doi: 10.4304/jsw.7.5.1045-1051
Automatic PAM Clustering Algorithm for Outlier Detection
Abstract—In this paper, we propose an automatic PAM (Partition Around Medoids) clustering algorithm for outlier detection. The proposed methodology comprises two phases, clustering and finding outlying score. During clustering phase we automatically determine the number of clusters by combining PAM clustering algorithm and a specific cluster validation metric, which is vital to find a clustering solution that best fits the given data set, especially for PAM clustering algorithm. During finding outlier scores phase we decide outlying score of data instance corresponding to the cluster structure. Experiments on different datasets show that the proposed algorithm has higher detection rate go with lower false alarm rate comparing with the state of art outlier detection techniques, and it can be an effective solution for detecting outliers.
Index Terms—outlier detection, PAM clustering algorithm, subtractive clustering, cluster validation
Cite: Dajiang Lei, Qingsheng Zhu, Jun Chen, Hai Lin, and Peng Yang, "Automatic PAM Clustering Algorithm for Outlier Detection," Journal of Software vol. 7, no. 5, pp. 1045-1051, 2012.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Mar 01, 2024 News!
Vol 19, No 1 has been published with online version [Click]