Volume 16 Number 1 (Jan. 2021)
Home > Archive > 2021 > Volume 16 Number 1 (Jan. 2021) >
JSW 2021 Vol.16(1): 39-45 ISSN: 1796-217X
doi: 10.17706/jsw.16.1.39-45

Resource Scheduling Based on Reinforcement Learning Based on Federated Learning

Yabin Wang*, JingYu

The Information System Engineering Important Laboratory,China.

Abstract—The emergence of edge computing makes up for the limited capacity of devices. By migrating intensive computing tasks from them to edge nodes (EN), we can save more energy while still maintaining the quality of service.Computing offload decision involves collaboration and complex resource management. It should be determined in real time according to dynamic workload and network environment. The simulation experiment method is used to maximize the long-term utility by deploying deep reinforcement learning agents on IOT devices and edge nodes, and the alliance learning is introduced to distribute the deep reinforcement learning agents. First, build the Internet of things system supporting edge computing, download the existing model from the edge node for training, and unload the intensive computing task to the edge node for training; upload the updated parameters to the edge node, and the edge node aggregates the parameters with the The model at the edge nodecan get a new model; the cloud can get a new model at the edge node and aggregate, and can also get updated parameters from the edge node to apply to the device.

Index Terms—Edge computing, resource scheduling, federated learning, reinforcement learning, distributed learning.


Cite: Yabin Wang, JingYu, "Resource Scheduling Based on Reinforcement Learning Based on Federated Learning," Journal of Software vol. 16, no. 1, pp. 39-45, 2021.

General Information

ISSN: 1796-217X (Online)
Frequency:  Quarterly
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Yoyo Y. Zhou
Abstracting/ Indexing: DBLP, EBSCO, CNKIGoogle Scholar, ProQuest, INSPEC(IET), ULRICH's Periodicals Directory, WorldCat, etc
E-mail: jsweditorialoffice@gmail.com
  • Mar 01, 2024 News!

    Vol 19, No 1 has been published with online version    [Click]

  • Jan 04, 2024 News!

    JSW will adopt Article-by-Article Work Flow

  • Apr 01, 2024 News!

    Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec)     [Click]

  • Apr 01, 2024 News!

    Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP   [Click]

  • Nov 02, 2023 News!

    Vol 18, No 4 has been published with online version   [Click]