
AppBus: Mobile Device Application
Collaboration via Short Term Memory

Craig Janssen
Motorola, Motorola Labs, Schaumburg, IL, USA

craig.janssen@motorola.com

Michael Pearce, Shriram Kollipara and Nitya Narasimhan
Motorola, Motorola Labs, Schaumburg, IL, USA

Email: {michael.pearce, shriram.kollipara, nitya}@motorola.com

Abstract—The increasing quality of computation and
connectivity on mobile devices has motivated a need for
data-sharing between resident services. Most such services
rely on the user to transfer data manually between them.
This approach is not only prone to input error but also
creates a significant data-entry burden for the user on a
mobile device. With AppBus, we envision a cooperative
data-sharing facility that provides the equivalent of a
“short-term memory” for the mobile device. By leveraging
this transient data store and event notification system,
services can collaborate in a loosely-coupled manner that
makes their combined operation appear more intuitive and
seamless. In this paper, we describe the design and
implementation of AppBus for a mobile phone and initiate a
discussion on both the utility and the limitations of this
paradigm in mobile computing.

Index Terms—collaborative application frameworks, event
notification, mobile devices, IPC, associative data

I. INTRODUCTION

As mobile devices become more feature-rich, we will
see increased computation and connectivity capabilities
on the device that will drive a new breed of collaborative
applications. At the same time, portability requirements
will ensure that some constraints (e.g., small display size,
limited input capabilities) are likely to remain as
challenges for mobile applications.

This causes an interesting dilemma for mobile
application developers. The convergence motivates a
need for increased data-sharing between services on the
device. However, most of these services are developed
independently and need additional ‘bridging’ mechanisms
for such collaboration. Consequently, developers may be
forced to take one of the following approaches:

a) Implicit Sharing By Integration. Services share
data by being tightly-coupled into one “suite”.
Data can be shared within that suite, but is not
visible to other services.

b) Explicit Sharing By User Action. Reliance on the
user to transfer data manually. Applications exploit
the user’s short-term memory to create the context
bridge between services.

Both approaches have limitations. Integration not only
requires prior knowledge of the applications that need to
collaborate, but it effectively limits the reuse and
extensibility of the data-sharing mechanisms outside the
suite. On the other hand, the user action approach places
a non-trivial data-entry burden on the user, which is
further exacerbated by the inherent input and display
constraints of mobile devices. As a result, such
mechanisms may suffer from user input error and can
degrade the user experience. Consequently, a driving
decision behind developing the AppBus framework was
to design a solution that was more intuitive to both the
user and the application – enabling data-sharing between
decoupled applications with minimal user involvement or
knowledge required.

In this paper, we discuss the goals, design and
implementation of the AppBus framework with some
emphasis on its use in mobile phones. Section II
introduces the AppBus project, including some use cases
that motivated the effort. Section III provides a more
detailed look at AppBus components and the roles that
they play to create the whole AppBus as well as some
information on current implementation status. Section IV
discusses security considerations in shared data exchange
and our current method of balancing improved security
against the freedom of applications to collaborate.
Section V examines the usage and applicability of
AppBus including a revisit to a previous use case, now
AppBus enabled, as well a discussion of application
communication complexity. Section VI discusses the
relative contextual relevance of short term memory and
long term memory. Section VII looks at related
technologies that contributed to our vision for AppBus.

II. THE APPBUS FRAMEWORK: OVERVIEW

We begin by describing one motivating usage scenario,
followed by the design goals and operation.

A. Example Usage – Travel Planner

A user needs to make arrangements for an upcoming
business trip using a mobile device. This will involve

40 JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006

© 2006 ACADEMY PUBLISHER



booking flights, reserving a hotel room and making a
dinner reservation.

Using currently available methods, the completion of
this task may be accomplished in one of two ways. The
first method involves several different applications on the
phone and the user is the data mule between them.

A flight reservation application is activated and the
user enters in all of the data including airline, flight times
and destination. Upon reservation creation, the user
copies data to the clipboard, closes this application and
activates the hotel reservation application.

A hotel reservation is made with the user doing a paste
of some previous entries (travel dates, location). The
remaining information is entered and the user completes
the reservation. Once again, the user copies data (date &
time, hotel location) to the clipboard and closes the
application.

The restaurant application is activated and the user
does another paste of information. A nearby restaurant is
found and reservation made.

While the use of a clipboard requires explicit user
action, the absence of it requires even more user action in
the form of reentered data. The workflow is further
complicated if there are problems requiring backward
steps, such as unavailability of a hotel room on the given
day causing a change in airline reservations.

As is illustrated by this example, the first method’s
approach to the task is to use repetitive user actions and
the user’s short term memory to transfer data between the
applications.

The second method that might be available is an
integrated application combining all of these functions.
This might eliminate some of the explicit data entry but at
the cost of increased resource consumption and possible
loss of flexibility and user choice.

For instance, in order to get an application that does
airline, hotel and restaurant reservations, the user might
be required to carry along the additional functionality of a
movie theater locator and a car rental application. Not
only is the additional functionality unneeded, but may
waste screen and computational resources.

Or perhaps the user prefers Continental’s flight and
Marriott’s hotel reservation applications. They may
provide for less manual data input and/or preferential
pricing. Using the best of the breed point solutions may
not be possible with an all inclusive, generic application.

Either way, current solutions come up short and the
user is the one picking up the slack or losing out.

B. AppBus Design Goals

In our approach to AppBus, we had several design
goals:

Compact - Implementation that is compact enough to
fit on a limited resource device
Intuitive - Minimal amount of direct user interaction

required to enable its operation
Versatile - Shared data format that is versatile enough

to convey a wide variety of information
Relevant - Data is retained by the AppBus for a useful

period of time

Synchronous - Ability to query the communal dataset
to retrieve information matching provided
specifications
Asynchronous - Subscribing applications can be

notified of significant data events
Spatially decoupled - No direct application to

application communication or direct knowledge of
other applications required
Temporally decoupled - Applications do not need to

be active at the same time to share data
Autonomous - Automatic garbage collection of

unused shared data

The desired effect of these goals was to have a system
that encouraged application collaboration without direct
user involvement, enabling us to create a short-term
memory on the device rather than relying solely on the
one in the user’s head. This would allow multiple smaller
applications to act more like a comprehensive whole
without having the overhead of a large, monolithic
application.

It may be noted that other currently available
technologies fulfill various aspects of this goal list.
However, none were found that completely fulfilled the
goal criteria. Nevertheless, many of them provided their
own useful design insights. Some of these technologies
are summarized in section 5 along with their relative pros
and cons with respect to our context.

C. AppBus Basic Operation

Some basic principles of operation of the AppBus are
as follows:

Inserting Data
1) Shared data is placed on the AppBus in the form of

a Data Object. A Data Object encapsulates a base piece
of data and an unlimited number of attributes. The
attributes are name – value pairs

2) Any application may update the information in any
data object on the AppBus, regardless of which one
originally inserted the Data Object.

Synchronous Data Retrieval
1) The AppBus framework may be queried to retrieve

a set of Data Objects that match specific criteria (i.e.,
attribute values).

Asynchronous Data Retrieval
1) Applications may register with the framework to be

notified of the insertion of new AppBus Data Objects.
2) Applications may also register with individual Data

Objects to be notified of changes to their contents.
Organizing Data
1) Data Objects on the AppBus may have Associations

created between them, implying a useful relationship.
Data Objects may belong to multiple Associations.

Administration
1) AppBus Data Objects are removed from framework

indexing based upon their date of creation or last update
(oldest Data Objects are purged). However, any
application that retains a direct reference to the object
may continue to use it indefinitely.

III. APPBUS DESIGN AND IMPLEMENTATION

JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006 41

© 2006 ACADEMY PUBLISHER



From a design standpoint, there are three major roles
played in the AppBus environment. These are: the
Application, the Data Object and the Framework. A
conceptual view of these elements and their interactions
can be seen in Figure 1.

Data
Object

Data
Object

Data
Object

Data
Object

Application ApplicationApplication

AppBus Framework
Association

Query
Data Object

Change
Event

New Data
Object Event

Parent ChildChild

Association

Figure 1. AppBus Framework

A. Data Object

Data Objects are the units of information that are
placed onto the AppBus to be made available for sharing.
Data Objects encapsulate a base piece of data called a
payload, which may be of any type, and descriptive
attributes, which may be of type text string, numeric or
date. There is no fundamental reason that the attributes
are restricted to these types, other than a bound set of
types must be established in order to enable querying and
sorting. If required, new types can be added in the future.
The attributes are intended to provide contextual
information about the payload contained within the Data
Object. It is also possible that the collection of attributes
in the Data Object represents the whole of the contained
information, with no payload. There is no requirement for
a payload to be present.

Data Objects may be organized into Associations
within the AppBus. An Association is an informal
linkage that Applications create between Data Objects to
indicate a relationship between the data contained within
the associated Data Objects. A Data Object may have one
of two roles within a relationship: parent or child. A
Data Object may have multiple parents or multiple
children (and, correspondingly, this allows them to have
siblings). However, a Data Object may not fill the role of
both parent and child at the same time. This makes for a
flat, two level hierarchical relationship tree that clusters
around parents. This restriction serves two main
purposes:

1) Ease of purge implementation - When the data
objects are not allowed to form into arbitrarily large, very
complex webs, it is easier to identify those Data Objects
whose relevance is diminished and are good candidates
for garbage collection in order to free space and keep the
AppBus content at a more manageable level.

2) Semantic relevance - If every data object is allowed
to simply associate with every other data object, the
whole of the data encompassed by the AppBus may soon
become one big generic grouping that provides no
additional contextual benefit over unassociated Data
Objects. Conversely, if the associations are formed with
strict hierarchical relationships, loose inter-application
collaboration is more difficult since all the applications
must structure their data in the same manner.

Data Objects may be modified at any time while they
are on the AppBus. This includes changes to Attributes,
base data (payload) and Associations. Any time a change
is made to a Data Object, its timestamp is updated in
order to let Applications know how “fresh” it is. In
addition, any application that subscribes to the state of a
particular object will be notified of any modification.

B. Application

Applications may be both producers and consumers of
the information available on the AppBus. An application
fills the role of data producer by asking the AppBus
Framework to create a new, blank Data Object for it, then
filling in the relevant base datum and attributes, and
finally submitting it to the AppBus Framework for
insertion. Once it is inserted on the AppBus, the Data
Object becomes visible to the other Applications using
the AppBus and is available for their use.

However, creating new Data Objects is not the only
way for an application to be a data producer. The AppBus
is designed to be used for unstructured collaboration.
Therefore, an application may modify or update Data
Objects previously created by other applications or create
associations between existing Data Objects.

An Application may fill the role of data consumer in
one of two ways. The first way is by using the AppBus
in a synchronous manner and querying the AppBus
Framework for result sets of Data Objects that match
certain defined criteria. In this case, the Application will
provide names for the attribute to match and values that
correspond to the named attributes. In this way the
application may get desired information on demand.

The second way the Application may fill the role of
consumer is to register for asynchronous notification of
data events on the AppBus. The Application may register
with the AppBus Framework for new Data Object
insertion events, or it may register with individual Data
Objects for notification about changes in their internal
state. Registration entails providing the Framework or
the Data Object a callback method to use for event
notification.

C. Framework

The Framework is the overall structure that indexes the
Data Objects. It is where an Application goes when it
wants to perform Data Object queries, create Data Object
associations, and find the members of a particular
association or register to receive notifications of new
Data Objects being inserted onto the AppBus.

Queries can be made on the basis of the existence of an
attribute, the value of a single attribute or the values of
multiple attributes. Matches can be requested for

42 JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006

© 2006 ACADEMY PUBLISHER



attribute values equal to, greater than and less than. This
is the primary reason for restricting attribute types: so
that greater than / less than have meaningful results in
performing queries.

As stated previously, Applications may register with
the Framework to be notified of new Data Objects being
added to the AppBus. In this way, a given Application
may screen all Data Objects being added to the AppBus
in order to watch for particular ones of interest.

The Framework is also responsible for purging the
AppBus. Purging is done on a Data Object “freshness”
basis (comparison of timestamps) and is integral to how
the AppBus creates the idea of a “short-term memory”.
Unlike some other data repositories and message passing
methods (such as a Tuplespace or Named Pipe), a Data
Object does not have to be read or retrieved in order to be
removed from the AppBus. If it does not get updated or
“refreshed”, it simply ages, becomes less relevant, and is
eventually removed.

Purging is one of the places where Data Object
associations become important. The purge routine
removes the oldest Data Objects from the AppBus.
However, it is assumed that if Data Objects are associated
together, they provide contextual reference for each other
and should be managed as a group. Therefore, families
are purged together. A parent is removed along with all of
its children that have only this one parent. If, however, a
child has more than one parent, then only the association
to the purged parent is removed. The child itself will
remain on the AppBus to be purged in the future, along
with one of the other association groups of which it is a
member.

D. Implementation

We have implemented and evolved AppBus on a
several different platforms. The first generation was
written in Java and ran on a PDA. As an exercise in the
proof of compactness and portability, this version was
later ported to Java MIDP running on a Motorola mobile
device.

The second generation was written in C# and running
under the .NET Compact Framework environment
associated with the Microsoft Windows Mobile platform.
The hardware devices we deployed it on include the
Motorola MPX[1] and the Hewlett Packard iPAQ mobile
devices.

The third and current generation is written in C++ and
runs on Linux based Motorola phones. The phones
currently being used for implementation are the Motorola
E680i[2] and the Motorola A1200[3].

Implementation migration was driven by the optimal
resources available on the different targeted hardware
platforms. As this migration across platforms occurred,
various issues needed to be addressed. Sharing data
across process address spaces is one. This was less of an
issue in Java where all of the communicating programs
were operating in the same Virtual Machine. Threading is
another important aspect that required reexamination. In
order to allow for the appropriate level of responsiveness
to the applications, separate threads are required for event
notifications, framework maintenance, etc. The threading

API in C++/Linux is quite different from that used in
Java and both were different from that used in C#.

IV. SECURITY

Any environment where data is being shared is ripe for
exploitation by malicious applications. Therefore,
security measures must be put in place to limit the ability
of such applications to perform serious damage.
However, AppBus is designed explicitly for unstructured
collaboration. Any restrictions placed on the creation of
data or access to created data reduces the ability of
applications to collaborate in unstructured, non-
predefined ways. If applications can only create and view
their own data, no collaboration is possible. However, in
an environment where services cannot be accessed and no
data can be trusted, applications cannot collaborate either.
Therefore, it must be determined where to set the mark
between those two extremes.

A. Classification of Security Breaches

In our process of adding security, we classified
security breaches into three categories:

1) Leakage of confidential information to unauthorized
parties

This occurs any time an application accesses data and
uses it for non-legitimate purposes. Data Objects on the
AppBus may be queried for and read by any attached
application.

2) Corruption of correct data by rogue applications
This can happen in two ways. The first method is an

application may access an existing Data Object with
legitimate data and alter its contents. Any Data Object
may be updated and changed in any way by any attached
application. Attributes may be changed or removed, new
attributes may be added or the payload may be changed,
removed or added by any application. The application
does not have to be the creator of a Data Object in order
to have complete access to it. The second method is an
application may create a new Data Object with similar
data and attributes to an existing Data Object but with
differences that corrupt its purpose. Since this new Data
Object is more recent than the previous one, it may be
viewed as more relevant or as an update to the previous
(legitimate) one. Any application may create new Data
Objects on the AppBus.

3) Denial of service to legitimate applications through
abuse of services by rogue applications

Rogue applications may create many new bogus Data
Objects in an attempt to drown out the legitimate ones.
This differs slightly from the corruption of data method
above in that the rogue application is not attempting to
simulate legitimate data, but rather simply drown it out
with brute force. Or, the rogue applications may make
unending modifications to existing Data Objects in an
attempt to overload the asynchronous update mechanism.
They may attempt to register for asynchronous
notification of updates on Data Objects and consume all

JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006 43

© 2006 ACADEMY PUBLISHER



the CPU time allocated to the update notification thread.
They may conduct endless, meaningless synchronous
queries on the AppBus framework in order to consume
CPU time and over exercise thread synchronization locks
in the AppBus.

B. Security Implementation

The methodology initially chosen to provide a measure
of security in the AppBus is the fundamental one of
sandboxing. Sandboxing is a method that restricts the
activities of specific applications based upon the trust
level assigned to the application. This is a method that
has been commonly used in various places, including the
Java VM.[4]

The sandbox implementation on AppBus is as follows.
There are two separate data areas in the AppBus
framework – an open one and a secure one. The
application presents credentials upon initial connection to
the AppBus. Based upon these credentials, the AppBus
framework associates a security level with the connected
application which allows it access to the secure area, the
open area, or no access at all.

Applications with access to the secure area may also
access the open area and may choose to perform
operations (such as queries) on either area or both
combined. Similarly, applications with secure access may
choose to receive asynchronous update notifications from
the secure area, the open area or both. The separate areas
have separate resources associated with them – data
stores, notification queues, computation threads, etc. so
that problem activities in one area have minimal impact
upon the other area. Of course, the expectation is that the
problem activities will be in the open access area.

Data objects are labeled at their initial attachment to
the AppBus whether or not they are secure. This
classification is based on which area (open or secure) the
creating application requests the Data Object be inserted.
Of course, an application may only insert a Data Object
into any area for which it is authorized. This
classification may not change at any time in the Data
Object's lifetime.

The reason for the classification lockdown is due to
concerns about information leakage and data corruption.
Assume that a Data Object could change its secure status.
Then it must be an application with secure credentials
that makes the determination to change its status. (The
framework knows nothing about the meaning of the data
it indexes.)

Changing a Data Object from secure to open runs the
risk of exposing data that needs to remain secure.
Regardless of whether the application doing the moving
was the one that created the Data Object and has decided
that the data it posted no longer needs protection, other
applications may have modified it. Even if the application
can prove that no other applications modified the Data
Object, other applications may still have taken actions
based on the data assuming it to be secure.

Changing a Data Object from open to secure also risks
information leakage. This is mainly because of the nature
of AppBus Data Object references. The application doing
the move would know of the change in secure status, but

other applications may not. Since applications retain their
reference to a Data Object after they acquire it, non-
secure applications would then have a reference to a
secure Data Object which other applications then would
use as secure. This could lead to applications exposing
secure data by modifying or updating this newly secure
Data Object or taken actions based upon data they assume
to be available only to trusted applications.

V. APPBUS USAGE AND APPLICABILITY

Along with the discussion of the design and
implementation of this technology, it is important to
discuss why this approach is important. So, in that
respect, it is useful to provide some usage examples. The
first example is the same one given earlier in Section
II.A, but this time with AppBus assistance. It shows
several smaller, task-focused applications collaborating to
provide a comprehensive travel planning application.
Figure 2 is a graphical representation of these activities.
The second example involves several communications
applications exchanging data to make the user’s
experience more intuitive. After the examples, we talk
about the complexity problem associated with multiple
applications trying to exchange information.

A. Travel Planner

A user needs to make arrangements for an upcoming
business trip using a mobile device. This will involve
booking flights, reserving a hotel room and making a
dinner reservation.

A
pp

lic
at

io
n

B
us

F ligh t
A pp

H ote l
App

R estaurant
App

A ddress

Arrival city,
Destination city,

arrival time

Destination
City

Address

Figure 2. Travel Planner

• The user runs a flight-reservation application
and books flights. This will involve entering some
information, such as destination city and dates.

• All the details of his flight like time of arrival
and departure, destination city, airlines become available
on the AppBus.

• The user runs a hotel reservation application,
which finds the destination city and travel dates available

44 JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006

© 2006 ACADEMY PUBLISHER



on the AppBus. Sample reservations may be pre-
populated allowing the user to simply choose one.

• The detailed hotel info becomes available to the
AppBus, including the address of the hotel.

• The user now pulls up another application to
reserve a table at the nearest Italian restaurant. This
application gets the hotel address and arrival time from
the AppBus to suggest a reservation time at a nearby
restaurant, eliminating the need to reenter this data.

B. Communication Manager

The communication manager usage scenario shows
implicit coordination among the various communication
oriented applications on the device. The information
exchanged is not necessarily task oriented, but shows
how data tends to follow the user from one application to
another.

• A user looks up a person in the Address Book.
The Contact data becomes available on the AppBus.

• The phone application is started to make a call.
The number available on the AppBus is displayed and the
phone asks if this is the number to be dialed.

• Similarly, when the user switches to Instant
Messaging, the IM address of the Contact on the AppBus
is suggested. The user confirms this assumption and an
IM session is launched.

• Similarly, if the user switches from IM to the
Address Book, the IM application has placed data on the
AppBus such that the other person’s Contact data can be
immediately displayed.

In these examples, the AppBus holds Contact data for
the person recently interacted with or investigated,
allowing applications to make educated guesses about the
user’s communication targets.

C. Application Communication Complexity

One problem that exists in complex systems is
interdependencies. In order to participate in an
application ecosystem, an application must know how to
communicate with other applications or become
increasingly less useful as the ecosystem grows. This was
mentioned earlier, in the introduction of this article. And,
as stated there, without some sort of infrastructure to help
with the burden, an application author can make one of
two choices: 1) explicitly integrate with other
applications, via direct calls to their API's and queries on
their data stores; or 2) push the burden back on the user.
Obviously, placing more burden on the user is not the
best approach, so the application must maintain the
interfaces. The number of point to point connections
between applications grows quite rapidly as the number
of applications grows. This issue has become a significant
problem in the mobile phone environment since 1)
mobile phones now contain a great deal of functionality
and 2) mobile phones lack the expansive user interface
found on desktop computers that allow the user to handle
this problem through the use of cut and paste type tools.
Figure 3 graphically shows the number of application to
application linkages required for only six applications to
have full connectivity, which is 15 linkages for those six
applications.

App

App

App

App

App

App

Figure 3. Direct Communication Links

So the burden on the individual application author
becomes large for a given set of companion applications,
but becomes larger still as we extend this over a period of
time. As applications change, the companion applications
must be aware of other applications and accommodate
them accordingly.

On the other hand, with infrastructure such as the
AppBus to act as the conduit between applications, the
problem is much more manageable, as seen in Figure 4.

A
pp

B
us

F
ra

m
ew

or
k

App

App

App

App

App

App

Figure 4. AppBus Assisted Communication Links

While applications still need to be able to understand
data from other applications, the method of acquiring it
and sharing it becomes much easier.

VI. LONG TERM MEMORY VS. SHORT TERM MEMORY

There are a large number of methods and
implementations of searching and indexing data available
today. On the internet, search engines and indexes are
common: Google[5][6], Yahoo[7], MSN[8] are a few.
These engines look through existing data posted to the
internet and create indexes. Then when a user requests
information by means of a query, a (possibly) large list of

JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006 45

© 2006 ACADEMY PUBLISHER



results is returned, accounting all sorts of data relating to
the query's search terms. The result list is generally sorted
by some sort of proprietary ranking system in an attempt
to get the most relevant results to the position of
prominence. For the most part, this system works well
given the huge amount of data indexed.

There are similar implementations for searching on
local computers as well. Google Desktop[6][9] is one
example of this. This program creates an index of the data
on the local machine and uses it to return results based on
query parameters. Apple Spotlight[10] is another example
of this technology for Apple's Mac OS X. A third
example of this technology is the Beagle project[11]. This
implementation runs under the Linux operating system.

The common thread through all of these
implementations is that they search through a large
number of long term data stores and create a large index
in order to categorize the data processed. Data is retrieved
through queries. The intelligence of understanding all of
the different types of data stores lies in the framework.

The AppBus approach is different in several respects:
1) Short term data is indexed – While often a complete

search of all stored data is what is required, there are
times when current, contextual information is exactly
what is needed. By keeping the data short term,
application communication and collaboration can be
enhanced by sticking to a set of the most relevant data
items.

2) Intelligence identifying publishable data lies with
the producer application – In AppBus, the framework
does not know about application specific data stores.
Consequently, it does not need to be updated with every
new application. Additionally, the AppBus framework
does not try and guess which items of data in an
application’s data store are most relevant. The application
that created and is currently operating on the data is
allowed to choose the most important pieces and publish
them accordingly. While this creates a slightly higher
burden on the application, it can also produce more
relevant contextual results.

3) Notifications along with queries – The user or the
applications do not need to actively query the framework
in order to receive information. Notifications of new data
and updates to existing data can be delivered to interested
applications asynchronously. This allows an application
to be passive until something of interest to it occurs.

VII. COMPARATIVE TECHNOLOGIES

There are already various technologies in existence
that allow for data sharing between applications. None
that we found fit the requirements we set forth. However,
it is useful to look at existing ideas and implementations
to discover what these other implementations included
and how they were enabled.

A. Desktop Clipboard

The clipboard is a simple, user driven data sharing
facility for desktop computers. For our goals, its valuable
aspects include notification of clipboard changes and
clipboard data inquiries.

However, the clipboard does not meet a number of our
goals. Most important is the amount of explicit user
interaction required to use the facility. Implicit data
sharing is a primary goal of AppBus.

B. Tuple Spaces

A generic tuplespace shared memory exchange is a
well-known method for communication between
processes[12]. They have many qualities that fit our
goals, and there are a number of implementations
available[13][14]. One of these is the ability to exchange
data between applications without either application
knowing of the others existence. Tuples are added to the
tuplespace and have their own identity at that point.
Another valuable feature is data type flexibility.
Tuplespaces are not limited by predefined schemas.

On the other hand, tuplespaces also have several
features that make them unsuitable for our purposes.
First, tuples are not modified once they have entered the
tuplespace. For our purposes, it was important that the
shared data be able to evolve as its usage changed.
Another unsuitable feature is that tuples remain in the
space until retrieved. In the AppBus, unused items
eventually go away (via garbage collection).

C. Relational Database Management System

A Relational Database Management System (RDBMS)
stores data in a database consisting of one or more tables
of rows and columns. Along with many available
implementations[15][16], there are many obvious
desirable characteristics of an RDBMS. The ability to
query for desired data and have event based updates are
useful for our purposes. In fact, these characteristics are
incorporated into the functionality set of AppBus.

Of course, an RDBMS also has a number of
characteristics that makes it unsuitable for our purposes.
The formality of establishing a schema is chief among
them. This causes them to be not nearly flexible or ad-
hoc enough for our purposes.

D. D-BUS

D-BUS[17][18] is a generic IPC mechanism that runs
under Linux. The basic unit of IPC on D-BUS is a
message, not a byte stream. D-BUS can be used as a
standard IPC data passing mechanism similar to UNIX
domain sockets, it can facilitate sending events through
the system and it can act as an RPC mechanism allowing
one application to request services from and invoke
methods on another.

D-BUS does allow for asynchronous communication
and somewhat generic message formats. However, it fails
in meeting a number of our goals since it does not persist
data and is not therefore queryable.

E. Desktop Search

As mentioned previously in section V, there are
various implementations available today that index the
contents of the data stores on a typical
computer[9][10][11], such as document files, saved email
and IM logs. These technologies typically create an index

46 JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006

© 2006 ACADEMY PUBLISHER



on the local machine of words used in the corresponding
data stores.

This technology is somewhat the opposite of the
previous one, D-BUS, in that it persists data but is not
made for asynchronous notifications. That point and the
fact that the indexes can end up being rather large makes
this unsuitable to meet many of our design goals.

VIII. CONCLUSIONS AND FUTURE WORK

This paper describes the AppBus data sharing
infrastructure. It differs from other data transfer
technologies in that AppBus is designed to implement a
more intuitive and collaborative method of current,
contextual data sharing.

Enhancement and usage of AppBus is an ongoing
project in our lab group. It has become a foundation
technology in several of our projects to enable centralized
application communication, event notification, uniform
message passing and intuitive application cooperation.
Several generational improvements are planned with the
next already in the works. Among the issues currently
being addressed are security (and its tradeoff with ease of
collaboration) and the ontology and semantics of the data
being shared.

Along with functionality improvements, we are coding
more applications as data/event sources and sinks.
Combining this with user studies should allow us to get a
better idea of the quantitative benefits of our system.

REFERENCES

[1] http://www.gsmarena.com/motorola_mpx-673.php
[2] http://www.gsmarena.com/motorola_e680i-1136.php
[3] http://www.gsmarena.com/motorola_a1200-1429.php
[4] L. Gong, "Java security: present and near future," IEEE

Micro, vol. 17, issue 3, pp. 14-19, May 1997
[5] http://www.google.com/
[6] M. Cusumano, " Google: What It Is and What It Is Not,"

Communications of the ACM, vol. 48, issue 2, pp. 15-17,
February 2005

[7] http://www.yahoo.com/
[8] http://www.msn.com/

[9] http://desktop.google.com/?promo=mp-gds-v1-1
[10] http://www.apple.com/macosx/features/spotlight/
[11] http://beagle-project.org/Main_Page
[12] D. Gelernter, "Generative Communication in Linda,"

TOPLAS 7, No. 1, 80-112 (1985).
[13] TSpaces, http://www.almaden.ibm.com/cs/TSpaces/
[14] JavaSpaces, http://developers.sun.com/
[15] Infinity Database, http://boilerbay.com/infinitydb/
[16] SmallSQL, http://smallsql.sourceforge.net/
[17] J. Palmieri, "Get on D-BUS", Red Hat Magazine, issue #3,

January 2005
[18] http://www.freedesktop.org/wiki/Software/dbus
[19] C. Janssen, M. Pearce and S. Kollipara, “AppBus:

Providing Short Term Memory for Mobile Devices”,
CCNC 2006

Craig Janssen received a B.S in computer engineering from
Iowa State University at Ames, Iowa. He is currently a Senior
Staff Engineer at Motorola Labs, Motorola in Schaumburg,
Illinois.

Michael Pearce received a B.S. in computer engineering
from Iowa State University at Ames, Iowa. He is currently a
Distinguished Member of the Technical Staff at Motorola Labs,
Motorola in Schaumburg Illinois.

Nitya Narasimhan received a Ph.D. in computer
engineering from University of California at Santa Barbara,
California. She is currently a Principal Staff Engineer at
Motorola Labs, Motorola in Schaumburg, Illinois.

Shriram Kollipara received an M.S. in electrical
engineering and computer science from the University of
Illinois at Chicago, Illinois. He is currently a Senior Software
Engineer at Mobile Devices, Motorola in Libertyville, Illinois.

JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006 47

© 2006 ACADEMY PUBLISHER


