Volume 13 Number 3 (Mar. 2018)
Home > Archive > 2018 > Volume 13 Number 3 (Mar. 2018) >
JSW 2018 Vol.13(3): 155-167 ISSN: 1796-217X
doi: 10.17706/jsw.13.3.155-167

Iterative Fractional Integral Denoising Based on Detection of Gaussian Noise

Yuanxiang Jiang1, Rui Yuan1*,Yuqiu Sun1, Jinwen Tian2

1School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, China.
2School of Automation, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Abstract—In an image with noise, any operation of denoising for a non-noise pixel will change original information. Recent studies show that the denoising algorithms based on noise achieve impressive performance. Meanwhile, because of the characteristics of fractional calculus, the edge information will be retained, and the smooth texture is enhanced while noise is removed. In this paper, an iterative fractional integral denoising algorithm based on noise is proposed. To begin with, we introduce and analyze the noise detection algorithm based on fractional differential gradient and fractional integral denoising from the theoretical point of view. In particular, logical product is made through image of fractional differential gradient to obtain noise position image, thus achieving noise detection. Next, fractional integral denoising algorithms based on tradition and noises are finished. Then, iterative algorithm is used to do multiple searches of noise and integral denoising. In addition, several traditional denoising algorithms and denoising based on noise points are compared to confirm the practicability and feasibility of noise detection algorithm as well as the effectiveness of denoising algorithms based on noise. Finally, different denoising methods are compared to show the characteristic of iterative fractional integral denoising based on noise. By comparing the image visualization and evaluation parameters after processing, it is shown from the experiment results that the method proposed in this paper has good effect of denoising in both subjective and objective aspects.

Index Terms—denoisingalgorithm, differential gradient,noise detection, fractional integral


Cite: Yuanxiang Jiang, Rui Yuan,Yuqiu Sun, Jinwen Tian, "Iterative Fractional Integral Denoising Based on Detection of Gaussian Noise," Journal of Software vol. 13, no. 3, pp. 155-167, 2018.

General Information

ISSN: 1796-217X (Online)
Frequency:  Quarterly
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Yoyo Y. Zhou
Abstracting/ Indexing: DBLP, EBSCO, CNKIGoogle Scholar, ProQuest, INSPEC(IET), ULRICH's Periodicals Directory, WorldCat, etc
E-mail: jsweditorialoffice@gmail.com
  • Mar 01, 2024 News!

    Vol 19, No 1 has been published with online version    [Click]

  • Jan 04, 2024 News!

    JSW will adopt Article-by-Article Work Flow

  • Apr 01, 2024 News!

    Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec)     [Click]

  • Apr 01, 2024 News!

    Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP   [Click]

  • Nov 02, 2023 News!

    Vol 18, No 4 has been published with online version   [Click]