
Variable Neighbourhood Search for Job Shop
Scheduling Problems

[10 font size blank 1]
[10 font size blank 2]

Mehmet Sevkli
Operation Research Department, Defense Sciences Institute,

Turkish Military Academy
06654, Cankaya, Ankara

Email: msevkli@kho.edu.tr
[10 font size blank 1]

M. Emin Aydin
University of Bedfordshire, Dept. of Computing and Information Systems

Luton, UK
Email: mehmetaydin@acm.org

[10 font size blank 3]

Abstract— Variable Neighbourhood Search (VNS) is one of
the most recent metaheuristics used for problem solving in
which a systematic change of neighbourhood within a local
search is carried out. In this paper, an investigation on
implementing VNS for job shop scheduling problems is
carried out tackling benchmark suites collected from OR
library. The idea is to build the best local search and shake
operations based on neighbourhood structure available. The
results are presented and compared with the recent
approaches in the literature. It is concluded that the VNS
algorithm can generally find better results.

Index Terms—variable neighbourhood search, job shop
scheduling

I. INTRODUCTION

Metaheuristics are general strategies for designing
heuristic procedures to solve optimization problems via
searching through the solution space. The heuristic search
procedures offer moves around the neighbourhood of a
particular solution in some particular fashions, which are
called neighbourhood structures. Variable neighbourhood
search (VNS) is a recent metaheuristic for solving
combinatorial and global optimization problems whose
basic idea is systematic change of neighbourhood within
a local search. It is based on a simple principle: change
the neighbourhood structure when the search is trapped
on a local minimum, which very likely happens in most
of combinatorial and/or multi-model numerical
optimization problems. Especially, as search space grows
fast with enlarging problem sizes, the likelihood of being
trapped in local minima becomes inevitable. The main
interest of research in this field is to make clear the way
of recovering trapped search or to put effort for keeping
on-course. VNS offers a multiple neighbourhood
structure with which one recovers the solutions trapped
via the others. The main idea here is to choose heuristics
(neighbourhood structures) complementary to each other.

Job Shop Scheduling (JSS) problems with the
objective function of minimizing makespan (Cmax) is one
of the best known and strongly NP-hard [1] combinatorial

problems. Among the benchmarks within the literature,
small size instances can be solved within reasonable
computational time by exact algorithms such as branch-
and-bound approach [2, 3]. However, when the problem
size increases, the computational time of the exact
methods grows exponentially. Therefore, the recent
research on JSS problems is focused on heuristic
algorithms such as Simulated Annealing (SA) [4, 5, 6],
Genetic Algorithm (GA) [7, 8, 9, 10], Taboo Search (TS)
[11, 12, 13], Ant Colony Optimization (ACO) [14, 15],
Neural Network (NN) [16], Shifting Bottleneck
Procedure [17, 18], Guided Local Search [19], Parallel
Greedy Randomized Adaptive Search Procedure
(GRASP) [20] and Constraint Propagation [21]. A
comprehensive survey of the JSS problem can be found
in [22].

In this paper, we examine a further investigation of
VNS is carried out to make clear the contribution which
has been published preliminary by us [23]. For this
purpose, we have examined 7 VNS algorithm provided
with their functional configurations.

The organization of this paper is as follows. Section II
introduces the background information of JSS, the way
how to represent the problems and the neighbourhood
structure employed. The third section is about VNS
algorithm implemented. The extensively carried out
experiments are reported and discussed in the fourth
section while the fifth section provides with the
conclusions.

II. BACKGROUND

The background information provided in the following
subsections is mainly about job shop scheduling, problem
representation and the alteration structure for search.

A. Problem Description
Job Shop Scheduling (JSS) problems have been

studied for a long time. Due to its NP-Hard nature, this
type of problems has never been dropped from scientific

34 JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006

© 2006 ACADEMY PUBLISHER

research interests and kept becoming a popular testbed
for metaheuristics.

The problem is comprised of a set of jobs (J) to be
processed on a set of machines (M) subject to a number
of technological constraints. Each job consists of m
operations, Oj={o1j,…,omj}, each operation must be
processed on a particular machine, and there is only one
operation of each job to be processed on each machine.
There is a predefined order of the operations of each
particular job in which each operation has to be processed
after its predecessor (PJj) and before its successor (SJj).
In the end of the whole schedule, each machine
completes processing n operations in an order that is
determined during the scheduling time, although there is
no such order initially. Therefore, each operation
processed on machine Mi has a predecessor (PMi) and a
successor (SMi). A machine can process only one
operation at a time. There are no set-up times, no release
dates and no due dates.

Each operation has a processing time (pij) on related
machine starting at the time of rij . The completion time
of operation oij is therefore: cij=rij+pij, where i = (1,...,m),

j = (1,..., n) and . Machines and jobs
have particular completion times, which are denoted and
identified as: and

),max(jPMiPJij ij
ccr =

inM cC
i
= inJ cC

j
= where cin and cjm are

the completion time of the last (nth) operation on ith
machine and the completion time of the last (mth)
operation of jth job, respectively. The overall objective is
to minimize the completion time of the whole schedule
(makespan), which is the maximum of machines’
completion times, Cmax = max(CM1, ...,CMm).

B. Problem Representation
Schedules are represented in a set of integers, where each
stands for an operation. It is also called chromosome of
n×m gene representing a problem of n jobs, m machines.
Since each integer does not represent a certain operation,
but the last completed operation of corresponding job,
each job is represented m times within the chromosome.
This way of representation prevents infeasibility, and
always provide with a feasible active schedule. For
instance, we are given a chromosome of [2 1 2 2 1 3 1 3
3], where {1, 2, 3} represents {j1, j2, j3} respectively.
Obviously, there are totally 9 operations, but, 3 different
integers, each is repeated 3 times. The integer on the first
gene, 2, represents the first operation of the second job to
be processed first on corresponding machine. Likewise,
the integer on the second gene, 1, represents the first
operation of the first job on corresponding machine.
Thus, the chromosome of [2 1 2 2 1 3 1 3 3] is understood
as [o21, o11, o22, o23, o12, o31, o13, o32, o33] where oij stands
for the ith operation of jth job. More details can be found
in [24].

C. Neighbourhood Structure
The neighbourhood structure with which the

neighbouring solutions are determined to move to is one
of the key elements of metaheuristics, as the performance
of the metaheuristic algorithm significantly depends on

the efficiency of the neighbourhood structure. The
following two neighbourhood structures are employed in
this study:

- Exchange is a function used to move around in
which any two randomly selected operations are
simply swapped. For instance, suppose that we are
given a state of [2 1 2 2 1 3 1 3 3] and the two
random numbers derived are 2 and 8. After
applying Exchange, the new state will be [2 1 3 2
1 3 1 3 2]. Obviously, the 2nd and 8th genes of the
chromosome were 2 and 3, respectively. Applying
Exchange function, the new 2nd and 8th genes were
swapped and turned to 3 and 2, respectively.

- Insert is another fine-tuning function that inserts a
randomly chosen gene in front or back of another
randomly chosen gene. For instance, we are given
the same state as before. In order to apply Insert,
we also need to derive two random numbers; one
is for determining the gene to be inserted and the
other is for the gene that insertion to be done in
front/back of it. Let us say those number are 3 and
6, where 3rd gene is 2 and the 6th one is 3.
Consecutively, the new state will be [2 1 2 1 2 3 1
3 3].

Although there are many other, maybe more efficient,
neighbourhood structures reported in the literature, we
preferred these two due to the simplicity and ease of use
alongside a reasonable efficiency. The others such as
critical path based-functions, provide more efficiency, but
definitely require much more computational time and
experience and hard working.

III. VARIABLE NEIGHBOURHOOD SEARCH

Variable neighbourhood search (VNS) is one of the most
recent metaheuristics developed for problem solving in an
easier way. It is known as one of very well-known local
search methods [25], gets more attention day-by-day,
because of its ease of use and accomplishments in
problem solving. Basically, a local search algorithm
carries out exploration within a limited region of the
whole search space. That facilitates a provision of finding
better solutions without going further investigation. The
VNS is a simple and effective search procedure that
proceeds to a systematic change of neighbourhood. An
ordinary VNS algorithm gets an initial solution, x∈S,
where S is the whole set of search space, than
manipulates it through a two nested loop in which the
core one alters and explores via two main functions so
called shake and local search. The outer loop works as a
diversifier reiterating the inner loop, while the inner loop
carries the major search. Local search explores for an
improved solution within the local neighbourhood, whilst
shake diversifies the solution by switching to another
local neighbourhood. The inner loop iterates as long as it
keeps improving the solutions, where an integer, k,
controls the length of the loop. Once an inner loop is
completed, the outer loop re-iterates until the termination
condition is met. Since the complementariness of
neighbourhood functions is the key idea behind VNS, the
neighbourhood structure / heuristic functions should be

JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006 35

© 2006 ACADEMY PUBLISHER

chosen very rigorously so as to achieve an efficient
algorithm.

In order to develop an effective VNS algorithm, one
needs two kinds of neighbourhood functions,

and resulting each with a particular

neighbourhood structure, where

)(xN s
k

)(xN LS
l

)(xN s
k and

denote neighbourhood functions for shake and
local search, respectively. The neighbourhood structures
used may be more than one for each function (shake and
local search) so as to achieve a valuable neighbourhood
change. For that purpose, the indices, k and l, are to be
used for shake and local search functions, respectively, in
order to ease switching from one to another
neighbourhood. Obviously, both indices have upper
boundaries, which are denoted with k

)(xN LS
l

max and lmax. Hence,
 and are the ranges identified

for each indices.
max1 kk ≤≤ max1 ll ≤≤

The VNS comprises the following steps:

1. Initialization: Find an initial solution x.
2. Repeat the following steps until the stopping

condition is met:
(a) Shake Procedure: Generate at random a

starting solution x’ Є .)(xN s
k

(b) Local Search: Apply a local search from the
starting solution x’ using the base
neighborhood structure until a local

minimum x” Є is found.

)(xN LS
l

)(xN LS
l

(c) Improve or not: If x” is better than x,
do x ← x’ .

If the local search uses greedy strategy, then at Step 2(b)
an iterative procedure tests all the base moves providing
the best neighbouring solution until a local minimum is
obtained. The shake procedure selects randomly a
solution from .)(xN LS

l

In this paper, we developed the local search
function as a simple variable neighbourhood descent
algorithm based on both aforementioned neighbourhood
structures. It keeps iterating as long as better moves
achieved. It stops, if the algorithm produces a predefined
number of non-better moves consecutively. Once the
local search finishes a run, then the shake function works
to switch to another region so as to carry out a new local
search there, as shake functions to diversify the
exploration. The local search procedure is provided as
follows.

1. Get initial solution, xЄS
2. Set k←1
3. while k≤kmax do

if (k=1) then x” ЄS ← Exchange(x’)
else if (k=2) then x” ЄS ← Insert(x’)
if f(x”)< f(x’) then x’← x” and k←1
else k←k+1

On the other hand, the shake function consists of a couple
of repeated random moves conducted by the
neighbourhood function described above The shake
procedure has set to operating with exchange and insert
functions successively. Given state x* is operated with
Exchange to obtain x’, which is operated then with Insert
consecutively. Finally, Exchange re-operates on the
outcome of Insert, say x”, to obtain x.

IV. EXPERIMENTAL STUDY

In this paper, we provided experimental results for
various VNS algorithms in order to clarify the efficiency
of implementations. The measures considered in this
study are mainly about quality of solution and/or
computational time. The success of the algorithm
regarding the quality of solution has mainly been
accounted with respect to the relative percentage of error
(RPE) index, which is calculated as follows:

 100)(
×

−
=

opt
optbfRPE (1)

where bf is the best makespan found and opt is either the
optimum or the lowest boundary known for uncertain
optimum values. Obviously, RPE is calculated based on
the best value found, and also it can be measured
benchmark-by-benchmark. In order to review the results
in a broader point of view, we developed a second index
based on the latter RPE calculation averaged over the 30
repetitions. That is called ARPE standing for averaged
relative percentage of error. The third index used is the
hitting-ratio (HR) being calculated as the number of
optimum found through the whole repetitions. This is
needed as other indexes may not build a sufficient level
of confidence with the results. The whole software was
coded in C and run on an Intel Pentium IV 2.6 GHz PC
with 256MB memory. The JSS benchmark suits, which
are very well known within the field, were picked up
from OR-Library [26].

A. Experimentation with VNS algorithms
We have examined a number of VNS

implementations; each differs from the other with the
configuration of shake and local search functions by
using the neighbourhood structures. The idea is to
develop efficient implementation. Following are the list
of 7 VNS algorithms provided with their functional
configurations.

VNS-I : Shake ←Exchange +Insert + Exchange, Local

Search ←Exchange +Insert
VNS-II : Shake← Exchange +Insert + Exchange, Local

Search ← Insert + Exchange
VNS-III : Shake← Exchange +Insert+ Exchange, Local

Search ← Exchange
VNS-IV : Shake← Exchange+ Insert+ Exchange, Local

Search ← Insert
VNS-V : Shake← Insert+ Insert+ Insert,

Local Search ← Insert
VNS-VI : Shake← Exchange+Exchange+ Exchange,

Local Search ← Exchange
VNS-VII : No Shake, Local Search ← Exchange + Insert

36 JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006

© 2006 ACADEMY PUBLISHER

In Table 1, the experimental results obtained by
each VNS algorithms with respect to the quality of
solutions measured in ARPE and HR indexes, where
former (APRE) is minimized and the latter (HR) is
maximized. The experiments have been conducted over
31 benchmarks tackled; some are known moderately hard
but some are very hard. The accomplishments of the
algorithms are clearly reflected. The APRE and HR
indexes provide very consistently, which proves that
measuring the performances reflects the real
achievement. The table comprises of 7 main parts, where
each part consists of two columns; one shows the
achievement with respect to APRE and the other does
with HR. The first two columns are allocated for the
name and optimum values of each benchmark while the
rest are devoted to each version of VNS. Obviously,
VNS-I and VNS-II are competitive for the best while

VNS-VII provides the worst as its HR values remain
mostly around 0% and the mean of APRE is the highest.
On the other hand, VNS-II, which seems the best,
provides with APRE of 0.76 % and HR of 34 %. The
other 4 versions remain competitive with one another.
The main aspect shared by the first two versions is their
local search algorithms, which comprises of two
neighbourhood structures (NS) while the other four
versions those have the intermediate performance made
of a local search of a single NS. The shake function does
not create so much change, apparently, as the shake
function of VNS-III and VNS-IV are the same as VNS-I
and VNS-II while the shake of VNS-V and VNS-VI vary.
As a result, we observe the significant change with a local
search of double NS versions. The version with the worst
performance, VNS-VII, does not have a proper shake
function, though a double NS local search operates.

TABLE I. RESULTS OBTAINED FROM SEVEN VNS ALGORITHMS WITH RESPECT TO 2 INDEXES FOR QUALITY OF SOLUTIONS

Benchmark VNS-I VNS-II VNS-III VNS-IV VNS-V VNS-VI VNS-VII
Prob. Opt. ARPE (%) HR ARPE (%) HR ARPE (%) HR ARPE (%) HR ARPE (%) HR ARPE (%) HR ARPE (%) HR
ft10 930 0.55 0.60 0.94 0.47 1.11 0.40 1.17 0.33 1.02 0.40 1.87 0.10 4.79 0.00
ft20 1165 0.54 0.50 0.46 0.53 0.95 0.10 0.77 0.30 0.87 0.20 0.90 0.17 1.08 0.03
la16 945 0.30 0.50 0.57 0.50 0.46 0.40 0.34 0.57 0.83 0.30 0.24 0.57 3.04 0.07
la19 842 0.09 0.93 0.09 0.93 0.15 0.87 0.19 0.80 0.13 0.87 0.29 0.67 2.66 0.03

abz05 1234 0.10 0.60 0.11 0.60 0.22 0.40 0.20 0.40 0.22 0.30 0.15 0.60 1.43 0.20
abz06 943 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.01 0.97 1.53 0.13
orb01 1059 1.47 0.13 1.58 0.00 2.62 0.03 1.70 0.03 1.95 0.00 1.93 0.00 5.21 0.00
orb02 888 0.33 0.00 0.33 0.00 0.38 0.00 0.38 0.00 0.42 0.00 0.36 0.00 2.60 0.00
orb03 1005 2.60 0.10 1.76 0.37 2.72 0.10 3.20 0.10 3.43 0.10 2.64 0.10 7.52 0.00
orb04 1005 0.62 0.40 0.50 0.40 0.93 0.13 0.72 0.30 0.84 0.13 0.92 0.10 2.69 0.00
orb05 887 0.31 0.17 0.62 0.07 0.76 0.00 0.66 0.03 1.08 0.00 0.74 0.03 4.07 0.00
orb06 1010 0.89 0.10 0.78 0.03 1.21 0.00 0.96 0.00 1.00 0.03 1.21 0.00 5.91 0.00
orb07 397 0.27 0.80 0.25 0.80 0.48 0.63 0.28 0.80 0.58 0.57 0.52 0.57 2.49 0.17
orb08 899 1.63 0.23 0.83 0.50 1.28 0.50 1.74 0.33 1.98 0.30 1.93 0.30 5.58 0.03
orb09 934 0.78 0.13 0.65 0.30 0.74 0.17 0.60 0.30 0.62 0.23 0.72 0.20 2.34 0.00
orb10 944 0.00 1.00 0.00 1.00 0.08 0.87 0.04 0.93 0.04 0.93 0.04 0.93 4.86 0.07
abz07 656 2.01 0.00 2.09 0.00 2.70 0.00 2.35 0.00 2.12 0.00 2.95 0.00 3.11 0.00
abz08 665 1.99 0.00 1.83 0.00 2.86 0.00 2.19 0.00 2.39 0.00 2.82 0.00 3.76 0.00
abz09 679 2.17 0.00 2.16 0.00 2.88 0.00 2.42 0.00 2.61 0.03 2.81 0.00 3.65 0.00
la21 1046 0.62 0.03 0.77 0.00 1.30 0.00 0.86 0.00 0.94 0.03 1.09 0.00 2.74 0.00
la22 927 0.24 0.57 0.18 0.63 0.67 0.13 0.34 0.47 0.42 0.30 0.64 0.13 1.28 0.03
la24 935 0.60 0.03 0.63 0.00 1.29 0.00 0.71 0.03 0.88 0.03 1.32 0.00 2.74 0.00
la25 977 0.64 0.07 0.49 0.23 0.99 0.00 0.81 0.07 0.74 0.17 1.07 0.00 2.27 0.03
la27 1235 0.91 0.00 1.00 0.03 1.80 0.00 1.38 0.03 1.42 0.03 1.70 0.00 1.65 0.03
la28 1216 0.03 0.87 0.03 0.90 0.42 0.17 0.12 0.67 0.13 0.67 0.36 0.23 0.30 0.53
la29 1152 1.80 0.00 1.92 0.00 3.04 0.00 2.42 0.00 2.17 0.00 3.13 0.00 3.40 0.00
la36 1268 0.49 0.27 0.48 0.37 1.07 0.00 0.75 0.07 0.86 0.17 1.00 0.03 1.98 0.00
la37 1397 0.73 0.37 0.83 0.30 0.98 0.20 0.92 0.13 1.03 0.07 1.14 0.17 2.41 0.07
la38 1196 0.97 0.07 0.82 0.07 1.85 0.00 1.37 0.03 1.78 0.07 1.38 0.00 4.19 0.00
la39 1233 0.43 0.30 0.37 0.40 1.07 0.00 0.61 0.07 0.60 0.20 1.01 0.00 2.58 0.03
la40 1222 0.42 0.00 0.42 0.00 0.84 0.00 0.69 0.00 0.64 0.00 0.74 0.00 2.25 0.00

Average 0.79 0.32 0.76 0.34 1.22 0.20 1.00 0.25 1.09 0.23 1.22 0.19 3.10 0.05

A. Related Works
The related works has been discussed earlier in
introduction section. The theme of this subsection is to
bring forward a comparison between our results and the
results gained by works related to job shop scheduling
recently published in order to build a level of confidence.
Table 2 presents results provided with various
metaheuristics recently published and VNS-II
configuration with respect to the quality of the solutions
in PRE index. The reason to switch to RPE index back is

due to the difficulty of calculating APRE index with the
results provided in the related literature. The benchmarks
chosen are those which considered very hard among the
list of 31 in Table 1. These algorithms taken into account
are listed as follows:

- Distributed evolutionary simulated annealing
algorithm (dESA) by Aydin and Fogarty [4].

- Ant colony optimization algorithm (ACO GSS)
by Blum and Sampels [14].

JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006 37

© 2006 ACADEMY PUBLISHER

- Parallel GRASP with path-relinking (GRASP)
by Aiex et al.[20]

- A Hybrid Genetic Algorithm (HGA) by
Goncalves et al.[10].

- A Tabu Search Method (TSSB) by Pezzella and
Merelli [13].

Since the best of our VNS algorithms in Table 1 is VNS-
II, we put the results obtained with that algorithm. We

can observe that the VNS-II outperform the other
algorithms compared with respect to RPE index, as the
lowest value provided by TSSB is about 0.88 while VNS-
II provides with 0.24. On the other hand, VNS-II
algorithms remain competitive among themselves, as one
provides better for one benchmark but worse for another.
VNS-II provides definitely better than 4 algorithms.

TABLE II. A COMPARISON AMONG THE META-HEURISTICS RECENTLY PUBLISHED WITH RESPECT TO THE QUALITY OF THE
SOLUTION IN RPE INDEX.

Benchmarks Related works
Problems Optimum dESA [4] ACO GSS [14] GRASP [20] HGA [10] TSSB [13] VNS-II

abz07 656 2.44 2.74 5.49 NA 1.52 0.46
abz08 665 2.41 3.61 6.02 NA 1.95 0.60
abz09 679 2.95 3.39 8.98 NA 2.06 0.15
la21 1046 0.00 0.10 1.05 0.00 0.00 0.00
la24 935 0.32 0.96 2.03 1.93 0.32 0.00
la25 977 0.00 0.00 0.72 0.92 0.20 0.00
la27 1235 0.40 0.65 2.75 1.70 0.00 0.08
la29 1152 2.08 1.39 4.43 3.82 1.39 0.95
la38 1196 0.42 2.59 1.84 1.92 0.42 0.00
la40 1222 0.49 0.49 1.80 1.55 0.90 0.16

Average 1.15 1.59 3.51 1.69 0.88 0.24

V. CONCLUSIONS

In this paper, we examined VNS algorithms for job shop
scheduling problems, which has been studied for far long
time. Because of its hardness and being representative for
planning problems, many methods have been tested with
this family of problems. In this paper, the VNS
implementations have been tested with respect to the
efficiency over classical job shop problems. The best of
the implementations has been exploited in investigation
of VNS algorithms. It has been shown that the VNS
implementation has done well and outperformed a
number of meta-heuristics recently published.

REFERENCES

[1] Garey, M. Johnson, D., and Sethy, R. :The Complexity of
Flow Shop and Job Shop Scheduling. Mathematics of
Operations Research 1 (1976) 117–129.

[2] Applegate, D., and Cook, W. :A Computational Study of
Job-Shop Scheduling. ORSA Journal on Computing 3(2)
(1991) 149–156

[3] Carlier, J., and Pison, E. :An Algorithm for Solving the
Job-Shop Problem, Management Science 35 (1989) 164–
176.

[4] Aydin, M. E., and Fogarty, T. C.: A Distributed
Evolutionary Simulated Annealing Algorithm for
Combinatorial Optimisation Problems. Journal of
Heuristics 10 (2004) 269–292.

[5] Kolonko, M. :Some New Results on Simulated Annealing
Applied to the Job Shop Scheduling Problem. European
Journal of Operational Research 113, (1999) 123–136.

[6] Satake, T., Morikawa, K., Takahashi, K., and Nakamura,
N. :Simulated Annealing Approach for Minimizing the
Makespan of the General Job- Shop. International Journal
of Production Economics 60 (1999) 515–522.

[7] Bierwith, C. :A Generalized Permutation Approach to Job
Shop Scheduling with Genetic Algorithms. OR Spektrum
17 (1995) 87–92.

[8] Dorndorf, U., and Pesch, E.: Evolution Based Learning in a
Job Shop Scheduling Environment, Computers &
Operations Research 22 (1995)

[9] Groce, F. D. Tadei, R., and Volta, G. :A Genetic Algorithm
for the Job Shop Problem. Computers & Operations
Research 22 (1995) 15–24.

[10] Goncalves, J. F., Mendes, J. M., and Resende, M. :A
hybrid genetic algorithm for the job shop scheduling
problem, European Journal of Operations Research 167(1)
(2004) 77-95.

[11] Nowicki, E., and Smutnicki, C. :A Fast Taboo Search
Algorithm for the Job Shop Problem. Management Science
42 (1996) 797–813.

[12] Dell’Amico, M., and Trubian, M. :Applying Tabu-Search
to the Job-Shop Scheduling Problem. Annals of Operations
Research 4 (1993) 231–252.

[13] Pezzella, F. and Merelli, E. :A Tabu Search Method
Guided by Shifting Bottleneck for the Job Shop Scheduling
Problem. European Journal of Operational Research
120:297–310, 2000.

[14] Blum, C., and Sampels, M. :An Ant Colony Optimization
Algorithm for Shop Scheduling Problems. Journal of
Mathematical Modelling and Algorithms 3 (2004) 285–
308.

[15] Colorni, A., Dorigo, M., Maniezzo, V., and Trubian, M.
:Ant System for Job-Shop Scheduling. Belgian Journal of
Operations Research, Statistics and Computer Science
(JORBEL) 34(1) (1994) 39-53.

[16] Satake, T., Morikawa, K., Takahashi, K., and Nakamura,
N. :Neural Network Approach for Minimizing the
Makespan of the General Job- Shop. International Journal
of Production Economics 33 (1994) 67–74.

[17] Adams, J., Balas, E., and Zawack, D.: The Shifting
Bottleneck Procedure for Job Shop Scheduling.
Management Science 34 (1988) 391–401.

38 JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006

© 2006 ACADEMY PUBLISHER

[18] Huang, W., and Yin, A. : An Improved Shifting Bottleneck
Procedure for the Job Shop Scheduling Problem.
Computers & Operations Research 31 (2004) 2093–2110.

[19] Balas, E., and Vazacopoulos, A. :Guided Local Search
with Shifting Bottleneck for Job Shop Scheduling.
Management Science 44 (1998) 262-275.

[20] Aiex, R. M., Binato, S., and Resende, M. G. C.: Parallel
GRASP with Path-Relinking for Job Shop Scheduling.
Parallel Computing 29 (2003) 393–430.

[21] Dorndorf, U., Pesch, E., and Phan-Huy, T.: Constraint
Propagation and Problem Decomposition: A Preprocessing
Procedure for the Job Shop Problem, Annals of Operations
Research 115 (2002) 125–145.

[22] Jain, A., and Meeran, S. : Deterministic Job-Shop
Scheduling: Past, Present and Future. European Journal of
Operational Research. 113: (1999) 390–434.

[23] Sevkli, M., and Aydin, M. E. : A variable neighbourhood
search algorithm for job shop scheduling problems,
Lecture Notes in Computer Science 3906, (2006), 261-271.

[24] Cheng, R. , Gen, M., and Tsujimura, Y. :A Tutorial Survey
of Job Shop Scheduling Problems Using genetic
Algorithms-I. Representation. Journal of Computers and
Industrial Engineering 30(4) (1996) 983-997.

[25] Mladenovic, N., and Hansen, P. :Variable Neighborhood
Search. Computers and Operations Research 24 (1997)
1097–1100

[26] Beasley, J.E. "Obtaining Test Problems via Internet."
Journal of Global Optimisation 8, 429-433,
http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

Mehmet Sevkli is an Assistant Professor in the Defense
Sciences Institute of Turkish Military Academy, Ankara,
Turkey. He received his B.S. in Industrial Engineering from
Sakarya University, his M.Sc. in Industrial Engineering from
Fatih University and his Ph.D. in Industrial Engineering, from
Istanbul Technical University.

His research interests include Meta-heuristics algorithms
applied to the combinatorial optimization problem such as
Scheduling problems.

Mehmet Emin Aydin is a research/teaching fellow in
Department of Computing and Information Systems of the
University of Bedfordshire, UK. He received his B.Sc. in
Industrial Engineering from Istanbul Technical University, his
M.A. in Production Management from Istanbul University and
his Ph.D. in Intelligent Manufacturing Systems from Sakarya
University.

His research interests include combinatorial optimization,
meta-heuristics, evolutionary computation, intelligent agents
and multi agent systems, grid computing and network planning
and optimization. He has recently conducted leading guest
editorial for International Journal of Production Research for the
special issue on Advances in Evolutionary Computation for
Manufacturing and Design Problems. Besides being member of
advisory committee of many international conferences, he
keeps membership of editorial board of European Journal of
Industrial Engineering (EJIE). He is currently a member of The
OR Society UK, ACM and IEEE Computer Society.

JOURNAL OF SOFTWARE, VOL. 1, NO. 2, AUGUST 2006 39

© 2006 ACADEMY PUBLISHER

