Volume 4 Number 4 (Jun. 2009)
Home > Archive > 2009 > Volume 4 Number 4 (Jun. 2009) >
JSW 2009 Vol.4(4): 299-306 ISSN: 1796-217X
doi: 10.4304//jsw.4.4.299-306

An Improved Ant Colony Optimization Cluster Algorithm Based on Swarm Intelligence

Weihui Dai, Shouji Liu, and Shuyi Liang

School of Management, Fudan University, Shanghai 200433, P.R.China

Abstract—This paper proposes an improved ant colony optimization cluster algorithm based on a classics algorithm - LF algorithm. By the introduction of a new formula and the probability of similarity metric conversion function, as well as the new formula of distance, this algorithm can deal with the category data easily. It also introduces a new adjustment process, which adjusts the cluster generated by the carry process iteratively. We approve that that the algorithm can improve the efficiency and the convergence of the cluster theoretically. Data experiments show that the improved ant colony algorithm can form more accurate and stability clusters than the K-Modes algorithm, Information Entropy-Based Cluster Algorithm, and LF Algorithm. Scalability experiments show that the running time has an obvious linear relationship with the size of data set. Furthermore, we describe the process and idea of the algorithm usage by a mobile customer classification case and analyze the cluster results. This algorithm can handle large category dataset more rapidly, accurately and effectively, and keep the good scalability at the same time.

Index Terms—swarm intelligence, cluster analysis, optimized ant colony algorithm, data mining, category data

[PDF]

Cite: Weihui Dai, Shouji Liu, and Shuyi Liang, "An Improved Ant Colony Optimization Cluster Algorithm Based on Swarm Intelligence," Journal of Software vol. 4, no. 4, pp. 299-306, 2009.

General Information

ISSN: 1796-217X (Online)
Frequency:  Quarterly
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Yoyo Y. Zhou
Abstracting/ Indexing: DBLP, EBSCO, CNKIGoogle Scholar, ProQuest, INSPEC(IET), ULRICH's Periodicals Directory, WorldCat, etc
E-mail: jsweditorialoffice@gmail.com
  • Mar 01, 2024 News!

    Vol 19, No 1 has been published with online version    [Click]

  • Apr 26, 2021 News!

    Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec)     [Click]

  • Nov 18, 2021 News!

    Papers published in JSW Vol 16, No 1- Vol 16, No 6 have been indexed by DBLP   [Click]

  • Jan 04, 2024 News!

    JSW will adopt Article-by-Article Work Flow

  • Nov 02, 2023 News!

    Vol 18, No 4 has been published with online version   [Click]