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Abstract: This paper presents the design and prototype of a home automation framework based on 

concepts underlying a popular web service called IFTTT. Our study has revealed several interesting 

concepts which can be expressed as role/application/security models. Adapting these models for the 

domain of home automation systems, a multi-tier software framework is proposed for automating home 

activities according to the key concept “IF-This-Then-That”. Our framework differs from existing 

frameworks according to the integration of a simplified core script and a collection of trigger/action scripts. 

The prototype phase has been carried on the Google App Engine platform, a Raspberry Pi board, and 

Arduino boards as I/O units.
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1.
 

Introduction 

Home automation systems integrate hardware/software systems in order to automate activities within 

residential buildings. Recent technological advances in networking hardware and software [1] have 

expanded the scope of home automation applications to smart grid [2] and healthcare [3]. Compared to 

other types of buildings, software for home automation systems poses several challenges especially the 

trade-off between functionality and usability and also the trade-off between connectivity and privacy. 

Consequently, there is still no dominant technology in the field of home automation systems.  

There are several academic works aim to implement advance functions for home automation systems, e.g. 

voice interface [4], remote operations [5], and cloud computing [6]. Nevertheless these works are 

constrained in the sense of scalability and portability with respect to the scope of applicable hardware 

platforms. On the other hand, there are several technical books [7], [8] that explain how to build DIY home 

automation systems using off-the-shelf components and open-source software. As opposed to academic 

works, their functionality and technical levels are limited by features provide by their underlying software 

platforms. While almost of existing commercial frameworks provide high-level of abstraction to achieve 

functionality and usability. These frameworks suffer from the heterogeneity of devices in the market.  

This work attempts to propose a software framework that promotes flexibility and maintainability  over 

other quality metrics. The main concept is to formulate a minimal automaton that integrates multiple code 

segments that a user chooses from a repository. That is, a sequence of automated activities is programmed 

by its home owner by selecting and configuring code from available pool. As a success story from the 

domain of web services, this work investigates a web service called IFTTT which offers automated 

integration between major web services and social networks. The conceptual ideas are used for the design 
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and prototype of our framework of home automation systems. 

This papar is organized into four sections. Section 2 discusses and identifies key characteristics from the 

IFTTT service. Then our approach is explained as multi-tier software architecture in Section 3. Finally 

Section 4 concludes benefits and concerns of our framework. 

2. IFTTT Model 

This work considers the approach of a web-based service called IFTTT which offers a good trade-off 

between functionality and usability. IFTTT let end users to create, customize and enable chains of 

conditional statements, called recipes (see Fig. 1), which are triggered based on changes to existing web 

services, e.g., Facebook, Twitter, and Youtube. IFTTT also provides its mobile applications as channels to 

smartphone features and installed applications. Three key characteristics, namely the role model, the 

application model, the security model, can be identified as major differences from other web services or 

mobile applications. 
 

   
Fig. 1. Example of IFTTT recipes based on web services and smartphone. 

 

2.1. Role Model 

Within the IFTTT environment, there are three groups of stakeholders, namely IFTTT itself, channel 

owners, and end users. Each stakeholder will have their own objective, scope of access, functions, and 

benefits. The use case diagram (see Fig.2) represents the relationship among stakeholders. 
 

 
Fig. 2. Role model within the IFTTT environment. 

 

The role of IFTTT itself is to provide channels to end users and to access web services/social 

networks/smartphone on the behalf of each user. Each channel represents a collection of available 
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data/operations from its corresponding service. The role of channel owners is to make connectors to bridge 

with IFTTT backend services. Companies that would like to promote their services/products as IFTTT 

channels must submit their APIs for the approval. There are two main functions for end users: recipe 

creation and recipe usage. Each IFTTT recipe is created by joining between a trigger and an action resulting 

in the information flow from one service to another.  

By separating roles of IFTTT/channels/users, good usability is achieved for almost end users due to its 

simple workflow. Even UI is simple, functionality is compensated by the availability of channels and 

corresponding triggers/actions. These affect a reasonable trade-off between functionality and usability. 

This role model should also serve reasonably well for home automation systems in which homeowners 

prefer customizable automated activities and easy-to-use UI. 

2.2. Application Model 

There are two different perspectives for the application model of IFTTT; namely developer perspective 

(channel) and user perspective (recipe). For the provision of channels, IFTTT manages basic channels for 

popular services, while third-party channel owners are responsible for their web APIs (authenticate/ 

authorize/access). The scope of development is to abstract and wrap API-related operations as a collection 

of triggers/actions in each channel. For end users, automated activities can be customized with respect to 

the creation or selection of recipes. The procedure to create a recipe is outlined as follows: 

1) Register and login to IFTTT. 

2) Create a trigger and an action: 

a) Select a channel from the provided list 

b) Activate by authorize IFTTT with the service provider underlying such channel. 

c) Select a potential trigger/action from the available list. 

d) Fill needed information for the selected trigger/action. 

3) Fill description and activate recipe. 

e) Share recipe if needed. 

User may choose to share the recipe to public. Then other users may choose from these shared recipes. 
 

 
Fig. 3. Application model within the IFTTT environment. 
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A scenario (see Fig. 3) that the end user programs an automated activity is to route from one abstracted 

web API (trigger) to another abstracted web API (action). Then IFTTT will handle this recipe by accessing 

two corresponding services without any user interaction. In other words, each recipe is a program which is 

executed based on data from those external entities (web service/social network/smartphone). 

2.3. Security Model 

The security concerns of the IFTTT environment (see Fig. 4) can be classified into two folds: the 

trustworthiness of channels and the privacy of users. There are two separate review processes to handle 

these security concerns, namely the channel review process and the channel activation process.  
 

 
Fig. 4. Security model within the IFTTT environment. 

 

The list of channels and their corresponding triggers/actions are regulated by the IFTTT team. Since 

IFTTT does not provide any public API to developers, each company must submit the request to establish a 

channel with its corresponding APIs for the review. This is similar to the review process used by online 

software stores. The channel review process has posed some constraints for a class of connected devices 

since these devices cannot act as a connector for IFTTT channel. Therefore only connected devices 

associated to an official channel (e.g., Nest, Philips) can be used inside the IFTTT environment. 

The channel activation process is performed by each user for each channel during the creation or 

selection of recipes. For web service channels, the channel activation is the authentication/authorization for 

its corresponding web service. This step will be done by either the 3-legged authorization (e.g., OAuth) or 

user credential. For smartphone channels, at least one of the official DO applications must be installed into 

user smartphone. That is, the user privacy will be responsible by user themselves. 

3. Home Automation Framework 

3.1. Design Concepts 

The objective of this work is to develop a framework that enables the integration of DIY components for 

automating home activities. To achieve both functionality and usability, the following modifications to the 

IFFFT model are proposed. 
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1) There are three groups of stakeholders: homeowners, open-source developers, and web 

services/social networks. 

2) The platform consists of three computer systems including a programmable gateway, a public cloud, 

and a user terminal (e.g., computer, smartphone). 

3) Channels are provided by scripts in the programmable gateway and web services. 

4) Both channel review and activation processes are handled by the homeowners themselves. 

These modifications correspond to the nature of DIY home automation systems in which some scenarios 

may conflict with mandatory requirements of IFTTT or similar Internet of Things platforms. For example, 

homeowners may build their systems by purchasing and assembling off-the-shelf parts. Internet connection 

may not exist or not reliable. Almost use cases of home automation systems prefer restricted group access 

and unbalanced connectivity (at-home and anywhere) features. 
 

 
Fig. 5. Software architecture of our proposed framework. 

 

The software system on the public cloud (see Fig. 5) acts as a code repository that allows developers to 

upload their code and provides custom scripts and configuration files for each user. Another service is to 

serve as a broker for the request of access tokens from web services/social networks that enforce the OAuth 

authorization flow. The software system on the programmable gateway will handle automated jobs 

according to the concept of “IF-This-Then-That” by running code expressed in configuration files. The user 

terminal will only be used for the authorization of our cloud services with web services/social networks.  

3.2. Cloud Services 

Our cloud services have been prototyped on the Google App Engine (GAE) platform under the URL 

“http://rpi-box.appspot.com”. Web applications have been developed by utilizing the webapp2 framework, 

the ndb datastore, the jinja2 templating library, and the jQuery Mobile library. The service architecture on 

the cloud (see Fig. 6) can be separated into two groups: web applications for managing script/configuration 

and web services for bridging between programmable gateways and other services. 

3.3. Programmable Gateway 

There are three groups of software to be installed in the programmable gateway: a core script, software 

applications providing hardware/software features, and a collection of trigger/action scripts. Our proposed 

software architecture differs from existing open-source home automation frameworks in three aspects: 

1) The core script is very small and invoked periodically as cron jobs. 

2) A chain of automated “IF-This-Then-That” activities is expressed in the form of a JSON configuration 

file which is generated from the recipe configuration page. 
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3) Required trigger/action scripts and software applications as shown in the recipe configuration page 

have to be manually installed in the gateway. 

As a consequence, homeowners are required to have at least basic skills of installation and configuration of 

target hardware platforms. Even inconvenience, the necessity of such manual installation/configuration is 

to encourage homeowners to review software components inside their home automation systems. This 

decision corresponds to one of merits of open-source software that allows source code to be reviewed. Note 

that this demand is not so troublesome since trigger/action scripts should be simple and short with respect 

to their single-purpose and straightforward operations. 

  

 
Fig. 6. Software architecture of user-oriented and device-oriented cloud services. 

 

The Raspberry Pi model B board was chosen for prototyping the programmable gateway due to its 
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benefits for home automation applications, e.g., HDMI port for TV display, USB ports for I/O boards, and 

desktop Linux distribution.  
 

 
Fig. 7. Interaction within software stack. 

 

Automated “IF-This-Then-That” activities (see Fig. 7) are realized by the core script to be scheduled as 

cron jobs. Three settings for the crontab file are recommended for running every minute, every hour, and 

every day. Based on the factory pattern, the pseudocode of the core script is outlined as follows. 

1) Parse a given JSON configuration file. 

2) Create xxxTrigger and yyyAction objects according to the class name as specified in “Trigger” and 

“Action” keys. 

a) Skip for all unknown class name. 

3) Invoke the evaluate() method of each xxxTrigger object. 

b) If true, invoke the execute() method of corresponding yyyAction objects 

4) If internet connection exists, connect to the cloud service to verify version of scripts. 

The declaration of xxxTriggerClass and yyyActionClass is given in corresponding script files in the /root 

directory. The template of xxxTriggerClass and yyyActionClass is outlined as follows. 

5) Extract key-value pairs from “params” key 

6) Perform operations on parameters.  

a) If something wrong, return a dictionary of {“status”:error code}. 

7) Return a dictionary of {“status”:success code}. 

The above template represents the adapter pattern underlying trigger and action scripts which convert 

from key-value parameters into result and operations, respectively.  

4. Conclusion 

This paper has presented the development of a software framework for home automation systems based 

on modified concepts from the popular web service IFTTT. Our framework consists of two software systems: 

web applications as cloud services and software stack on home automation gateways. Our cloud services 

handle two major functions: repository of automated scripts and API bridges for web services/social 

networks. The software stack integrates the simplified core script, a collection of trigger/action scripts, and 

software applications providing features. The main advantage of our proposed framework is its simplified 

design while preserving extensibility and usability. 
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