
Towards a Mathematical Foundation for
Service-Oriented Applications Design

Aliaksei Yanchuk, Alexander Ivanyukovich, Maurizio Marchese
Department of Information and Communication Technology, University of Trento, Trento, Italy, USA

Email: aliaksei.yanchuk@gmail.com, a.ivanyukovich@dit.unitn.it, maurizio.marchese@unitn.it

Abstract— Leveraging service oriented programming par-
adigm would significantly affect the way people build soft-
ware systems. However, to achieve this goal a solid software
design methodology should be grounded on proper math-
ematical foundations, specific service-oriented principles,
concepts and patterns. This paper contributes to the above
goal proposing a lightweight, but complete, mathematical
framework capable of capturing the essential components
of service-oriented programming paradigm. To this end,
we propose mathematical definitions for individual service,
service-oriented environment and service-oriented applica-
tion. Analysis of the properties and the functionalities of
these components with respect to data processing mecha-
nisms enables us to introduce a service-oriented application
classification schema. For each application class we first
identify specific properties and then discuss their use in a
service-oriented design methodology.

Index Terms— Service Oriented Architecture, Service Ori-
ented Applications, Service Oriented Design

I. INTRODUCTION

The increasing complexity of the software systems has
constantly led to the evolution of new programming para-
digms: from functional, to object-oriented, to component-
oriented, to service-oriented to name a few. Typically
each successive paradigm has introduced new design
approaches at an higher level of abstraction, encapsulat-
ing and sometime adjusting underlying levels. Service-
oriented programming paradigm has naturally focused on
the next level of abstraction over object- and component-
oriented programming paradigms [1]. The latter para-
digms are supported by well-defined analysis and design
methodologies (e.g. UML notation) and supporting tools
(e.g. Rational Rose). Such methodologies and tools have
emerged and have become highly usable and effective due
to a significant effort towards the formalization of the
underlying fundamental concepts of object-oriented and
component-oriented paradigms, together with an evolving
and shared understanding of the abilitating technologies.

In recent years, service-oriented applications are
rapidly becoming the de-facto standard for distributed
enterprise in supporting collaborative business processes.
At present, most enterprises have gained initial experience
in deploying predominantly internal business applications

This paper is based on ”A Lightweight Formal Framework
for Service-Oriented Applications Design”, by A. Yanchuk, A.
Ivanyukovich and M. Marchese which appeared in B. Benatallah, F.
Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 545551,
2005. c© Springer-Verlag Berlin Heidelberg 2005

by consuming service-oriented applications developed ei-
ther in-house or offered by third parties [2]. However,
so far the main focus has been mostly in assembling
applications by consuming web services or by service
enabling legacy applications and enterprise information
systems, e.g., ERP-systems such as SAP and Oracle
Applications.

A common concern is that current emphasis is on such
assembling of service-oriented applications rather than
on the design principles that guide the development of
services, the granularity of services or the development
of the components that implement them. One question
arises naturally: what is the proper way to design service-
oriented applications so that they can be efficiently in-
tegrated in business applications, can be assembled into
useful business processes, can be managed, reused, priced
and metered?

Although, some foundational concepts of service-
oriented design are starting to be addressed, [3]–[5],
proper mathematical foundations and service-oriented for-
malized principles and concepts are still not in place.

We think that such formalization is crucial for the
identification of suitable software design methodologies
and supporting tools capable to meet the specific chal-
lenges of service oriented applications, e.g. composability,
adaptability and platform independence.

This paper contributes to the above effort by proposing
a lightweight, but complete, mathematical framework
capable of capturing the essential components of service-
oriented programming paradigm. Moreover, based on the
analysis of our formalized model we derive and discuss
substantial properties for these components, as well as
connect them to concrete applications requirements and
practical issues.

In Section 2 we briefly discuss existing approaches
to Service-Oriented Architectures (SOA) and their main
components relevant to our mathematical formalization.
In Section 3 we propose our definitions for a mathemat-
ical model of SOA main components, namely: service,
service-oriented environment and service-oriented appli-
cation. Further elaboration of these models with respect
to data transition properties allowed us to introduce a
classification scheme for service-oriented applications.
We identify and discuss two main classes, useful in
designing practical applications, namely: flow-class and
collaboration-oriented class applications. In Section 4, we
look into each application class and introduce further

32 JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

© 2006 ACADEMY PUBLISHER

refinements based on key transition properties. For flow-
class applications we examine the structure of application
memory; for cooperation-oriented application we examine
most commonly used techniques to organize collabora-
tion. In Section 5 we discuss related work. Conclusions
and future work close the paper.

II. SERVICE-ORIENTED ARCHITECTURES:
DEFINITIONS AND COMPONENTS

Service-Oriented programming paradigm is an ap-
proach to loosely coupled, standards-based, and protocol-
independent distributed computing, where coarse-grained
software resources and functions are made accessible via
the network. Service-Oriented Architectures (SOAs) [1],
[6], [7] are emerging to support the specificity of service
oriented applications. In a SOA, the software resources
are considered ”services,” which are well defined, self-
contained, and are independent of the state or context
of other services. Services have a published interface
and communicate with each other. Services that utilize
Web services standards (WSDL, SOAP, UDDI) are the
most popular type of services available today. The basic
SOA defines an interaction between software agents as
an exchange of messages between service requesters and
service providers. This interaction involve the publishing,
finding and binding of services. The essential goal of a
SOA is to enable general-purpose interoperability among
existing technologies and extensibility to future purposes
and architectures. Simply put, an SOA is an architectural
style, inspired by the Internet and the Web, for enabling
extensible interoperability. SOA’s loose-coupling princi-
ples - especially the clean separation of service interfaces
from internal implementations - can be used as a guide to
plan, develop, integrate and manage enterprise-wide and
cross-enterprise applications.

In fact, SOAs provide an architectural shape in which
business processes, information and enterprise assets can
be effectively (re)organized and (re)deployed to support
and enable strategic plans and productivity levels that
are required by competitive business environments. New
processes and alliances need to be routinely mapped to
services that can be used, modified, built or syndicated. In
addition, business processes need to be easily designed,
assembled, and modified. To achieve such requirements,
the internal architecture of an SOA evolves into a multi-
tier, service-based system, often with a diversified techni-
cal implementation. This diversity is the result of a very
broad spectrum of business and performance requirements
as well as different execution and reuse context.

With the automation available today to produce ser-
vice wrappers around pre-existing components, such as
Commercial-Off the-Shelf (COTS) package components,
it is quite tempting to treat Web services like any normal
component. In fact, many enterprises in their early use of
SOA, think that they can port existing components to act
as Web services just by creating wrappers and leaving
the underlying component untouched. Since component
methodologies focus on the interface, many developers

assume that these methodologies apply equally well to
service-oriented architectures. Thus, implementing a thin
SOAP/WSDL/UDDI wrapper on top of existing applica-
tions or components that implement the Web services
is by now widely practiced by the software industry.
Yet, this is in no way sufficient to construct commercial
strength enterprise applications. Unless the nature of the
component makes it suitable for use as a Web service -
and most have not been built for that - it takes serious
thought and redesign effort to properly deliver compo-
nents functionality through a Web service. While rela-
tively simple Web services may be effectively built that
way, a methodology is of critical importance to specify,
construct, refine and customize highly volatile business
processes from internally and externally available Web
services.

In our opinion, at present, the full potential of SOA has
yet to be achieved in the software industry: applications
are built on the premise that consistently implementing
individual service in service-oriented environment will
allow solving all computational tasks by means of simply
establishing dynamic bindings between individual ser-
vices. Applying this simple principle to develop enterprise
solutions is however hardly possible. In the context of
Enterprise Application Integration (EAI) in large organi-
zation, specialization is inevitable, therefore a particular
user is not interested in dealing with all available services
that organization’s environment can offer. Instead, she is
interested to interact with a subset of these services that
helps fulfilling her particular goals. The software industry
must shift the focus from the discovery / bind / invoke
mechanisms to the provisioning of end-to-end solutions.

One of the reason why SOA is still not widely exploited
in the large is its inherent flexibility and generality:
• on one hand, SOA alone doesn’t contain detailed

methodological and technological guidelines, like
the ones found in the widely adopted enterprise
architectures like CORBA, J2EE, or DCOM. For the
pragmatic software architect, this flexibility of SOA
comes at a price of ambiguity on what and how to
achieve software development targets.

• on the other hand, software developers who are
building a service-oriented application, must define
themselves a development methodology, which fo-
cuses on analyzing, designing and producing an
SOA, in such a way that it aligns with business
process interactions between involved partners. The
challenge in selecting and following a services de-
sign and development methodology is to provide
sufficient principles and regulations to deliver the
software quality required for business success, while
avoiding steps that waste time, squander productivity,
and frustrate developers.

The “basic SOA trinity” of a service, broker, and client
doesn’t display enough features to capture all service-
orientation features. It is rather a platform pattern, that is
used to design robust, essentially distributed applications
and environments. Complimentary to the platform pattern,

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006 33

© 2006 ACADEMY PUBLISHER

a service orientation principle may be formulated as
“a set of computing capabilities of a service-oriented
environment for any given moment τ , determined by the
kind of the dynamically available (deployed) services”.
Particular set of conventions for software designed for
such environment makes up particular Service-Oriented
Architectures.

From the above reasoning, we propose that:

SOA = Principle + Platform (1)

The importance of this statement emerges in the context
of Enterprise Application Integration in large organiza-
tion: in fact it is practically impossible to provide a
universal platform that would strike a perfect fit for all
tasks. On the other hand, the service orientation principle
enables different products to be designed independently
but ensuring their potential integration viability.

Established present-day software engineering technolo-
gies and methodologies are centered around the software
application concept — rather self-contained computa-
tional facility capable of fulfilling particular purpose.
Despite the fact that none of current useful applications
would be fully independent of their environment, the en-
vironment is rarely considered at design time: application
design specifies only what the environment should provide
in order for the application to run. We believe that in
order to fully exploit SOA the following entities must be
considered on the same importance level in a conceptual
framework for service orientation: individual services,
service-oriented environments, and service-oriented appli-
cations (i.e. composed services). In the next section, we
provide a formal definition for the proposed entities in
our conceptual framework.

III. MATHEMATICAL FOUNDATION FOR
SERVICE-ORIENTED APPLICATIONS DESIGN

A. Service Definition

In our framework, a given logical service i is deployed
into an environment to provide the useful functionality
fi, expressed as a programmatic interface Ii. Important
feature of a service is its capability to interact dynami-
cally, in the given environment, with other services and
non-service entities (such as end users).

Logical service’ implementation is thus a set of coor-
dinated and interacting processes:

Si =< P i
1, P

i
2, . . . , P

i
n,Λ >, (2)

where Si — logical service instance, P i
k — kth process

implementing the logical service functionality fi through
the programmatic interface Ii , and Λ — network commu-
nication function between individual processes. Processes
of the service Si may run:
• on a single processor; in this case logical service is

identical to physical process instance, or Si = P i
1,

and network coordination function Λ is nil;

• on multiprocessor host, in this case individual logical
service consist of a number of internal parallel phys-
ical processes, where the Λ function is determined
by the specific hardware and software of the host;

• on an heterogeneous distributed system, where the
Λ function is implemented on the base of software-
and hardware-neutral general purpose protocols.

B. Service-Oriented Environment Definition

Service-oriented environment consists of a finite count-
able set of all accessible logical services implementation
for the given moment of time τ :

Envτ =< S1, S2, . . . , Sn >, (3)

where n — number of logical services deployed in the
environment.

Generally, service environments may be distinguished
in various ways, for instance:
• on the basis of the communication protocol. E.g.,

HTTP service is distinguished from the FTP service
by the protocol specification;

• on the basis of service’ content. E.g., news site
service environments from major news agencies offer
logical services different from eCommerce service
environments, albeit using the same protocol

C. Service-Oriented Application Definition

Overall functionality F of a service-oriented applica-
tion A is determined by the logical services involved in
the provision of the application in a given environment
for a given moment of time τ :

FA =< S1A, SA
2 , . . . , SA

n >Envτ
(4)

Moreover, we introduce the Application Functionality
directing graph, defined as:

VA = (FA, G) (5)

having vertexes from the FA set and verge set G
formalizing the coordination between individual logical
services of the FA set.

Finally, the Service-Oriented application A may be
formalized as the set:

A =< FA, VA > (6)

The defined service-oriented application A is charac-
terized by the following properties:
• to achieve computation goal, at least two logical

service must be involved (otherwise SOA degrades
to client-server architecture);

• services involved in the application must “coordi-
nate” their work to solve the computational prob-
lem. Here, we mean “coordination” as any kind of
interaction between involved services that aims to
achieve the application goal. Coordination may be
implemented by different means, including but not
limited to, exchanging data, exchanging messages,

34 JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

© 2006 ACADEMY PUBLISHER

service provisioning, service control, service moni-
toring etc..
The presence of the coordination capability is re-
quired in a service-oriented application due to the
fact that a consistent implementation of a service
must be designed to be context-invariant: i.e., par-
ticular service must not have knowledge about the
application it participates in [7]. In our framework,
the Application Functionality directing graph, VA,
defined in equation5, is the formalization of such
capability. In concrete application, VA may be ex-
presses with existing implementation frameworks for
capturing services processes, such as BPEL [8] and
WS-Coordination. [9]

IV. THE APPLICATION CLASS CONCEPT

In order to ground a service-oriented design method-
ology on our proposed framework, the following steps
must be considered: first application requirements are col-
lected to drive functionalities definition; then application’s
functionalities are decomposed into individual services;
thus the appropriate Application Functionality graph is
created; finally to realize a concrete application A, both
functionality and directing graph must be implemented.

In the following, we introduce the concept of the
service-oriented application ”class” in order to capture
general properties of A and to support the system ar-
chitect to devise appropriate design strategies (i.e. design
patterns, implementation templates, etc..).

A. Service-Oriented Application Classes
In general, the computational task of a given service-

oriented application is to process all incoming requests
(tuples)from a set Tin in such a way that processing
will comply with requirements determined by specified
Quality of Service agreement set, QoS [10]. Examples of
such QoS requirements are:
• volume conditions: number of tuples in Tin set;
• temporal constraints: in what time window should all

tuples of the set be processed and how many tuples
should be processed in the single time unit;

• security requirements: how tuple confidentiality will
be enforced during handling.

• reliability conditions: how long the application will
be handling incoming data until first fault; what
would be the consequences of the fault(data loss,
time loss, denial of service or non usability, and so
forth); etc..

The feasibility of a given QoS requirements set de-
pends on the implementation of the individual services
involved in the service-oriented application A, on the
implementation of the Application Functionality graph
and on the global service environment.

Database literature has introduced a simple, but effec-
tive, data system classification based on the nature of
the handled request tuples: OLTP1 and OLAP2 systems.

1On-Line Transaction Processing
2On-Line Analytical Processing

Their key distinction is in the nature of the data and
of the queries, although both system may use the same
data storage engine: OLTP-systems handle relatively large
number of relatively simple queries while OLAP-systems
— relatively small number of complex queries. Present
state of the art of database systems offers a wide spectrum
of database engines for different tasks — from small
local databases 3 to enterprise-level systems4. However,
in current database technology, the term “transient” has
changed. It is now simpler to use database to store data
which is considered transient from the business process
point of view (e.g., storing session data in database pro-
vides easy means of maintaining stateless clusters). In this
regard, the OLTP/OLAP classification in not any longer
descriptive enough to allow the system architect to select
the right approach for the particular application. In our
opinion the structure as well as the access method of the
application’s memory plays a major role in determining
the types and sub-types of a specific application.

For any service-oriented application, A, there is a data
space, T̂A, containing all data of the application

T̂A = MA ∪ TA ∪ ψA (7)

where MA — tuple set capturing temporary application
memory, TA — persistent application memory, and ψA —
virtual tuple set, encapsulating all tuples that were deleted
from temporary and persistent memories. TA includes all
those tuples that were delivered to the A, except for those
that left it (passed on further or discarded), having durable
state — a state having impact on business processes. Data
integrity [11] implies that, during application runtime, the
incoming tuples Tin set is reflected on entire set T̂A, that
is:

∀ti ∈ Tin : t̂j ∈ T̂A, ti → t̂j (8)

For any application A, one or more data entry and
data exit5 points may be established. To implement the
specified functionality of the service-oriented application
A, the following two main scenarios are possible and we
use then to define the basis classes of a service-oriented
application:

• Each tuple ti should pass a handling path through
number of services (see fig. 1 that illustrates this
simple case in the IDEF0 notation). To achieve this,
it is sufficient that the service-sender would be able
to pass the tuple ti to service-recipient. These type
of applications constitutes the flow class service-
oriented application.

• Each tuple ti is saved in a shared data space where
it is simultaneously accessible to all services that
would be involved in the tuple handling; in this

3e.g. FireBird, Cloudscape, Sybase
4e.g. DB2, Oracle, MaxDB
5Except for the cases where application is designed to retain data

indefinitely — see accumulating applications as defined in the following
subsection

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006 35

© 2006 ACADEMY PUBLISHER

case, the key task of such cooperation class service-
oriented application is establishing unambiguous ac-
cess sharing to the ti tuple and mutual coordination
(fig. 2 illustrates a simple case of this class).

Application
 A
 scope

Sender Service

Recipient Service

Entrance point

Exit point

t
i
 transfer

Fig. 1. Example of a simple flow-class service-oriented application:
data transfer from one service to another in the scope of a single
application

Application
 A
 scope

Entrance point

Exit point

t
i

Service 2

Service 1

Coordination

Coordination

Fig. 2. Example of a simple cooperation-class service-oriented appli-
cation: service cooperation on shared data space.

Some real applications may find it necessary to com-
bine features of both classes. With such application, fork
and join points may be established in the Application
Functionality graph. Fork point is transfer of tuple from
exclusive service’ memory into shared data space, and
join point is tuple transfer from shared tuple space into
service’ exclusive memory.

B. Flow-Class Service-Oriented Application

A flow-class service-oriented application implements
its tuple handling functionality by transferring tuple be-
tween involved services: each service has exclusive own-
ership of the tuple. Tuple handling forms an handling
path — route of tuple from entry point to the exit
point through the application’s services. By transferring
a tuple to the following service, the previous service
surrenders exclusive ownership. A relevant number of
simple business process applications will map to this
class. In fact, one can view the flow-class application as
a suitable business process projection into the service-
oriented architecture framework.

The flow-class service-oriented application comprises
individual service Each service is an independent entity,
and possesses its own isolated tuple data space, T̂Sk

=
MSk

∪ TSk
∪ ψSk

, which defines transient and durable
memory of the service.

Durable memory TA of the application is defined as
union of all durable spaces TSk

of individual services:

TA = TS1 ∪ TS2 ∪ . . . ∪ TSn ,

TS1 ∩ TS2 ∩ . . . ∩ TSn = ® (9)

where n — number of services in the application.
Application’s durable memory is heterogeneous. Given

that Tsaved is the finite countable set of all durable state
tuples under service’ control, Tqueued is the set of tuples
that are queued for passing to next services, and Tout is
the finite countable set of all tuples passed to recipient
entities, then the following condition should always be
true (data integrity rule):

TA = Tsaved ∪ Tqueued ∪ Tout (10)

Depending on the size and nature of the tuples in
Tsaved, Tqueued, and Tout sets, and of the virtual tuple
set ψ, defined in equation 7, we can distinguish several
application sub-classes:
• Fa̧cade and satellite applications . These appli-

cations do not have their own durable memory 6,
i.e. TA = ®, T̂A = MA, ψ = ®, and use tuple
space of another application (including interface of
that application) called base application. Tuple trans-
fer and export functions are not defined for such
applications. Fa̧cade applications provide the same
functions as base application: eventually they can be
adapted to the technical context of the fa̧cade ap-
plication (this usually applies to network protocols,
user interface organization, security implementation,
etc..). Satellite applications use base application’s
data to deliver new functionality that is not found
in the base application (typically these are analytical
or reporting functionality).

• Transient applications are oriented to handle in-
coming tuples and to pass on handled tuples to a
service-recipient: these applications support primar-
ily data transfer functionalities. For such applications
Tsaved = ®, ψ = ®, and Tin ≡ Tout, given
that Tqueued is not relevant7. Key business-tasks of
such applications are data reception (as a rule or
validation) and conversion; therefore import/export
functions could also be defined for such applications.

• Transient-journal applications implement the same
tasks as mere transient applications, but they also
implement temporary memory MA and a journal,
allowing restoring action sequence taken on a tuple,
as well as the tuple itself, some time after tuple
handling has been completed in full and it has been

6this does not mean that these applications will not implement
database technology internally.

7In real cases, the Tqueued is not empty only due to technical
implementation specifics

36 JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

© 2006 ACADEMY PUBLISHER

passed on to service-recipient. These applications are
also distinguished from accumulating applications
(see below) by defining maintenance procedure to
remove old (expired) journal records from the tem-
porary memory MA.

• Transient-filtering applications are transient appli-
cations by nature, however Tsaved 6= ® and ψ 6= ®.
These applications will not provide all incoming
tuples for output, but they will first apply specific
business logic filtering.

• Accumulating applications are data handling end-
points. A data transfer function is not defined for
these applications: Tout = ®. Such applications may
implement, for instance, logging or automated tools
to remove unnecessary data.

In current work, we are further studying the flow-class
applications, in particular flow-class topologies patterns
specified by the application functionality graph VA.

C. Cooperation-Class Service-Oriented Applications

Cooperation-class applications are useful when a tuple
has to be handled simultaneously by several services and
no exclusive access can be established (either for technical
reason or from the business point of view). The focus of
these application class is primarily on the coordination of
the services that can potentially access simultaneously a
tuple in the shared tuple space. An interesting comment is
that most of the results from the concurrent programming
domain can be usefully exploited in this application class.

Within this class, we can distinguish several application
sub-classes. The main ones are:
• Race cooperation applications, where several ser-

vices compete for the temporary exclusive access to
the tuple in the shared tuple space. The goal of the
overall application is to ensure effective tuple access,
so that all services that are interested in gaining
exclusive access to the tuple will have opportunity
to do so in a timely fashion. Software development
practice refers to a state of tuple being exclusively
accessible by particular entity as to locking. In a
locked state, other entities but the locker or its
delegates generally cannot (or should not) perform
read / write operations on the tuple. The semantic of
a lock is that it is durable indefinitely until it has been
removed by the locker. Issues related to priority-
locking, optimistic/pessimistic locking techniques,
centralized or distributed mechanisms, fairness and
time robustness need to be address within this type
of applications.

• Fork/Join cooperation applications: where several
services process particular aspect of the tuple’s data.
We can distinguish the following kids of parallelism:

– Isolated parallelism: each of the services in-
volved in the tuple handling may consider a
tuple as being exclusively owned. Requirement
is that the tuple is programmed as composition
of automata that are exposed for each service.

– Stronger-isolated parallelism: similar to isolated
parallelism, however some of the tuple’s prop-
erties have related semantics. Services intending
read/write/use properties having affect on the
semantic meaning on other properties of the tu-
ple must synchronize such operations via chosen
synchronization mechanisms.

– Detached parallelism: the application is pro-
grammed in a manner that most operations are
done on a tuple copy obtained via synchro-
nized (exclusive) access technique. Such copy
of the tuple is detached from actual tuple copy.
The niche for such applications is long-term
low-concurrency data handling where business
process essentially supports such parallelism.

• Critical section application comprises services that
compete to gains exclusive access to the tuple for
short period of time. Unlike race-type applications,
that gains all-or-nothing access to the tuple, critical
section applications introduce more sophisticated tu-
ple access synchronization. The key aspect of the
critical section is in the definition of the scope,
stability, and “preemptiveness” of the lock. The
scope refers to properties of tuple that are being
captured by the particular critical section. The stabil-
ity refers to the operations and their semantics that
owner(s) expects would be performed reliably. The
preemptiveness refers to the possibility of several
critical sections to co-exist simultaneously on the
application.

• Coordinator-based application that are in charge
of synchronization between entities involved in the
tuple handling. Coordinator-based applications do
not require neither locking, nor critical section mech-
anisms since coordinator takes responsibility for allo-
cating work and collecting results. Coordinator-based
applications are organized similar to 2PC / 3PC8

implementations. To begin with, each executor ser-
vice must join with the coordinator to advertise it’s
availability to the coordinator. Then, the coordinator
would communicate a task to each service available.

V. RELATED WORK

The approach presented in this paper is based on
the critical assessment of existing design formalization
techniques, mainly in the object and component oriented
programming domains. Mathematical formalization in
these software paradigms covers aspects mainly related
to system refinement (such as modules composition tech-
niques, operations parallelism and analysis of intrinsic
constraints in distributed systems. Such formalization is
grounded on refinement calculus [12], [13] through the
use of refinement techniques to the most used methods for
monotonic composition of programs (namely procedures),
parallel composition and data encapsulation. In particular,

82-phase and 3-phase commit

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006 37

© 2006 ACADEMY PUBLISHER

in [13], parallel actions in software systems were mod-
elled by their atomic representations, allowing to utilize
methods originally developed for sequential systems.

A mathematical foundation for object-oriented para-
digm is presented in [14], where message-based automata
for modelling object behavior in terms of cleanroom
software engineering methodology is described. In [15],
software refinements is approached through a mathemat-
ical description of all possible transformations, capable
to ensure refinement correctness with respect to other
software objects.

In [16], a descriptive functional semantic for the
component-oriented design is proposed and used for the
definition of a formal model for the interfaces of the com-
ponents. This work investigates the relationships between
compositional operators for synchronous and parallel
components designs and system refinement techniques. In
contrast to previously referenced works, this component-
oriented design approach operates with a black-box inter-
face view on the system’s components. Further research in
component-based design [17] has led to precise definition
of components through their behavioral characteristics
as well as to the introduction of parallel composition
techniques with feedbacks, enabling modelling of concur-
rent execution and interaction. However, functional time
dependency introduced in [16], [17] does not take into
account possible temporal execution of the functionality
specified within the interfaces’ contracts, but rather limits
itself to input/output interrelations. It is important to note
that the support for such temporal execution sequences is
particularly important in service-oriented applications.

Current on-going activities in software development
methodologies in light of the specific features of service-
oriented applications are also related to our approach. In
particular, the activities related to the tasks of specifying
the software development processes (see for instance
Rational Unified Process) and of eliciting system’s re-
quirements and user’s goals (see for instance TROPOS
[18] and MAP [19]).

Rational Unified Process (RUP) is one of de facto
world-wide accepted standards in the software develop-
ment industry. Iterative software development, require-
ments management, quality assurance and other practices
(Kruchten, 2000) are now integral parts of the process
behind any software project. They have proven to be
useful for numerous projects and now can be found as the
best practices part of RUP. RUP has its own software de-
velopment lifecycle model comprising of inception, elab-
oration, construction and transition. However, lifecycle in
RUP is different from the classical waterfall model stages
in a sense that it represents the major business decisions
points rather than technical evolution milestones. The pri-
mary application area of RUP is long-term projects. While
RUP belongs to the traditional methodologies family, it
covers all phases of the development process in details.
Originally it was introduced to the component-oriented
design concept; however it does not have strict limitations
that will prevent its usage within other conceptual frame-

works. Service-oriented concept defines a new level of ar-
chitectural principles that is related to the existing object-
and component-oriented software design concepts. Nev-
ertheless the aspect of loosely-coupled services engenders
considerable differences in the way SOA applications are
built compared with traditional object- and component-
based software. Delivering SOA applications developed
under RUP will require customizing the process to address
SOA applications planning. These differences have an
impact on the way RUP need to be adapted for developing
and delivering SOA applications.

The present paper leverages from the above research
on software design formalization approaches and aims to
extend them to service-oriented programming paradigm.

VI. CONCLUSIONS

In this paper we have extended the definition of SOA,
and based on this definition, we have proposed a light-
weight, but complete, mathematical framework capable
of capturing SOA main components. This formalization
allowed us to explore the structure of SOA, to derive
and discuss substantial properties for its main compo-
nents with respect to data processing mechanisms, and
to introduce a service-oriented application classification
schema. In particular tuple access methods (exclusively
owned/shared) lead to establishing two main classes
of service-oriented application: the flow-class and the
cooperation-class. Moreover, service’ internal memory
structure establishes several application sub-classes.

However much more must be done. Our future work
includes: the refinement of the mathematical model ;
in-depth exploration of the introduced classification, in
particular class topologies patterns; QoS aspects of SOA;
patterns for SOA. Such formalization will provide a
mature framework for designing practical service-oriented
applications that will exhibit expected behavior and per-
formance over time in dynamic services environments.

REFERENCES

[1] H. K. Gustavo Alonso, Fabio Casati and V. Machiraju, Web
Services Concepts, Architectures and Applications. Springer,
2004.

[2] M. Cantara, “It professional services forecast and trends for web
services,” January 2994.

[3] M. P. Papazoglou and J. Yang, “Design methodology for web
services and business processes,” in TES ’02: Proceedings of
the Third International Workshop on Technologies for E-Services.
London, UK: Springer-Verlag, 2002, pp. 54–64.

[4] R. Dijkman and M. Dumas, “Service-oriented design: A multi-
viewpoint approach,” International Journal on Cooperative Infor-
mation Systems, vol. 13, no. 14, pp. 338–378, December 2004.

[5] D. Quartel, R. Dijkman, and M. van Sinderen, “Methodological
support for service-oriented design with isdl,” in ICSOC ’04: Pro-
ceedings of the 2nd international conference on Service oriented
computing. New York, NY, USA: ACM Press, 2004, pp. 1–10.

[6] M. P. Papazoglou, “Service-oriented computing: Concepts, char-
acteristics and directions,” in WISE ’03: Proceedings of the Fourth
International Conference on Web Information Systems Engineer-
ing. Washington, DC, USA: IEEE Computer Society, 2003, p. 3.

[7] D. K. Barry, Web Services and Service-Oriented Architecture: The
Savvy Manager’s Guide. Morgan Kaufmann Publishers, 2003.

[8] “Business process execution language for web services.” [Online].
Available: http://www-106.ibm.com/developerworks/library/ws-
bpel

38 JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

© 2006 ACADEMY PUBLISHER

[9] “Ws-coordination specifications.” [Online]. Available: http://www-
106.ibm.com/developerworks/library/ws-coor

[10] J. W. P. Sandeep Chatterjee Ph.D., Developing Enterprise Web
Services: An Architect’s Guide. Prentice Hall PTR., 2003.

[11] R. W. Taylor and R. L. Frank, “Codasyl data-base management
systems,” ACM Comput. Surv., vol. 8, no. 1, pp. 67–103, 1976.

[12] R. J. R. Back, “Correctness preserving program refinements: Proof
theory and applications,” 1980.

[13] K. Sere and R. J. R. Back, “From action systems to modular
systems,” in FME’94: Industrial Benefit of Formal Methods,
M. B. M. Naftalin, T. Denvir, Ed. Springer-Verlag, 1994, pp.
1–25. [Online]. Available: citeseer.ist.psu.edu/back96from.html

[14] B. Rumpe and C. Klein, “Automata describing object
behavior,” pp. 265–286, 1996. [Online]. Available: cite-
seer.ist.psu.edu/rumpe96automata.html

[15] D. Craigen, S. Gerhart, and R. T.J., “An international survey
of industrial applications of formal methods,” National Technical
Information Service, Springfield, VA, USA, Tech. Rep., 1993. [On-
line]. Available: citeseer.ist.psu.edu/craigen93international.html

[16] M. Broy, “Towards a mathematical concept of a component and
its use,” Software - Concepts and Tools, vol. 18, no. 3, pp. 137–,
1997. [Online]. Available: citeseer.ist.psu.edu/broy96towards.html

[17] M. Broy, “Compositional refinement of interactive systems
modelled by relations,” Lecture Notes in Computer Science,
vol. 1536, no. 3, pp. 130–149, 1998. [Online]. Available:
citeseer.ist.psu.edu/broy92compositional.html

[18] M. J. Giorgini, P. and R. Sebastiani, “Goal-oriented requirements
analysis and reasoning in the tropos methodology,” Engineering
Applications of Artificial Intelligence, vol. 18-2, pp. 159–171,
2005.

[19] R. Kaabi, C. Souveyet, and C. Rolland, “Eliciting service compo-
sition in a goal driven manner,” in Proceedings of the International
Conference on Service Oriented Computing 2004. ACM, Novem-
ber 2004, pp. 308–315.

Aliaksei Yanchuk received his Master of Science from the
Belarusian State University of Informatics and Radioelectronics
with the major in the business systems design in 2002.

He is actively involved with the commercial software devel-
opment since 1999. Presently he is employed by the Netherlands
branch of SaM Service GmbH as software developer / analyst
to provide on-site software development services for major
European organization. He is affiliated with the Department
of Informatics and Telecommunications of the University of
Trento.

Alexander Ivanyukovich received his B.S. degree in radio
physics from the Belarusian State University, Minsk, Belarus
in 2002. He is an IEEE/CS member since 2003. Currently, he
is a Ph.D. candidate in computer science at the University of
Trento.

He has being actively involved with the commercial software
development since 2000. He has founded and lead Zaval Cre-
ative Engineering Group - public body aimed contributing to
the developers’ community with enterprise-quality open source
software products and carrying out research and development in
field of early-access and emerging technologies. Nowadays he is
engaged in research on distributed, performing and fault-tolerant
information retrieval and processing systems at the University
of Trento.

Maurizio Marchese graduated with full honor in Physics in
1984 at the University of Trento, Italy.

He has been Visiting Researcher at the National Research
Council of Canada, Ottawa, Canada; Post-Doctoral Research
Associate at the Material Research Laboratory, University of
Urbana-Champaign, USA; Visiting Researcher at the Institute
for Computer Applications, University of Stuttgart, Germany.
He is currently Assistant professor at the Department of In-
formation and Communication technologies at the University of

Trento, Italy. Current research interests are: architectures for web
services, distributed architectures for digital libraries, service
integration in Geographical Information Systems (GIS) environ-
ments. He has published more than 60 papers in international
journals and conferences.

Dr. Marchese is member of IEEE Computer Society and
ACM.

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006 39

© 2006 ACADEMY PUBLISHER

