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Abstract— Variable Neighbourhood Search (VNS) is one of 
the most recent metaheuristics used for problem solving in 
which a systematic change of neighbourhood within a local 
search is carried out.  In this paper, an investigation on 
implementing VNS for job shop scheduling problems is 
carried out tackling benchmark suites collected from OR 
library. The idea is to build the best local search and shake 
operations based on neighbourhood structure available. The 
results are presented and compared with the recent 
approaches in the literature. It is concluded that the VNS 
algorithm can generally find better results. 
 
Index Terms—variable neighbourhood search, job shop 
scheduling  

I.  INTRODUCTION 

Metaheuristics are general strategies for designing 
heuristic procedures to solve optimization problems via 
searching through the solution space. The heuristic search 
procedures offer moves around the neighbourhood of a 
particular solution in some particular fashions, which are 
called neighbourhood structures. Variable neighbourhood 
search (VNS) is a recent metaheuristic for solving 
combinatorial and global optimization problems whose 
basic idea is systematic change of neighbourhood within 
a local search. It is based on a simple principle: change 
the neighbourhood structure when the search is trapped 
on a local minimum, which very likely happens in most 
of combinatorial and/or multi-model numerical 
optimization problems. Especially, as search space grows 
fast with enlarging problem sizes, the likelihood of being 
trapped in local minima becomes inevitable. The main 
interest of research in this field is to make clear the way 
of recovering trapped search or to put effort for keeping 
on-course. VNS offers a multiple neighbourhood 
structure with which one recovers the solutions trapped 
via the others. The main idea here is to choose heuristics 
(neighbourhood structures) complementary to each other.  

Job Shop Scheduling (JSS) problems with the 
objective function of minimizing makespan (Cmax) is one 
of the best known and strongly NP-hard [1] combinatorial 

problems. Among the benchmarks within the literature, 
small size instances can be solved within reasonable 
computational time by exact algorithms such as branch-
and-bound approach [2, 3]. However, when the problem 
size increases, the computational time of the exact 
methods grows exponentially. Therefore, the recent 
research on JSS problems is focused on heuristic 
algorithms such as Simulated Annealing (SA) [4, 5, 6], 
Genetic Algorithm (GA) [7, 8, 9, 10], Taboo Search (TS) 
[11, 12, 13], Ant Colony Optimization (ACO) [14, 15], 
Neural Network (NN) [16], Shifting Bottleneck 
Procedure [17, 18], Guided Local Search [19], Parallel 
Greedy Randomized Adaptive Search Procedure 
(GRASP) [20] and Constraint Propagation [21]. A 
comprehensive survey of the JSS problem can be found 
in [22]. 

In this paper, we examine a further investigation of 
VNS is carried out to make clear the contribution which 
has been published preliminary by us [23]. For this 
purpose, we have examined 7 VNS algorithm provided 
with their functional configurations.  

The organization of this paper is as follows. Section II 
introduces the background information of JSS, the way 
how to represent the problems and the neighbourhood 
structure employed. The third section is about VNS 
algorithm implemented. The extensively carried out 
experiments are reported and discussed in the fourth 
section while the fifth section provides with the 
conclusions.  

II. BACKGROUND 

The background information provided in the following 
subsections is mainly about job shop scheduling, problem 
representation and the alteration structure for search. 

A. Problem Description 
Job Shop Scheduling (JSS) problems have been 

studied for a long time. Due to its NP-Hard nature, this 
type of problems has never been dropped from scientific 
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research interests and kept becoming a popular testbed 
for metaheuristics.  

The problem is comprised of a set of jobs (J) to be 
processed on a set of machines (M) subject to a number 
of technological constraints. Each job consists of m 
operations, Oj={o1j,…,omj}, each operation must be 
processed on a particular machine, and there is only one 
operation of each job to be processed on each machine. 
There is a predefined order of the operations of each 
particular job in which each operation has to be processed 
after its predecessor (PJj) and before its successor (SJj). 
In the end of the whole schedule, each machine 
completes processing n operations in an order that is 
determined during the scheduling time, although there is 
no such order initially. Therefore, each operation 
processed on machine Mi has a predecessor (PMi ) and a 
successor (SMi ). A machine can process only one 
operation at a time. There are no set-up times, no release 
dates and no due dates.  

Each operation has a processing time (pij) on related 
machine starting at the time of rij . The completion time 
of operation oij is therefore: cij=rij+pij, where i = (1,...,m), 

j = (1,..., n) and . Machines and jobs 
have particular completion times, which are denoted and 
identified as:  and 

),max( jPMiPJij ij
ccr =

inM cC
i
= inJ cC

j
=  where cin and cjm are 

the completion time of the last (nth) operation on ith 
machine and the completion time of the last (mth) 
operation of jth job, respectively. The overall objective is 
to minimize the completion time of the whole schedule 
(makespan), which is the maximum of machines’ 
completion times, Cmax = max(CM1, ...,CMm ).  

B. Problem Representation 
Schedules are represented in a set of integers, where each 
stands for an operation. It is also called chromosome of 
n×m gene representing a problem of n jobs, m machines. 
Since each integer does not represent a certain operation, 
but the last completed operation of corresponding job, 
each job is represented m times within the chromosome. 
This way of representation prevents infeasibility, and 
always provide with a feasible active schedule.  For 
instance, we are given a chromosome of [2 1 2 2 1 3 1 3 
3], where {1, 2, 3} represents {j1, j2, j3} respectively. 
Obviously, there are totally 9 operations, but, 3 different 
integers, each is repeated 3 times. The integer on the first 
gene, 2, represents the first operation of the second job to 
be processed first on corresponding machine. Likewise, 
the integer on the second gene, 1, represents the first 
operation of the first job on corresponding machine.  
Thus, the chromosome of [2 1 2 2 1 3 1 3 3] is understood 
as [o21, o11, o22, o23, o12, o31, o13, o32, o33] where oij stands 
for the ith operation of jth job. More details can be found 
in [24]. 

C. Neighbourhood Structure 
The neighbourhood structure with which the 

neighbouring solutions are determined to move to is one 
of the key elements of metaheuristics, as the performance 
of the metaheuristic algorithm significantly depends on 

the efficiency of the neighbourhood structure. The 
following two neighbourhood structures are employed in 
this study: 

- Exchange is a function used to move around in 
which any two randomly selected operations are 
simply swapped. For instance, suppose that we are 
given a state of [2 1 2 2 1 3 1 3 3] and the two 
random numbers derived are 2 and 8. After 
applying Exchange, the new state will be [2 1 3 2 
1 3 1 3 2]. Obviously, the 2nd and 8th genes of the 
chromosome were 2 and 3, respectively. Applying 
Exchange function, the new 2nd and 8th genes were 
swapped and turned to 3 and 2, respectively. 

- Insert is another fine-tuning function that inserts a 
randomly chosen gene in front or back of another 
randomly chosen gene. For instance, we are given 
the same state as before. In order to apply Insert, 
we also need to derive two random numbers; one 
is for determining the gene to be inserted and the 
other is for the gene that insertion to be done in 
front/back of it. Let us say those number are 3 and 
6, where 3rd gene is 2 and the 6th one is 3. 
Consecutively, the new state will be [2 1 2 1 2 3 1 
3 3].  

Although there are many other, maybe more efficient, 
neighbourhood structures reported in the literature, we 
preferred these two due to the simplicity and ease of use 
alongside a reasonable efficiency. The others such as 
critical path based-functions, provide more efficiency, but 
definitely require much more computational time and 
experience and hard working.  

III. VARIABLE NEIGHBOURHOOD SEARCH 

Variable neighbourhood search (VNS) is one of the most 
recent metaheuristics developed for problem solving in an 
easier way.  It is known as one of very well-known local 
search methods [25], gets more attention day-by-day, 
because of its ease of use and accomplishments in 
problem solving. Basically, a local search algorithm 
carries out exploration within a limited region of the 
whole search space. That facilitates a provision of finding 
better solutions without going further investigation.  The 
VNS is a simple and effective search procedure that 
proceeds to a systematic change of neighbourhood. An 
ordinary VNS algorithm gets an initial solution, x∈S, 
where S is the whole set of search space, than 
manipulates it through a two nested loop in which the 
core one alters and explores via two main functions so 
called shake and local search. The outer loop works as a 
diversifier reiterating the inner loop, while the inner loop 
carries the major search. Local search explores for an 
improved solution within the local neighbourhood, whilst 
shake diversifies the solution by switching to another 
local neighbourhood. The inner loop iterates as long as it 
keeps improving the solutions, where an integer, k, 
controls the length of the loop. Once an inner loop is 
completed, the outer loop re-iterates until the termination 
condition is met. Since the complementariness of 
neighbourhood functions is the key idea behind VNS, the 
neighbourhood structure / heuristic functions should be 
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chosen very rigorously so as to achieve an efficient 
algorithm.  

In order to develop an effective VNS algorithm, one 
needs two kinds of neighbourhood functions,  

and  resulting each with a particular 

neighbourhood structure, where 

)(xN s
k

)(xN LS
l

)(xN s
k  and 

denote neighbourhood functions for shake and 
local search, respectively. The neighbourhood structures 
used may be more than one for each function (shake and 
local search) so as to achieve a valuable neighbourhood 
change. For that purpose, the indices, k and l, are to be 
used for shake and local search functions, respectively, in 
order to ease switching from one to another 
neighbourhood.  Obviously, both indices have upper 
boundaries, which are denoted with k

)(xN LS
l

max and lmax. Hence, 
 and are the ranges identified 

for each indices.  
max1 kk ≤≤ max1 ll ≤≤

The VNS comprises the following steps:  
 
1.  Initialization: Find an initial solution x. 
2. Repeat the following steps until the stopping 

condition is met: 
(a) Shake Procedure: Generate at random a 

starting solution x’ Є . )(xN s
k

(b) Local Search: Apply a local search from the 
starting solution x’ using the base 
neighborhood structure  until a local 

minimum x” Є is found. 

)(xN LS
l

)(xN LS
l

(c) Improve or not: If x” is better than x,          
do x ←  x’ . 

If the local search uses greedy strategy, then at Step 2(b) 
an iterative procedure tests all the base moves providing 
the best neighbouring solution until a local minimum is 
obtained. The shake procedure selects randomly a 
solution from .  )(xN LS

l

In this paper, we developed the local search 
function as a simple variable neighbourhood descent 
algorithm based on both aforementioned neighbourhood 
structures. It keeps iterating as long as better moves 
achieved. It stops, if the algorithm produces a predefined 
number of non-better moves consecutively. Once the 
local search finishes a run, then the shake function works 
to switch to another region so as to carry out a new local 
search there, as shake functions to diversify the 
exploration.  The local search procedure is provided as 
follows. 

1. Get initial solution, xЄS    
2. Set  k←1 
3. while k≤kmax do 

if (k=1) then x” ЄS ← Exchange( x’ ) 
else if (k=2) then x” ЄS ← Insert( x’ ) 
if  f(x”)< f(x’) then  x’← x” and  k←1 
else  k←k+1 

On the other hand, the shake function consists of a couple 
of repeated random moves conducted by the 
neighbourhood function described above The shake 
procedure has set to operating with exchange and insert 
functions successively. Given state x* is operated with 
Exchange to obtain x’, which is operated then with Insert 
consecutively. Finally, Exchange re-operates on the 
outcome of Insert, say x”, to obtain x. 

IV. EXPERIMENTAL STUDY 

In this paper, we provided experimental results for 
various VNS algorithms in order to clarify the efficiency 
of implementations. The measures considered in this 
study are mainly about quality of solution and/or 
computational time. The success of the algorithm 
regarding the quality of solution has mainly been 
accounted with respect to the relative percentage of error 
(RPE) index, which is calculated as follows: 

                     100)(
×

−
=

opt
optbfRPE  (1) 

where bf is the best makespan found and opt is either the 
optimum or the lowest boundary known for uncertain 
optimum values.  Obviously, RPE is calculated based on 
the best value found, and also it can be measured 
benchmark-by-benchmark. In order to review the results 
in a broader point of view, we developed a second index 
based on the latter RPE calculation averaged over the 30 
repetitions. That is called ARPE standing for averaged 
relative percentage of error. The third index used is the 
hitting-ratio (HR) being calculated as the number of 
optimum found through the whole repetitions. This is 
needed as other indexes may not build a sufficient level 
of confidence with the results. The whole software was 
coded in C and run on an Intel Pentium IV 2.6 GHz PC 
with 256MB memory. The JSS benchmark suits, which 
are very well known within the field, were picked up 
from OR-Library [26]. 

A. Experimentation with VNS algorithms 
We have examined a number of VNS 

implementations; each differs from the other with the 
configuration of shake and local search functions by 
using the neighbourhood structures. The idea is to 
develop efficient implementation.  Following are the list 
of 7 VNS algorithms provided with their functional 
configurations. 

 
VNS-I : Shake ←Exchange +Insert + Exchange,  Local 

Search ←Exchange +Insert 
VNS-II : Shake← Exchange +Insert + Exchange,  Local 

Search ← Insert + Exchange 
VNS-III : Shake← Exchange +Insert+ Exchange,  Local 

Search ← Exchange 
VNS-IV : Shake← Exchange+ Insert+ Exchange,  Local 

Search ← Insert 
VNS-V : Shake← Insert+ Insert+ Insert,  

Local Search ← Insert 
VNS-VI : Shake← Exchange+Exchange+ Exchange, 

Local Search ← Exchange 
VNS-VII : No Shake, Local Search ← Exchange + Insert 
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In Table 1, the experimental results obtained by 
each VNS algorithms with respect to the quality of 
solutions measured in ARPE and HR indexes, where 
former (APRE) is minimized and the latter (HR) is 
maximized. The experiments have been conducted over 
31 benchmarks tackled; some are known moderately hard 
but some are very hard. The accomplishments of the 
algorithms are clearly reflected. The APRE and HR 
indexes provide very consistently, which proves that 
measuring the performances reflects the real 
achievement.  The table comprises of 7 main parts, where 
each part consists of two columns; one shows the 
achievement with respect to APRE and the other does 
with HR. The first two columns are allocated for the 
name and optimum values of each benchmark while the 
rest are devoted to each version of VNS. Obviously, 
VNS-I and VNS-II are competitive for the best while 

VNS-VII provides the worst as its HR values remain 
mostly around 0% and the mean of APRE is the highest. 
On the other hand, VNS-II, which seems the best, 
provides with APRE of 0.76 % and HR of 34 %. The 
other 4 versions remain competitive with one another. 
The main aspect shared by the first two versions is their 
local search algorithms, which comprises of two 
neighbourhood structures (NS) while the other four 
versions those have the intermediate performance made 
of a local search of a single NS. The shake function does 
not create so much change, apparently, as the shake 
function of VNS-III and VNS-IV are the same as VNS-I 
and VNS-II while the shake of VNS-V and VNS-VI vary. 
As a result, we observe the significant change with a local 
search of double NS versions. The version with the worst 
performance, VNS-VII, does not have a proper shake 
function, though a double NS local search operates.  

 
 
TABLE I. RESULTS OBTAINED FROM SEVEN VNS ALGORITHMS WITH RESPECT TO 2 INDEXES FOR QUALITY OF SOLUTIONS 

Benchmark VNS-I VNS-II VNS-III VNS-IV VNS-V VNS-VI VNS-VII 
Prob. Opt. ARPE (%) HR ARPE (%) HR ARPE (%) HR ARPE (%) HR ARPE (%) HR ARPE (%) HR ARPE (%) HR 
ft10 930 0.55 0.60 0.94 0.47 1.11 0.40 1.17 0.33 1.02 0.40 1.87 0.10 4.79 0.00
ft20 1165 0.54 0.50 0.46 0.53 0.95 0.10 0.77 0.30 0.87 0.20 0.90 0.17 1.08 0.03
la16 945 0.30 0.50 0.57 0.50 0.46 0.40 0.34 0.57 0.83 0.30 0.24 0.57 3.04 0.07
la19 842 0.09 0.93 0.09 0.93 0.15 0.87 0.19 0.80 0.13 0.87 0.29 0.67 2.66 0.03

abz05 1234 0.10 0.60 0.11 0.60 0.22 0.40 0.20 0.40 0.22 0.30 0.15 0.60 1.43 0.20
abz06 943 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.01 0.97 1.53 0.13
orb01 1059 1.47 0.13 1.58 0.00 2.62 0.03 1.70 0.03 1.95 0.00 1.93 0.00 5.21 0.00
orb02 888 0.33 0.00 0.33 0.00 0.38 0.00 0.38 0.00 0.42 0.00 0.36 0.00 2.60 0.00
orb03 1005 2.60 0.10 1.76 0.37 2.72 0.10 3.20 0.10 3.43 0.10 2.64 0.10 7.52 0.00
orb04 1005 0.62 0.40 0.50 0.40 0.93 0.13 0.72 0.30 0.84 0.13 0.92 0.10 2.69 0.00
orb05 887 0.31 0.17 0.62 0.07 0.76 0.00 0.66 0.03 1.08 0.00 0.74 0.03 4.07 0.00
orb06 1010 0.89 0.10 0.78 0.03 1.21 0.00 0.96 0.00 1.00 0.03 1.21 0.00 5.91 0.00
orb07 397 0.27 0.80 0.25 0.80 0.48 0.63 0.28 0.80 0.58 0.57 0.52 0.57 2.49 0.17
orb08 899 1.63 0.23 0.83 0.50 1.28 0.50 1.74 0.33 1.98 0.30 1.93 0.30 5.58 0.03
orb09 934 0.78 0.13 0.65 0.30 0.74 0.17 0.60 0.30 0.62 0.23 0.72 0.20 2.34 0.00
orb10 944 0.00 1.00 0.00 1.00 0.08 0.87 0.04 0.93 0.04 0.93 0.04 0.93 4.86 0.07
abz07 656 2.01 0.00 2.09 0.00 2.70 0.00 2.35 0.00 2.12 0.00 2.95 0.00 3.11 0.00
abz08 665 1.99 0.00 1.83 0.00 2.86 0.00 2.19 0.00 2.39 0.00 2.82 0.00 3.76 0.00
abz09 679 2.17 0.00 2.16 0.00 2.88 0.00 2.42 0.00 2.61 0.03 2.81 0.00 3.65 0.00
la21 1046 0.62 0.03 0.77 0.00 1.30 0.00 0.86 0.00 0.94 0.03 1.09 0.00 2.74 0.00
la22 927 0.24 0.57 0.18 0.63 0.67 0.13 0.34 0.47 0.42 0.30 0.64 0.13 1.28 0.03
la24 935 0.60 0.03 0.63 0.00 1.29 0.00 0.71 0.03 0.88 0.03 1.32 0.00 2.74 0.00
la25 977 0.64 0.07 0.49 0.23 0.99 0.00 0.81 0.07 0.74 0.17 1.07 0.00 2.27 0.03
la27 1235 0.91 0.00 1.00 0.03 1.80 0.00 1.38 0.03 1.42 0.03 1.70 0.00 1.65 0.03
la28 1216 0.03 0.87 0.03 0.90 0.42 0.17 0.12 0.67 0.13 0.67 0.36 0.23 0.30 0.53
la29 1152 1.80 0.00 1.92 0.00 3.04 0.00 2.42 0.00 2.17 0.00 3.13 0.00 3.40 0.00
la36 1268 0.49 0.27 0.48 0.37 1.07 0.00 0.75 0.07 0.86 0.17 1.00 0.03 1.98 0.00
la37 1397 0.73 0.37 0.83 0.30 0.98 0.20 0.92 0.13 1.03 0.07 1.14 0.17 2.41 0.07
la38 1196 0.97 0.07 0.82 0.07 1.85 0.00 1.37 0.03 1.78 0.07 1.38 0.00 4.19 0.00
la39 1233 0.43 0.30 0.37 0.40 1.07 0.00 0.61 0.07 0.60 0.20 1.01 0.00 2.58 0.03
la40 1222 0.42 0.00 0.42 0.00 0.84 0.00 0.69 0.00 0.64 0.00 0.74 0.00 2.25 0.00

Average 0.79 0.32 0.76 0.34 1.22 0.20 1.00 0.25 1.09 0.23 1.22 0.19 3.10 0.05
 
 

A. Related Works 
The related works has been discussed earlier in 
introduction section. The theme of this subsection is to 
bring forward a comparison between our results and the 
results gained by works related to job shop scheduling 
recently published in order to build a level of confidence. 
Table 2 presents results provided with various 
metaheuristics recently published and VNS-II 
configuration with respect to the quality of the solutions 
in PRE index. The reason to switch to RPE index back is 

due to the difficulty of calculating APRE index with the 
results provided in the related literature.  The benchmarks 
chosen are those which considered very hard among the 
list of 31 in Table 1. These algorithms taken into account 
are listed as follows: 

- Distributed evolutionary simulated annealing 
algorithm (dESA) by Aydin and Fogarty [4].  

- Ant colony optimization algorithm (ACO GSS) 
by Blum and Sampels [14]. 
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- Parallel GRASP with path-relinking (GRASP) 
by Aiex et al.[20] 

- A Hybrid Genetic Algorithm (HGA) by 
Goncalves et al.[10]. 

- A Tabu Search Method (TSSB) by Pezzella and 
Merelli [13]. 

Since the best of our VNS algorithms in Table 1 is VNS-
II, we put the results obtained with that algorithm. We 

can observe that the VNS-II outperform the other 
algorithms compared with respect to RPE index, as the 
lowest value provided by TSSB is about 0.88 while VNS-
II provides with 0.24. On the other hand, VNS-II 
algorithms remain competitive among themselves, as one 
provides better for one benchmark but worse for another. 
VNS-II provides definitely better than 4 algorithms.   

 

TABLE II. A COMPARISON AMONG THE META-HEURISTICS RECENTLY PUBLISHED WITH RESPECT TO THE QUALITY OF THE 
SOLUTION IN RPE INDEX. 

 

Benchmarks Related works  
Problems Optimum dESA [4] ACO GSS  [14] GRASP [20] HGA [10] TSSB [13] VNS-II 

abz07 656 2.44 2.74 5.49 NA 1.52 0.46 
abz08 665 2.41 3.61 6.02 NA 1.95 0.60 
abz09 679 2.95 3.39 8.98 NA 2.06 0.15 
la21 1046 0.00 0.10 1.05 0.00 0.00 0.00 
la24 935 0.32 0.96 2.03 1.93 0.32 0.00 
la25 977 0.00 0.00 0.72 0.92 0.20 0.00 
la27 1235 0.40 0.65 2.75 1.70 0.00 0.08 
la29 1152 2.08 1.39 4.43 3.82 1.39 0.95 
la38 1196 0.42 2.59 1.84 1.92 0.42 0.00 
la40 1222 0.49 0.49 1.80 1.55 0.90 0.16 

Average  1.15 1.59 3.51 1.69 0.88 0.24 

 

V. CONCLUSIONS 

In this paper, we examined VNS algorithms for job shop 
scheduling problems, which has been studied for far long 
time. Because of its hardness and being representative for 
planning problems, many methods have been tested with 
this family of problems. In this paper, the VNS 
implementations have been tested with respect to the 
efficiency over classical job shop problems. The best of 
the implementations has been exploited in investigation 
of VNS algorithms. It has been shown that the VNS 
implementation has done well and outperformed a 
number of meta-heuristics recently published.  
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