doi: 10.4304/jsw.7.2.303-307
Knowledge-based Genetic Algorithms Data Fusion and its Application in Mine Mixed-gas Detection
2China University of Mining & Technology Xuzhou, 221116, China
Abstract—In Considering that the high concentration of mine gas and hydrogen will disturb the output of electrochemical carbon monoxide sensor, this paper integrates gas sensor array with data fusion Algorithm. The output signals of three sensors are trained by BP neural network to get the mathematical model of information fusion for the analysis of mixed gas of methane, hydrogen and carbon monoxide. The experiments show that the information fusion could correct the crossed sensitivity error, and improve the accuracy of carbon monoxide, therefore achieve quantitative analysis mixed gas of coal mine.
Index Terms—Gas Sensor, Information Fusion, Neural Networks, Genetic Algorithm
Cite: Haigang Li, Deming Wang, and Yong Zhang, "Knowledge-based Genetic Algorithms Data Fusion and its Application in Mine Mixed-gas Detection," Journal of Software vol. 7, no.2, pp. 303-307, 2012.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Mar 01, 2024 News!
Vol 19, No 1 has been published with online version [Click]