JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

23

Semantics and Extensions of WS-Agreement

Ganna Frankova, Daniela Malfatti, and Marco Aiello
Dept. of Information and Communication Technologies, Univ. of Trento, Trento, Italy
Email: ganna.frankova@unitn.it
daniela.malfatti@studenti.unitn.it
marco.aiello@unitn.it

Abstract— When having repeated interactions with a service
provider, a service consumer might desire guarantees on
the delivery of the service. These guarantees involve both
functional and non-functional properties of the offered
service over a number of invocations. When the guarantee
terms are explicitly defined in a document, we talk about a
service level agreement. WS-Agreement is an industry driven
emerging protocol for the specification of agreements in the
context of Web Services. If, on the one hand, WS-Agreement
defines the XML syntax for the language and protocol,
on the other hand, it gives only a vague textual overview
of the intended meaning. We fill this gap by providing a
formal definition of an agreement and analyzing the possible
evolutions of agreements and their terms over an execution.
As a result we identify a number of extensions which
involve the initial negotiation, the monitoring of running
agreements, and the possibility of renegotiating agreements
in executions. We evaluate the proposed approach through
experimentation.

Index Terms— Service-Oriented Computing, Service Level
Agreement, Quality of Service, Web Services.

I. INTRODUCTION

The construction of massively distributed and loosely
coupled applications is becoming evermore a reality
thanks to the introduction of Web Services (WS). WS
are a family of XML-based protocols which cover the
issues of describing, publishing, and finding individual
services, as well as describing messaging and coordina-
tion mechanisms, quality of service parameters and many
more facets tied to the realization of widely distributed
information systems. One of the key issues in Web
Services is that of automatically composing individual
operations of services in order to build complex added-
value services. The research on composition is well under
way, but most of the focus is on functional properties
of the composition, that is, how does one automatically
compose? How does one enrich the services with semantic
self-describing information? How does one discover the
available services to use for the composition? If, on the
one hand, this is crucial, on the other one, it is not
enough. Non-functional properties of the composition are

Based on “What’s in an agreement? An analysis and an extension of
WS-Agreement,” by M. Aiello, G. Frankova, and D. Malfatti which
appeared in the Proceedings of the 3rd International Conference on
Service-Oriented Computing (ICSOC 2005), Amsterdam, The Nether-
lands, December 2005. (© 2005 Springer

© 2006 ACADEMY PUBLISHER

also of paramount importance in defining the usability
and success of a composed service. Think for instance of
desiring a service that performs a biological computation
composing the services offered by a number of web
service enabled machines. If the user knows that the
composition is correct with respect to his goal, they will
be satisfied with the answer they receive, but if the answer
takes 3 years to be delivered to the user, the correctness is
of little use. Therefore, the quality of a composed service
is very important when interacting with an asynchronous
system built out of independent components.

With the term Quality of Service (QoS) we refer to
the non-functional properties of an individual service,
or a composition of services. The term is widely used
in the field of networking. Usually it refers to the
properties of availability and performance. In the field
of Web Services, the term has a wider meaning. Any
non-functional property which affects the definition and
execution of a web service falls into the category of QoS,
most notably, accessibility, integrity, reliability, regulatory,
and security [1]. Dealing with QoS requires the study
of a number of problems. One, the design of quality
aware systems. Two, the provision of quality of service
information at the level of the individual service. Three,
ensuring that a promised quality of service is actually
provided during execution. In [2], we addressed the first
issue by using the Tropos design methodology, and the
second one by resorting to WS-Policy to describe QoS
properties. In this paper, we consider the second and third
issues; in particular, we show how to provide a framework
to negotiate the provision of a service according to a
predefined QoS, and how to handle changes during the
interactions of Web Services, and how to prevent the QoS
conditions failure.

WS-Agreement is an extensible markup based lan-
guage and protocol for advertising the capabilities of
providers, creating agreements based on initial offers,
and for monitoring agreement compliance at run-time.
The motivations for the design of WS-Agreement stem
out of QoS concerns, especially in the context of load
balancing heavy loads on a grid of web service enabled
hosts [3]. However, the definition of the protocol is
totally general and allows for the negotiation of QoS
in any web service enabled distributed system. If, on
the one hand, the proposal of WS-Agreement is a step

24

forward for obtaining web service based systems with
QoS guarantees, on the other hand, the protocol proposal
is preliminary. The current specification [4] defines XML
syntax for the language and protocol, and it gives a
vague textual overview of the intended semantics, without
defining a set of formal mathematical rules. Furthermore,
a reference architecture is proposed to show how WS-
Agreement are to be handled, [5]. Nevertheless, a formal
analysis of what an agreement is still missing.

We address the question What’s in an Agreement?. In
particular, we provide a formal analysis of WS-Agreement
by resorting to finite state automata, we provide a set
of formal rules that tie together agreement terms and
the life-cycle of an agreement. From the analysis, some
shortcomings of the protocol become evident. Most no-
tably, the protocol does not contemplate the negotiation of
the agreement itself, furthermore, there is no checking of
how close a term is to being violated and, even more,
breaking one single term of the agreement results in
terminating the whole agreement, while a more graceful
degradation is desirable. To overcome these shortcomings,
we propose an extension of WS-Agreement for which
we provide appropriate semantics, that allows (i) early
warnings before agreement violation, and (ii) negotiation
and possibly renegotiation of running agreements.

The remainder of the paper is organized as follows.
Related work is discussed in Section II. In Section III,
we present the WS-Agreement protocol defined in [4].
In Section IV, we propose a formal definition of an
agreement and of its life-cycle. Section V is devoted to the
presentation of an extension of WS-Agreement with the
goal of defining negotiation and improving the duration of
an agreement in execution. Experimental results are given
in Section VI. Conclusions and open issues are presented
in Section VIIL.

II. RELATED WORK

QoS issues in the context of Web Services is gaining
increasing attention in the Service-Oriented Community.
On the one hand, research focuses on QoS metrics and
models, quality-driven web service discovery and selec-
tion, and on QoS aggregation for web service compo-
sition. On the other hand, there are several approaches
to SLA specification, negotiation and monitoring. Next,
we overview QoS metrics, models, and SLA related
approaches.

A. QoS Metrics and Models

Various approaches for modelling quality of service
for web services exist. Ran [6] organizes the aspects of
QoS into categories, i.e., runtime, transaction support,
configuration management and cost, security. The author
argues that each category needs to have a set of quan-
tifiable parameters or measurements. An approach for
defining QoS requirements is QML [7]: a language for
QoS description using XML. QoS aspects are qualified
by characteristics as direction and value type. A set of

© 2006 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

measures for reliability and performance are proposed.
Atzeni and Lioy [8] overview security system assessment
methods and metrics. WS-Policy [9] defines a framework
and model for expressing capabilities, requirements, and
general characteristics of individual services. In [10], it is
argued that networking issues have need to be taken into
account by both web service providers and consumers.

A number of approaches to QoS description of ser-
vices rely on extensions of the Web Service Description
Language (WSDL), e.g., [11], [12]. The main idea is
simple: provide syntax to define terms which refer to non-
functional properties of operations. Given such descrip-
tion, one can then build a framework for the dynamic
selection of Web Services based on QoS requirements.
On the negative side the QoS definition is tied to the
individual operation, rather to the service as a whole.
Furthermore, there is no run-time support, i.e., once a
quality parameter is set, it can not be changed at execution
time. In [13], [14], the description of elementary service
qualities as a quality vector each component of which is
a quality parameter for the service is proposed. In [15]
Lin, Xie, Guo and Wang propose a fuzzy way to express
QoS requirements. According to the fact that some QoS
metrics such as response time and invocation price can
be changed at run-time, the approaches dealing with
rigidly fixed values is not appropriate. Adding a new
data structure to the UDDI model in order to take into
account non-functional properties is presented in [6]. As
the description of quality of service information is static,
i.e., it is specified for a particular service and can not
be changed at run-time: the approach does not allow to
cope with the problem of run-time support. Furthermore,
although the approach allows service discovery, it does
not support a quality-driven web service composition.
As users rate services based on their expectations on
the quality of service and the expectations are often
different, in [16] the authors propose a quality of service
management framework based on users’ expectations.
However the idea is feasible, the works is at an early stage
and there is a need to consider how the expectations can
be presented and matched. Maximilien and Singh [17]
develop an ontology-based framework for dynamic QoS-
aware Web Services selection. If on the one hand, the
approach takes into account provider’s policies and con-
sumer preferences, on the other hand, negotiation is not
allowed. In addition, a semantic web approach, in which
services are searched on the basis of the quality of seman-
tically tagged service attributes is presented in [18]. The
use of the agent-oriented methodology Tropos to model
a wide spectrum of quality of Web Services properties
is proposed in [2]. The feasibility of using constraint
programming to improve the automation of web services
procurement is shown in [19].

B. SLA Specification, Negotiation and Monitoring

Modelling and measuring QoS is only one aspect of the
management and procurement of services. The other half

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

of the picture is the negotiation of QoS aspects between
services that may have recurring interactions. When the
latter occurs, service producers and consumers may need
to establish agreements on service provisioning which
involve the non-functional properties of the services. Key
factors of involved in service level agreements are the
specification, negotiation and monitoring of SLAs [20],
[21].

Several languages for specifying SLAs have been pro-
posed, most notably, IBM’s Web Service Level Agree-
ment (WSLA) Language [22] focuses on web service
interactions. The goal of WSLA is twofold: at deployment
time it helps the interacting parties to configure their
resources to meet a predefined SLA; at run time it helps
the interacting parties to monitor the performance of
each other and to detect and notify violations. However,
the framework does not answer the question “how close
a guarantee is to being violated.” SLAng [23] is an
XML-based language that describes QoS properties to
include in SLAs. SLAng does not focus only on web
service interactions, but also to specify SLAs for hosting
service provisioning (between container and component
providers), communication service provisioning (between
container and network service providers) and so on.
Although SLAng is expressive enough to represent the
QoS parameters included in SLA, more work is needed
on the definition of the semantics of SLAng. Web Service
Offering Language (WSOL) [24] focuses on web service
interactions. The language is used to formally specify
various constraints, management statements, and classes
of services for Web Services. A method to convert the
contract from text into an electronic equivalent that can
be executed and enforced is presented in [25]. The authors
propose using finite state machines to describe standard-
ized conventional contracts.

The negotiating of service agreements has a vital role
in the life-cycle of a service level agreement. Presently,
negotiation is mainly a manual process and full or partial
automation is needed. The term negotiation refers to
the comprising exchanges of messages, such as offers
and acceptance messages between two or more enti-
ties [26], [27]. Theoretical bases of SLA negotiation
are provided by Demirkan, Goul and Soper [28]. The
authors identify negotiation support system requirements.
The critical issue is a common understanding of the
terms among negotiating parties, i.e., there is an on-
tology problem of electronic negotiations [29]. Using
templates is a proposed solution [30]. Gimpel at al. [26]
propose PANDA - Policy-driven Automated Negotia-
tions Decision-making Approach. The approach auto-
mates decision-making within negotiation.

Monitoring an established SLA is essential for a service
consumer. Non-functional monitoring is concerned with
the statistical QoS metrics collection to evaluate wheatear
a provider complies with the QoS level specified in the
SLA [31], [21]. Fundamental concepts of non-functional
SLA monitoring are presented in [31] which contains
a discussions on the separation of the computation and

© 2006 ACADEMY PUBLISHER

25

communication infrastructure of the provider, service
points of presence and metric collection approaches. The
authors propose an architecture for QoS monitoring by
third parties to ensure that the results are trusted by
both the provider and consumer. A Web Service Level
Agreement framework for defining and monitoring SLAs
is presented in [32]. The work addresses the definition
of a language for SLAs specification, creation, and the
implementation of a SLA compliant monitor.

A recent proposal is the Web Services Agreement
Specification [4], which is described in the next sec-
tion. In [33], the Agreement-Based Open Grid Service
Management (OGSI-A) model is proposed. Its aim is to
integrate Grid technologies with Web Service mechanisms
and to manage dynamically negotiable applications and
services, using WS-Agreement. The WS-Agreement is
supported by the definition of a managing architecture:
CREMONA - An Architecture and Library for Creation
and Monitoring of WS-Agreement [5]. The Web Services
Agreement Specification defines the interaction between
a service provider and a consumer, and a protocol for
creating an agreement using agreement templates. The
above approaches show that frameworks for QoS defi-
nition and management are essential to the success of
the web service technology, but there are a number of
shortcomings that still need to be addressed. First, a
formal definition of the semantics of a QoS negotiation is
missing. Second, the frameworks should be more flexible
at execution time because actual qualities of services may
change over time during execution.

III. WS-AGREEMENT

In order to be successful, web service providers have
to offer and meet guarantees related to the services they
develop. Taking into account that a guarantee depends on
actual resource usage, the service consumer must request
state-dependent guarantees from the service provider.
Additionally, the guarantees on service quality must be
monitored and service consumers must be notified in case
of failure of meeting the guarantees. An agreement be-
tween a service consumer and a service provider specifies
the associated guarantees. The agreement can be formally
specified using the WS-Agreement Specification [4].

A WS-Agreement is an XML-based document con-
taining descriptions of the functional and non-functional
properties of a service oriented application. It consists of
two main components that are the agreement Context and
the agreement Terms. The agreement Context includes
the description of the parties involved in the agreement
process, and various metadata about the agreement. One
of the most relevant components is the duration of the
agreement, that is, the time interval during which the
agreement is valid.

Functional and non-functional requirements are spec-
ified in the Terms section that is divided into Service
Description Terms (SDTs) and Guarantee Terms. The first
provides information to define the services functionalities

26

that will be delivered under the agreement. An agreement
may contain any number of SDTs. An agreement can
refer to multiple components of functionalities within one
service, and can refer to several services. Guarantee Terms
define an assurance on service quality associated with the
service described by the Service Description Terms. An
agreement may contain zero or more Guarantee Terms.
In [34] a definition for guarantee terms in WS-
Agreement is specified and a mechanisms for defining
guarantees is provided. An agreement creation process
starts when an agreement initiator sends an agreement
template to the consumer. The structure of the template
is the same as that of an agreement, but an agreement
template may also contain a Creation Constraint section,
i.e., a section with constraints on possible values of
terms for creating an agreement. In [35] enabling of
customizations of terms and attributes for the agreement
creation is proposed. After the consumer completes in
the template, they send it to the initiator as an offer. The
initiator decides to accept or reject the offer depending
on the availability of resource, the service cost, and other
requirements monitored by the service provider. The reply
of the initiator is a confirmation or a rejection.
An agreement life-cycle includes the negotiation, im-
plementation, termination and monitoring of agreement
states. Fig. 1 shows a representation of the life-cycle.
When an agreement is implemented, it does not imply
that it is monitored. It remains in the not_observed
state until services start their execution. The semantics of
the states is as follows: not_observed: the agreement is
implemented and is in execution, but no service involved
in the agreement is running; observed: at least one
service of the agreement is running; and finished: the
agreement terminates either successfully or not.

IV. WHAT’S IN AN AGREEMENT?

The WS-Agreement specification provides XML syntax
and a textual explanation of what the various XML tags
mean and how they should be interpreted. Thank to
the syntax, it is possible to prepare machine readable
agreements, but a formal notion of agreement is missing.
In this section, we formalize the notion of agreement by
defining its main components.

Definition 1 (Term): A term t is a couple (s,g) with
s € Sand g € G, where S is a set of n services and G is
a set of m guarantees. T' C S x G is the set of the terms
t.

In words, a term involves the relationship between a
service s and a guarantee g, not simply a specific tag of
the agreement structure. If the service s appears in the list
of services, which the guarantee ¢ is applied to, it means
that the couple (s,g) is a term. The number of terms
varies between 0 and n - m, where 0 means that there is
no association between services and guarantees, and n-m
indicates the case where each guarantee is associated with
all services.

© 2006 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

Fig. 1. The life-cycle of a WS-Agreement.

Definition 2 (Agreement): An agreement A is a tuple
(S, G, T), where S is a set of n services, G is a set of m
guarantees, and 7' is the set of the terms t.

In the following analysis, it is more convenient to
consider the agreement as a set of Terms rather than a set
of related services and guarantees. From the definition
of WS-Agreement, we say that an agreement can be
in one and only one of three states: not_observed,
observed and finished.

Definition 3 (External state): The external state A
of an agreement A is an element of the set
{not_observed, observed or finished}.

We call the above state external, as it is the observable
one. We also define an internal state of an agreement,
which captures the state of the individual terms.

Definition 4 (Internal state): The internal state A;s of
an agreement A is a sequence of terms’ states ts1, ..., tsp
of maximum size n-m, where ts; = (ss;, gsi) represents
the state of g; guarantee with respect to the state of the
s; service. Service and guarantee states range over the
following sets, respectively:
ss; €{not.ready, ready, running, finished},
and
gsk €{not_determined, fulfilled, violated}.

From the definition of Term, we see that services and
guarantees are related and we can define the internal state
of an agreement, but it is necessary to distinguish between
terms that have the same service and terms that have the
same guarantee.

Proceeding in our goal of answering the question of
what is in an agreement, we define the relationship
between the internal and external state of an agreement A.
First, we note that not all state combinations make sense.
For instance, it has no meaning to say that a guarantee
is violated, when a service is in a not_ready state.
The only admissible combinations are the following ones:

(1) (not_ready, not_determined)
(2) (ready, not_determined)

(3) (running, fulfilled)

(4) (running, violated)

(5) (finished, fulfilled)

(6) (finished, violated)

In theory, there are 63 possible combinations of states in
6

which terms can be. That is, 26 ;) all terms could

i=1
be in state (1), or in state (2),...or in state (6); there could
be terms in states (1) and (2), (1) and (3), and so on.
But again, considering the definition of WS-Agreement
in [4], one concludes that not all 63 combinations make
sense. Furthermore, it is possible to extract the possible
evolutions of these aggregated internal states.

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

When an agreement is created its external state is
not_observed, while all services are not_ready and
all guarantees are not_determined, i.e., state (1).
In the next stage some services will be ready while
others will still be not_ready, i.e., there will be terms
in state (1) and (2). In this case, the external state is
also not_observed. Proceeding in this analysis, one
can conclude that there are 8 situations in which terms can
be. We summarize these in the table in Fig. 2. In the table,
we also present the relation between the internal states and
the external states, and the set of transitions to go from
one set of states to another. The latter transitions are best
viewed as an automaton (which is illustrated in [36]).

V. EXTENSION OF WS-AGREEMENT

From the semantics and formal analysis presented in
Section IV, inspecting the automaton provided, we note
that if the agreement arrives into the states (E) or (F)
there is a non recoverable failure, and consequently an
agreement termination. Even if one single term is violated,
the whole agreement is terminated. Furthermore, when an
agreement is running there is no consideration on how
the guarantee terms are fulfilled. Our goal is to provide
an extension of WS-Agreement and of its semantics in
order to make agreements more long-lived, and robust to
individual term violations. In [37] we provide appropriate
XML syntax to implement the proposed extension, while
an example of using a subset on a concrete case study
(DeltaDator Spa, Trento) of the proposed extension can
be found in [36].

We propose to extend WS-Agreement. On the one
hand, one can (i) anticipate violations; on the other
hand, the (ii) negotiation of the SLA should be part
of its life-cycle. In particular, there is an (ii.a) initial
negotiation before the execution of the services under
SLA, and a (ii.b) run-time renegotiation which occurs
in case of a recoverable violation of a term or in case
the monitoring system is anticipating a possible violation
of a term. (i) In WS-Agreement guarantees of a running
service are either fulfilled or violated. Nothing is said
about how a guarantee is fulfilled. Is the guarantee close
or far from being violated? Is there a trend bringing the
guarantee close to its violation? We propose to introduce
a new state for the agreement in which a warning has
been issued due to the fact that one or more guarantees
are likely to be violated in the near future. By detecting
possible violations, one may intervene by modifying the
run-time conditions or might renegotiate the guarantees
which are close to being violated. (ii) The negotiating
phase occurs in two moments of the life-cycle of the
agreement. In the initial phase the service provider and
consumer, must agree on what the conditions of the
agreement are. The WS-Agreement specification does
not focus on parties involved in the agreement process
interactions leading to negotiation of QoS parameters, at
most one can use pre-compiled templates. Furthermore,
during the execution of the services under agreement,

© 2006 ACADEMY PUBLISHER

27

terms’ state | agreement’s state | transitions |

A @)) not_observed B

B (H©R) not_observed CE
C (H2)A3) observed DEFG
D (DH(2)B)(5) observed FG

E (H2)4) observed FH

F (DHR2)3)(4)(5) observed H

G) finished

H | (1DQ2)3)(@)(5)(6) finished

Fig. 2. Relation between internal and external states.

renegotiation may occur when conditions vary or terms
are violated or could be violated in the near future.
The WS-Agreement specification does not contemplate
changing an agreement at run-time, i.e., renegotiation. If
a guarantee is not fulfilled because of resource overload
or faults in assigning available resources to consumers,
the agreement must terminate. For maintaining the service
and related supplied guarantees, it is necessary to nego-
tiate the QoS again and create another agreement. This
approach wastes resources and computational time, and
increases network traffic. The goal of negotiation terms
applying is to have the chance to modify the agreement
rather than respecting the original agreement. Applying
the negotiation terms means that the services included in
the agreement will be performed according to the new
guarantees.

A. Life-cycle and semantics for the extended agreement

To obtain the desired extensions, we expand the set of
states in which an agreement and a guarantee term can be
and thus update the transition system. More precisely, the
definition of an agreement does not change with respect to
Definition 2, the difference lies in the fact that the set of
terms 7' is now extended with special negotiation terms.
These terms are defined as in Definition 1, but have a
different role, i.e., they specify new conditions that enable
modification of guarantees at run-time.

To account for the new type of terms, we need to
extend the definition of external and internal state of an
agreement. The external states of an extended agreement
are enriched by the negotiated state, the checked
state, the warned state, the renegotiated state, and
the denied state. We say that an agreement can be
in one of nine states. not_observed, observed and
finished have the same meaning as in WS-Agreement,
Fig. 1. An agreement is in the negotiated state while
the negotiation process. From the negotiated state
the agreement can go to the not_observed state if
the agreement is accepted by all the parties or to come
abruptly to an end if it is rejected. An agreement is
in the renegotiated state while the renegotiation
process. From the renegotiated state the agreement
goes to observed. An agreement is in state checked
when the monitoring system is checking its services and
guarantees. From the checked state the agreement can

28

go to five different states: to £inished if the agreement
finishes its life-cycle; to denied if the agreement is
violated and no negotiation terms can be applied, the
agreement must terminate; to warned if the monitoring
system issues at least one warning for at least one
term; back to observed if the agreement is fulfilled;
to renegotiated if the agreement is fulfilled or vio-
lated and negotiation terms can be applied.

Definition 5 (Extended External state): The extended
agreement external state Az.s of an agreement A is
an element of the set {negotiated, not_observed,
observed, warned, checked, renegotiated,
denied or finished}.

The transitions between states are illustrated by the
automaton in Fig. 3, which is an extension of the one pre-
sented in Fig. 1. The automaton represents the new evo-
lution of an agreement where a guarantee are negotiated
and can be modified during the processing of a service
or a warning can be raised. When a guarantee is violated
we have two situations: the first presents a recoverable
violation which implies the chance to apply negotiation
terms and so the agreement is in the renegotiated
state, the second presents a non recoverable violation
which implies that there is no suitable negotiation term for
the current violated guarantee and so the agreement must
terminate. Otherwise, if a warning is raised, this can be
ignored or the agreement can go in the renegotiated
state. Also, when a guarantee is fulfilled, it is possible
to change the current agreement configuration, applying
a negotiation term that changes the QoS.

The internal state definition for the extended agreement
is similar to the internal state definition stated before,
but a new state for the services is added and three
for the guarantees. A new state is stopped and is
needed to define a state of a service where its associated
guarantee is unrecoverable violated and the service must
terminate or the guarantee can be renegotiated. It is an
intermediate state. A guarantee is negotiated while
the negotiation or renegotiation process. A guarantee
can also be warned if it is close to being violated
in a given time instant. Other state for a guarantee is
the non_recoverable_violated state in which a
guarantee is violated and it has no related negotiation term
for the current violation.

Definition 6 (Extended Internal state): The extended
internal state A.;s of an agreement A is a sequence of
terms’ states tsy,...,ts, of maximum size n - m, where
ts; = (ssj, gsy) represents the state of g5 guarantee with
respect to the s; service. Service and guarantee states
range over the following sets, respectively:
ss; €{not_ready, ready, running, stopped,
finished}, and
gSk €{not_determined,
fulfilled, warned,
non_recoverably violated}.

As for Definition 4, one notes that not all the state
combinations make sense. The only possible ones are the
combinations itemized in Section IV plus the following

negotiated,
violated,

© 2006 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

Six:

(7) (ready, negotiated)

(8) (stopped, negotiated)

(9) (stopped, fulfilled)

(10) (stopped, violated)

(11) (stopped, non_recoverably violated)
(12) (running, warned)

Service is ready and guarantee is negotiated, i.e., state
combination (7), while initial negotiation process. The
state combinations (8), (9), (10) and (11) determine the
states when a service is stopped because a guarantee is
violated or is being renegotiated. In state (9) a guarantee
is fulfilled and we try to improve it applying a negotiation
term. In (10) and (11) a guarantee is currently violated.
In (10) the service is stopped and the guarantee is
violated but it is possible to apply a negotiation term
and to preserve the agreement again. In (11), instead, the
guarantee is irrecoverably violated and the agreement
must terminate, there are not any suitable negotiation
term. State (12) represents the fact that a warning has
been raised for a running service guarantee.

B. Framework

The proposed extension to WS-Agreement must be
handled by an appropriate framework that allows for
monitoring and provides run-time renegotiation.

On the one hand, there must be rules specifying when
and how to raise a warning for any given guarantee. These
rules should be easy to compute to avoid overloading of
the monitoring system and be fast to provide warnings.
In addition they should provide good performance in
detecting as many violations as possible generating the
minimum number of false positives. A forecasting method
which enjoys this characteristics is the linear least squares
method [38]. The method of linear least squares requires
a straight line to be fitted to a set of data points such that
the sum of the squares of the vertical deviations from
the points to the line is minimized. By analyzing such
a parameter of the line as a slope ratio, it is possible to
predict a change over time.

On the other hand, to allow for renegotiation of guaran-
tee terms at run-time the parties involved in the agreement
need to be able to decide whether a renegotiation has
been agreed upon. Before execution it must be possible
to specify negotiation terms. This can be done by using
appropriate templates in the spirit of the original work
in [5].

VI. EXPERIMENTAL RESULTS

We have conducted experimentation to show the feasi-
bility of the warning strategy. We used synthetic data. We
generated a sequence of 1100 elements considered as a
service guarantee for a single operation over a continuous
time interval (for instance the cost of a service which

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

-0

negotiated not_observed

Fig. 3.

should be below the value 10). The data set and the results
of the experiments are available in [36]. The points were
generated by a function that returns a random number
greater or equal to 6.00 and less or equal to 14.00, evenly
distributed. We split the data set into two subsets. The
first part of the data set was used to decide the size of the
time window and of the threshold values to be used for
prediction. The rest of the data was used for evaluating
the system.

To evaluate the method we consider the following per-
formance measures: Precision is the ratio of the number
of true warnings (i.e., warnings thrown to notify violation
points) to the number of total warnings (i.e., true warnings
and false warnings). Recall is the ratio of the number
of warned violations (i.e., violation points for which
a warning is issued) to the number of total violation
points. Total violation points include warned violations
and missed violations.

Warnings Violations
True | False | Warned | Missed
303 11 156 13
Total 314 169
Precision 96.50%
Recall 92.31%

Fig. 4. Experimental results.

The table in Figure 4 summarizes the results of the
experimentation. The number of true and false warnings
is shown in the first column. The difference in the number
of total warnings and violations is due to the fact that
more than one warning in the same time window may
refer to the same violation. The number of warned and
missed violations is reported in the second column of the
table. The total sum of warnings and violations is in the
”Total” row. The last two rows present the precision and
recall of the method.

The results of experimentation on the first 100 points
of the data set is shown in Fig. 5. In the figure, two types
of warnings, true and false, are marked by diamonds and
crosses, respectively. A warning is thrown if the cost and
tangent of the cost curve are higher then the threshold

© 2006 ACADEMY PUBLISHER

.

29

checked

fnon Necoverable violated]

warned

The life-cycle of the WS-Agreement extension.

B e g
14,00
13,00 1
12,00 A
511001
51000
9,00 -
5,00 -
7,00 -
6,00
5,00 AT T T T T I T T T T T
17 13 19 25 31 37 43 49 55 &1 67 73 73 8 91 o
Time
® tue X false B wamed @ missed
Fig. 5. Experimental results for 100 points.

(8 for cost and 0.1 for the tangent differences). Squares
represent warned violation points, while circles indicate
missed violation points.

The method shows good performance when the in-
crease in cost is smooth (points 8, 9, and 10), a case
that normally takes place during Web Services execution.
If the change in values is abrupt then the method fails to
generate warnings, e.g., points 43 (cost is 6.36) and 44
(cost is 10.63). It is difficult to find a violation point if the
point is in the very beginning of the process, within or
just after the first time window (point 7). The latter cases
should be considered exceptional, in fact those occur only
13 times in the whole experiment.

In the experimentation using the method, more than
92% of violation points are warned in advance, and 96.5%
of thrown warnings are true warnings. Using bigger time
windows does not improve performances, see [36] for
evidence of this fact.

VII. CONCLUSIONS

WS-Agreement is an industry based protocol for the
establishment of service level agreements among loosely
coupled service providers and requesters. If on the one
hand, WS-Agreement is being adopted widely, on the
other hand, it lacks a precise definition of the meaning of
its constructs. We presented a formal definition of an WS-
Agreement by resorting to finite state automata. Further-
more, by providing a set of formal rules that tie together

30

agreement terms and the life-cycle of the agreement, we
identified some shortcomings of the protocol. That is,
the protocol does not support explicitly the negotiation
of the agreement, there is no monitoring of how close
a term is to being violated at execution time, and, the
breaking of one single term of a running agreement
results in termination while a more graceful degradation is
desirable. To overcome these shortcomings, we proposed
an extension of WS-Agreement, for which we provided
appropriate semantics. The extension considers initial
negotiation of an agreement, it considers the possibility
of issuing warnings before a possible term violation,
and eventually renegotiation of a running agreement. We
evaluated the approach through simulation experiments on
synthetic data. Incidentally, we are not claiming that the
proposal based on linear least square is the best approach
to provide early warning, in fact, it may turn out that the
method depends on the context in which the agreements
are established and monitored. Here we are concerned
with the extension of the protocol which contemplates
the possibility of having early warnings, the way in which
these are actually issued will be designed separately for
any specific application scenario.

ACKNOWLEDGMENTS

Marco thanks Asit Dan and Heiko Ludwig for useful
discussion on WS-Agreement while visiting IBM TJ
Watson. Daniela thanks DIT at the University of Trento
for support while completing her bachelor degree.

REFERENCES

[1] A. Mani and A. Nagarajan, “Understanding Qual-
ity of Service for Web Services,” IBM developer-
Works, January 2002, http://www-106.ibm.com/
developerworks/library/ws-quality.html.

[2] M. Aiello and P. Giorgini, “Applying the Tropos Method-
ology for Analysing Web Services Requirements and Rea-
soning about Qualities of Services,” CEPIS Upgrade - The
European journal of the informatics professional, vol. 5,
no. 4, pp. 20-26, 2004.

[3] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke,
“Grid Services for Distributed System Integration,” /IEEE
Computer, vol. 35, no. 6, pp. 37-46, 2002.

[4] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,
H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu, “Web Services Agreement

Specification (WS-Agreement),” Grid Resource
Allocation and Agreement Protocol (GRAAP)
WG, September 2005, http://www.ggf.org/

Public_Comment_Docs/Documents/Oct-2005/
WS-AgreementSpecificationDraft050920.
pdf.

[5] H. Ludwig, A. Dan, and R. Kearney, “CREMONA: an
Architecture and Library for Creation and Monitoring of
WS-Agreements,” in Proceedings of the Second Interna-
tional Conference on Service-Oriented Computing, New
York City, NY, USA, November 2004.

[6] S. Ran, “Model for Web Services Discovery with QoS,”
SIGEcom Exchanges, vol. 4, no. 1, pp. 1-10, 2004.

[7] S. Frglund and J. Koistinen, “Quality-of-Service Specifi-
cation in Distributed Object Systems,” Distributed Systems
Engineering, vol. 5, no. 4, pp. 179-202, December 1998.

© 2006 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

[8] A. Atzeni and A. Lioy, “Why to Adopt a Security Metric?
A Brief Survey,” in Proceedings of the First Workshop on
Quality of Protection, Milan, Italy, September 2005.

[9] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels,
P. Hallam-Baker, M. Hondo, C. Kaler, D. Langworthy,
A. Malhotra, A. Nadalin, N. Nagaratnam, H. P.

M. Nottingham, C. von Riegen, J. Schlimmer,
C. Sharp, and J. Shewchuk, “Web Services
Policy = Framework (WS-Policy),” March 2006,

http://www-128.ibm.com/developerworks/
library/specification/ws-polfram/.

[10] H. Ludwig, “Web Services QoS: External SLAs and Inter-
nal Policies or How do we Deliver what we Promise?” in
Proceedings of the First Web Services Quality Workshop at
WISE, Rome, Italy, December 2003.

[11] D. Gouscos, M. Kalikakis, and P. Georgiadis, “An Ap-
proach to Modeling Web Service QoS and Provision Price,”
in Proceedings of the First Web Services Quality Workshop
at WISE, Rome, Italy, December 2003.

[12] M. Tian, A. Gramm, H. Ritter, and J. Schiller, “Efficient
Selection and Monitoring of QoS-aware Web Services
with the WS-QoS Framework,” in Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelli-
gence, Beijing, China, September 2004.

[13] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and
Q. Sheng, “Quality Driven Web Services Composition,” in
Proceedings of the 12th International conference on World
Wide Web, Budapest, Hungary, May 2003.

[14] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Con-
straint Driven Web Service Composition in METEOR-S,”
in Proceedings of the 2004 IEEE International Conference
on Services Computing, Shanghai, China, September 2004.

[15] M. Lin, J. Xie, H. Guo, and H. Wang, “Solving QoS-
Driven Web Service Dynamic Composition as Fuzzy Con-
straint Satisfaction,” in Proceedings of the IEEE Interna-
tional Conference on e-Technology, e-Commerce and e-
Service, Hong Kong, China, March-April 2005.

[16] V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian, “A
Quality of Service Management Framework Based on User
Expectations,” in Proceedings of the First International
Conference on Service-Oriented Computing, Trento, Italy,
December 2003.

[17] E. Maximilien and M. Singh, “A Framework and Ontol-
ogy for Dynamic Web Services Selection,” IEEE Internet
Computing, vol. 08, no. 5, pp. 84-93, September/October
2004.

[18] A.S. Bilgin and M. P. Singh, “A DAML-Based Repository
for QoS-Aware Semantic Web Service Selection,” in Pro-
ceedings of the Second International Conference on Web
Services, San Diego, California, USA, July 2004.

[19] O. Martin-Diaz, A. R. Cortés, A. Duran, D. Benavides,
and M. Toro, “Automating the Procurement of Web Ser-
vices,” in Proceedings of the First International Conference
on Service-Oriented Computing, Trento, Italy, December
2003.

[20] J. Trienekens, J. Bouman, and M. van der Zwan, “Specifi-
cation of Service Level Agreements: Problems, Principles
and Practices,” Software Quality Journal, vol. 12, no. 1,
pp- 43-57, March 2004.

[21] C. Molina-Jimenez, J. Pruyne, and A. van Moorsel, “The
Role of Agreements in IT Management Software,” Archi-
tecting Dependable Systems III, pp. 3658, 2005.

[22] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck,
“Web Service Level Agreement (WSLA) Language Spec-
ification. Version 1.0,” IBM Corporation, January 2003,
http://www.research.ibm.com/wsla/.

[23] D. Lamanna, J. Skene, and W. Emmerich, “SLAng: A
Language for Defining Service Level Agreements,” in
Proceedings of the 9th IEEE Workshop on Future Trends

JOURNAL OF SOFTWARE, VOL. 1, NO. 1, JULY 2006

of Distributed Computing Systems, San Juan, Puerto Rico,
May 2003.

[24] V. Tosic, “WSOL Version 1.2,” Department of Systems
and Computer Engineering, Carleton University, Tech. Rep.
SCE-04-11, July 2004.

[25] C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and
J. Warne, “Contract Representation for Run-time Monitor-
ing and Enforcement,” in Proceedings of the IEEE Inter-
national Conference on E-Commerce Technology, Newport
Beach, California, USA, June 2003.

[26] H. Gimpel, H. Ludwig, A. Dan, and B. Kearney, “PANDA:
Specifying Policies for Automated Negotiations of Ser-
vice Contracts,” in Proceedings of the First International
Conference on Service Oriented Computing, Trento, Italy,
December 15-18 2003.

[27] A. Elfatatry and P. Layzell, “A Negotiation Description
Language,” Software - Practice and Experience, vol. 35,
no. 4, pp. 323-343, April 2005.

[28] H. Demirkan, M. Goul, and D. S. Soper, “Service
Level Agreement Negotiation: A Theory-based Exploratory
Study as a Starting Point for Identifying Negotiation Sup-
port System Requirements,” in Proceedings of the 38th
Hawaii International Conference on System Sciences, Big
Island, HI, USA, January 3-6 2005.

[29] S. Michael, Engineering Electronic Negotiations. —New
York: Kluwer Academic Publishers, 2002.

[30] D. M. Reeves, M. P. Wellman, and B. N. Grosof, “Au-
tomated Negotiation from Declarative Contract Descrip-
tions,” in Computational Intelligence, vol. 18, no. 4,
November 2002, pp. 482-500.

[31] C. Molina-Jimenez, S. Shrivastava, J. Crowcroft, and
P. Gevros, “On the Monitoring of Contractual Service Level
Agreements,” in Proceedings of the First IEEE Interna-
tional Workshop on Electronic Contracting, San Diego,
CA, USA, July 2004.

[32] A. Keller and H. Ludwig, “Defining and Monitoring
Service Level Agreements for Dynamic e-Business,” in
Proceedings of the 16th USENIX System Administration
Conference, Philadelphia, PA, USA, November 2002.

[33] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and
M. Xu, “Agreement-based Grid Service Management
(OGSI-Agreement),” Global Grid Forum, GRAAP-WG
Author Contribution, Tech. Rep., 2003.

[34] A. Dan, K. Keahey, H. Ludwig, and J. Rofrano, “Guar-
antee Terms in WS-Agreement,” Grid Resource Allocation
Agreement Protocol (GRAAP) Working Group Meetings,
Tech. Rep., 2004.

[35] A. Andrieux, A. Dan, K. Keahey, H. Ludwig, and
J. Rofrano, “Negotiability Constraints in WS-Agreement,”
Grid Resource Allocation Agreement Protocol (GRAAP)
Working Group Meetings, Tech. Rep., 2004.

[36] M. Aiello, G. Frankova, and D. Malfatti, “What’s in an
Agreement? A Formal Analysis and an Extension of WS-
Agreement,” DIT, University of Trento, Tech. Rep. DIT-
05-039, 2005.

[37] D. Malfatti, “A Framework for the Monitoring of the QoS
by extending WS-Agreement,” Master’s thesis, Corso di
Laurea in Informatica, Universita degli Studi di Trento,
2005, in Italian.

[38] R. K. Bock, The Data Analysis: Briefbook.
Berlin [etc.], 1998.

Springer:

© 2006 ACADEMY PUBLISHER

31

Ganna Frankova received the bache-
lor’s and master’s degrees in Computer
Science from the Dnepropetrovsk State
University, Ukraine, in 2003 and 2004,
respectively.

From November 2004 she is a doctor-
ate student of the University of Trento,
Italy under the supervising of Dr. Marco
Aiello and Prof. Fabio Massacci. Her re-
search interests lie in the field of Service-
Oriented Computing with a particular focus on QoS and Secu-
rity.

Ms. Frankova is a member of the ACM.

Daniela Malfatti received the bachelor’s
degree in Computer Science from the
University of Trento in 2005 and is cur-
rently pursuing the master’s degree in the
same university.

Her research interests are in the field
of Distributed Systems and Service-
Oriented Computing.

Marco Aiello received the PhD from
the University of Amsterdam in 2002 on
Spatial Reasoning. He holds a degree in
Engineering and Computer Science from
the University of Rome La Sapienza,
awarded cum laude in 1997.

He is an assistant professor at the Uni-
versity of Trento, currently on sabbatical
leave at the Distributed Systems Group
at TUWien. His research interests lie in
the fields of Service-Oriented Computing, Document Image
Understanding and Spatial Reasoning.

Dr. Aiello is a member of ACM, IEEE, and AI*IA. In 2003
he won the best dissertation award from the Italian Association
for Artificial Intelligence (AI*IA).

