doi: 10.4304/jsw.9.9.2384-2392
A Novel Nonparallel Plane Proximal SVM for Imbalance Data Classification
Abstract—The research of imbalance data classification is the hot point in the field of data mining. Conventional classifiers are not suitable to the imbalanced learning tasks since they tend to classify the instances to the majority class which is the less important class. This paper pays close attention to the uniqueness of uneven data distribution in imbalance classification problems. Without change the original imbalance training data, this paper indicated the advantages of proximal classifier for imbalance data classification. In order to improve the accuracy of classification, this paper proposed a new model named LSNPPC, based the classical proximal SVM models which find two nonparallel planes for data classification. The LS-NPPC model is applied to six UCI datasets and one real application. The results indicate the effectiveness of the proposed model for imbalanced data classification problems.
Index Terms—Class imbalance learning, Twin support vector machine, Nonparallel plane, Proximal classifier, least square one class support vector machine (LS-OCSVM)
Cite: Bing Yang and Ling Jing, "A Novel Nonparallel Plane Proximal SVM for Imbalance Data Classification," Journal of Software vol. 9, no. 9, pp. 2384-2392, 2014.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Mar 01, 2024 News!
Vol 19, No 1 has been published with online version [Click]