for software assurance. Retrieved February 20, 2015, from

https://buildsecurityin.us-cert.gov/bsi/home.html

[3] CERT software assurance, software engineering institute, carnegie mellon. Retrieved February 20, 2015

from http://www.cert.org/work/software_assurance.html

[4] Alexander, I. (2003). Misuse cases: Use cases with hostile intent, Software, 58-66.

[5] McDermott, J., & Fox, C. (1999). Using abuse case models for security requirements analysis. Proceedings

[6] Tndel, I. A., Jensen, J., & Rstad, L. (2010). Combining misuse cases with attack trees and security activity

models. Proceedings of the Conference on Availability, Reliability, and Security (pp. 438-445).

[7] McGraw, G. (2006). Software Security: Build Security, Addison-Wesley Professionals.

[8] Hope, P., McGraw, G., & Anton, A. I. (2004). Misuse and abuse cases: getting past the positive, Security

and Privacy, 2(3), 90 - 92.

[9] Chatper 3 threat modeling. Retrieved on February 20, 2015, from

http://msdn.microsoft.com/en-us/library/ff648644.aspx

[10] Uncover security design flaws using the STRIDE approach. Retrieved on February 20, 2015, from

http://msdn.microsoft.com/en-us/magazine/cc163519.aspx#S3

[11] SDL threat modeling tool. Retrieved on February 20, 2015, from

http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx

[12] Microsoft threat modeling tool. Retrieved on February 20, 2015, from

http://www.microsoft.com/en-us/download/details.aspx?id=42518

[13] Barnum, S., & Sethi, A. (2015). Introduction to attack patterns. Retrieved on February 20, 2015 from

https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/585-BSI.html

[14] Hoglund, G. & McGraw, G. (2004). Exploiting Software: How to Break Code. Boston, MA: Addison-Wesley.

[15] MITRE. (2015). Common attack pattern enumeration and classification. Retrieved on February 20, 2015,

from http://capec.mitre.org/index.html

[16] Barnum, S., & Sethi, A. (2015). Attack pattern usage. Retrieved on February 20, 2015, from

https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/588-BSI.html

[17] Gegick, M., & Williams, L. (2005). Matching attack patterns to security vulnerabilities in

software-intensive system designs, Software Engineering Notes, 30(4), 1-7.

[18] Pauli J. J., & Engebretson, P. H. (2008). Towards a specification prototype for hierarchy-driven attack

patterns. Proceedings of the First International Conference on Information Technology: New Generations.

[19] Pauli, J. J., & Xu, D. (2005, April). Misuse case-based design and analysis of secure software architecture.

In Proceedings of the International Conference on Information Technology: Coding and Computing (pp.

398-403).

Xiaohong Yuan was born in China. She received her Ph.D in computer science from Florida

Atlantic University, Boca Raton, Florida, USA in 2000. She is currently a professor in the

Department of Computer Science, and the director of Center for Cyber Defense at North Carolina

Agricultural and Technical State University, Greensboro, North Carolina, USA. Her research

Volume 10, Number 4, April 2015497

Journal of Software

of the Conference on 15th Annual Computer Security Applications (pp. 55 - 64).

https://buildsecurityin.us-cert.gov/bsi/home.html
http://www.cert.org/work/software_assurance.html
http://msdn.microsoft.com/en-us/library/ff648644.aspx
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx#S3
http://www.microsoft.com/en-us/download/details.aspx?id=42518
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/585-BSI.html
http://www.exploitingsoftware.com/
http://capec.mitre.org/index.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/588-BSI.html

interests include software security, health informatics security and privacy, mobile security, and information

assurance education.

Emmanuel Borkor Nuakoh was born in Bibiani, Ghana. He received his B.Sc. degree in

geological engineering from the University of Mines and Technology, Ghana in 2011. After which

he furthered his education in the United States and received his M.S. degree in computer science

from North Carolina Agricultural & Technical State University, Greensboro, North Carolina in

2014. Emmanuel is currently in the Ph.D program in the Department of Computer Science at

North Carolina Agricultural and Technical State University. His current research interests include software

security, information privacy and security and cloud security.

Imano Williams was born in St. Catherine, Jamaica. Imano received his B.Sc. degree in

computer science and electronics (double major) from The University of the West Indies,

Jamaica in 2012. He then worked as a software quality assurance engineer before pursuing his

MS degree in computer science at North Carolina Agricultural and Technical State University,

Greensboro, North Carolina, United States of America in 2014. His current research interests

include software security, usable security.

Huiming Yu was born in China. She received her Ph.D in computer science from Stevens Institute

of Technology, Hoboken, New Jersey, USA in 1992. She is currently a professor and the director of

graduate study in the Department of Computer Science, North Carolina Agricultural and

Technical State University, Greensboro, North Carolina, USA. Her research interests include

software engineering, visualization, web security, information security, web applications and

cloud computing.

Volume 10, Number 4, April 2015498

Journal of Software

