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Abstract—Quality is considered as an important issue in the 
fields of software engineering. However, building quality 
software is very expensive, in order to raise the effectiveness 
and efficiency of quality assurance and testing, software 
defect prediction is used to identify defect-prone modules in 
an upcoming version of a software system and help to allow 
the effort on those modules. Although many models have 
been proposed, this problem has not resolved thoroughly. 
For overcoming these limits, recent results show that 
researcher should pay more attention to improve the quality 
of the data. Aimed at this purpose, in this paper, we propose 
a novel approach to resolve the problem of software defect 
prediction. The method is classification using Non-Negative 
Matrix Factorization (NMF). In this paper, NMF algorithm 
is not only used for extracting external features but also as a 
powerful way for classification of software defect data. 
Experiments demonstrating the efficiency of the proposed 
approach are performed for software defect data 
classification. And the results show that it outperforms the 
state of the art techniques tested for this experiment. 
Finally, we suggest that it can be a useful and practical way 
addition to the framework of software quality prediction. 
 
Index Terms—software defect, prediction, Non-negative 
Matrix Factorization, software metrics, F-Measure 
 

I.  INTRODUCTION 

Quality can be used to assess and estimate final 
software product quality. Over the past decades, 
researchers have addressed the importance of integrating 
quantitative validation in the software development 
process, in order to meet different requirement. 
Traditional software development focus on software 
correctness, introducing performance issues later in the 
development process. This style of developing has been 
often referred as a “fix-it-later” approach [1]. However, 
building high quality software is very expensive; the 
effort for applying software quality assurance measures is 
very limited. At the same time, many of them face a 
tradeoff between quality and cost. To raise the 

effectiveness and efficiency of quality assurance and 
testing, defect prediction is used to identify defect-prone 
modules in an upcoming version of a software system and 
help to allow the effort on those modules. In this research 
fields, there has been a growing interest in the subject and 
several approaches to early software performance 
predictive analysis have been proposed. Although many 
models have been proposed, this problem has not 
resolved thoroughly. In a recent study, Khoshgoftaar and 
Seliy[2] have empirically demonstrated that while using a 
very large number of diverse classification techniques for 
building software quality classification models, 
classification accuracy does not show a dramatic 
improvement. Instead of searching for a classification 
technique that performs well for a given software 
measurement dataset, they concluded that the software 
process should focus on improving the quality of the data. 
As pointed out by Menzies et al. [3] all data miners hit a 
performance ceiling effect when they cannot find 
additional information that better relates software metrics 
with defect occurrence. What we observe from recent 
results is that current research paradigm, which relied on 
relatively straightforward application of machine learning 
tools, has reached its limits. Some researchers start to 
resolve this problem. For example, Burak [4] used project 
data from multiple companies to resolve it. However, 
these features from different sources come at a 
considerable collection cost. Another way to avoid these 
limits is to mining as more knowledge as possible. 
Considering these observations, we pay more attention to 
increasing the information content in metric data and 
improve the quality of the data. 

NMF is a popular technique and has been recently 
developed for decomposing a data matrix into non-
negative factors and it has been used for object and 
pattern recognition, data analysis, and dimensionality 
reduction. However, to the author's knowledge, there are 
a few references to research software defect prediction 
based on NMF algorithms. NMF has been already applied 
for more and more fields with its advantage of 
straightforward implementation. After researching, in this 
paper, we propose a novel approach to resolve above 
problem about software defect prediction. We show that 
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NMF is a powerful technique for successful extraction of 
features in software defect prediction. And in our method, 
software defect data set is represented as a nonnegative 
matrix, as negative data is meaningless. Its output is easy 
to interpret for researchers and testers. So in this paper, 
NMF algorithm is not only used for extracting external 
features but also as a powerful way for classification of 
software defect data. Finally, the application for software 
defect data classification is investigated by comparing 
with the state of the art classifiers. 

The rest of this paper is organized as follows: Firstly 
we introduce related work about software defect 
prediction and NMF algorithms. Secondly the data and 
measure of evaluation used in the experiments are 
described. Thirdly, we present the results of applying the 
NMF algorithm for classification of software defect data. 
We simultaneously analyze and compared the results. 
Finally, we give our conclusion and works in the future. 

 

II.  RELATED WORK 

In this section, we will briefly present overview of 
software defect prediction and review the major results of 
non-negative matrix factorization. 

A. Software defect prediction  
Before explaining defect prediction, we should first 

define what we are trying to predict: ‘defect’. 
Unfortunately, the perception of what a defect is varies in 
different contexts. Based on contextual classification of 
software systems, in defect prediction perspective, a 
defect is defined by the context of the software system, 
considering what practitioners want to predict [4]. 
Accordingly a defect predictor is a tool or method that 
guides testing activities. Defect predictors are used to 
make an ordering of modules to be inspected by 
verification and validation teams. Software defect 
prediction is handled as a regression problem or a 
classification problem. For both types, the granularity 
level of predictions may vary depending on the 
availability of data. In this paper, we employ the second 
application type and view it as a supervised binary 
classification problem. Software modules are represented 
with software metrics, and are labeled as either defective 
or non-defective.  

Until now, a wide range of statistical and machine 
learning models have been developed and applied to 
predict defects in software such as linear regression, 
discriminate analysis, decision trees, neural networks and 
naive bayes and so on. Munson and Khoshgoftaar [5] 
investigate linear regression models and discriminate 
analysis to conclude the performance of the latter is 
better. Bullard et al. [6] employ a rule based classification 
model in a telecommunication system and reported that 
their model produces lower false positives, which are 
considered as high cost classification errors. A cascading 
classifiers approach is also performed by Tosun et al., 
where they report decreased testing efforts on embedded 
software. Specialized prediction models for embedded 
systems are also investigated by Khosghoftaar et al. [7], 

where they built a classification and regression tree for 
predicting high risk software modules in 
telecommunications system software. They also 
investigate genetic programming approaches to optimize 
multiple objectives for minimizing the false positives 
while maximizing the number of detected defects. They 
presented the applicability of their model on real life 
industrial software. Nagappan et al. [8] also used linear 
regression analysis with the STREW metric suite. This 
suite of metrics was extracted from the testing process 
and is used to estimate the post-release defects. They 
validate their approach on industrial, open source and 
student projects and find strong correlations between the 
proposed metric suite and post-release defects. On open 
source software, Denaro and Pezze [9] analyzed Apache 
using logistic regression with static code features and 
their 80% prediction performance pointed 50% of the 
modules to be inspected. Nevertheless, In January 2007, 
Menzies et al. published a study [10] that defined a 
repeatable experiment in learning defect predictors. The 
intent of that work was to offer a benchmark in defect 
prediction that other researchers could repeat/ improve/ 
refute. Surprisingly, very simple bayes classifiers (with a 
simple logarithm pre-processor for the numeric) 
outperformed the other studied methods. They have later 
tried to find better data mining algorithms for defect 
prediction. The experiments that have found no additional 
statistically significant improvement from the application 
of the further data mining methods include: logistic 
regression, average one-dependence estimators, under- or 
over-sampling, random forests, RIPPER, J48, OneR, 
Bagging and Boosting. Lessmann et al. also investigated 
this issue and in a very recent paper in IEEE TSE, he 
reported no statistical difference between the results of 19 
learners, including naive bayes, on the same datasets.  

In brief, those works present promising results. 
However, until now, the ML-based works show two main 
disadvantages: most prediction models are not easily 
interpreted by the programmers and testers; and most 
approaches require a pre-process step in order to obtain a 
balanced dataset.  

As the importance of data sets, we introduce the data 
sets used usually in the fields. The data sets contain three 
folds: original, open source, and public domain. First, as 
for original data sets are usually used in empirical studies 
in industries. Especially, Ref. [11] used principal 
component analysis on the code metrics and built 
regression models to predict the likelihood of post-release 
defect fro five Microsoft software systems which are 
Internet Explorer 6, IIS W3 Server core, Process 
Messaging Component, DirectX and NetMeeting. Next, 
as for the open source software data, studies such as 
Ref.[12] collected and used for the evaluation of their 
software defect prediction approaches. Finally, the public 
domain data set, two of the most famous public domain 
data set is the NASA and Promise’s Metrics Data 
Program (MDP) [13-14]. For example, studies such as 
[10, 15] used the NASA’s MDP. By using such public 
domain data sets, a new approach can be easily 
comparable with other approaches. 
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B. Non-negative matrix factorization 
 Nonnegative Matrix Factorization (NMF) [16] is a 

recently developed technique for nonlinearly finding 
purely additive, parts-based, linear, and low-dimension 
representations of nonnegative multivariate data to 
consequently reveal the latent structure, feature or pattern 
in the data. Given a non-negative data matrix V, NMF 
finds an approximate factorization V into non-negative 
factors W and H. The non-negativity constraints make the 
representation purely additive (allowing no subtractions), 
in contrast to many other linear representations such as 
principal component analysis [17] (PCA) and 
independent component analysis (ICA). 

Also many extended NMF algorithms have been 
proposed. Local Non-negative Matrix Factorization 
(LNMF) has been developed by Li et al. in order to 
increase the basis images sparseness [18]. Both NMF and 
LNMF consider the database as a whole and treat each 
image in the same way. There is no class information 
integrated into the cost function. An extension of LNMF 
algorithm called Discriminant Non-negative Matrix 
Factorization (DNMF) which takes into account class 
information has been proposed in Ref. [19]. 

In this paper, we extend the application of NMF to 
software defect prediction by making use of NMF 
algorithms advantage. NMF coupled with a classifier is 
applied for software defect data recognition. 

II.  NON-NEGATIVE MATRIX FACTORIZATION ALGORITHMS 

The Non-negative Matrix Factorization problem can be 
stated as follows [16]: 

Given a non-negative matrix V �Rm×n, non-negative 
matrices W �Rm×r and H �Rr×n, respectively, we aim at 
such factorization that V ≈ WH.  

11 1 11 1 11 1

1 1 1

n r n

m mn m mr r rn

V V W W H a

V V W W H a

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟≈⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

… … …
# % # # % # # % #

" " "
The value of r is selected according to the rule 
r<nm/(n+m) in order to obtain dimensionality reduction. 
Each column of W is a basis vector while each column of 
H is a reduced representation of the corresponding 
column of V. In other words, W can be seen as a basis 
that is optimized for linear approximation of the data in 
V. 

During decomposition, the cost function is either 
2

1( , ) || ||FC V WH V WH= −  (where ||·||F is the Frobenius norm) 
or the generalized Kullback-Leibler (K-L) divergence  

2 ,
( , ) ( log /( ) ( ) )ij ij i j ij iji j

C V WH V V WH V WH= − +∑ When cost 
function C1 is chosen, the formulae for updating of H and 
W are: 
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Where if cost function C2 is used, the updating 
formulae for H and W are: 
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The matrices W and H are initialized with positive 
random values. NMF provides the above simple learning 
rule guaranteeing monotonic convergence to a maximum 
without the need for setting any adjustable parameters. 

III.  CLASSIFICATION EXPERIMENTS BASED ON NMF 

A. Description of the Datasets   
As in any machine learning problem, software defect 

prediction models require a set of features (i.e. 
independent variables) to characterize the problem and to 
give estimation on the defect proneness of the system (i.e. 
dependent variable). In software quality, these attributes 
are referred to as software metrics. Metrics are the 
attributes that represent software; they are the raw data 
for software domain. An effective management of any 
software development process requires monitoring and 
analysis of software metrics. 

Considering the software defect prediction problem, 
defect predictors have been successfully learned from 
product and process metrics. While product metrics are 
derived from the software product itself, process metrics 
are derived from the processes that yield the product. 
Although we only use product metrics in this dissertation, 
we will provide brief information about process metrics 
for the sake of completeness. 

The software metrics and dataset used in this study are 
five mission critical NASA software projects [13], which 
are all high assurance and complex real-time system. 
NASA makes extensive use of contractors from many 
other industries including government and commercial 
organizations. It is practical to leverage the useful 
information in order to predict the quality of an ongoing 
similar project.  

TABLE I.  CHARACTERISTIC OF DATASETS 

Data Lang. #Mod. Feature Description 

KC3 JAVA 458 40 processing and delivery 
of satellite metadata 

CM1 C 498 22 NASA spacecraft 
instrument 

MC2 C++ 161 40 Video guidance system 

PC3 C 1563 38 Flight software for earth 
orbiting satellite 

PC4 C 1458 38 Flight software for earth 
orbiting satellite 

 
Table I summarizes the characteristic of 5 datasets 

used in this study. And Table II presents the part of 
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metrics used in the 5 datasets considering the length of 
paper. 

TABLE II.   METRICS IN THE DATASETS 

Metrics Type 
V(g) McCabe 

EV(g) McCabe 
IV(g) McCabe 
LOC McCabe 

UniqOp Basic Halstead 
UniqOpnd Basic Halstead 
TotalOp Basic Halstead 

TotalOpnd Basic Halstead 
UniqOp Basic Halstead 

N Derived Halstead  
V Derived Halstead 
L Derived Halstead 
D Derived Halstead 
I Derived Halstead 
E Derived Halstead 
B Derived Halstead 
T Derived Halstead 

LOCcode Line Count 
LOCComment Line Count 

LOCBlank Line Count 
LOCCodeAndComment Line Count 

LOCcode Line Count 
LOCComment Line Count 

LOCBlank Line Count 
…… …… 

B. Prediction Performance Measures 
Evaluation measures [20] play a crucial role in both 

assessing the classification performance and guiding the 
classifier modeling. 

After a classification process, data samples can be 
categorized into four groups as denoted in the confusion 
matrix presented in Table III.  

TABLE III.  CONFUSION MATRIX 

 Predicted 
Defective No Defective 

Actually 
Defective True Positive 

（TP） 
False Negative 
（FN） 

No Defective False Positive 
（FP） 

True Negative 
（TN） 

And several measures can be derived from the 
confusion matrix: 

True Positive Rate: ( )
TPTPR TP FN= +  

True Negative Rate: ( )
TNTNR TN FP= +  

False Positive Rate: ( )
FPFPR TN FP= +  

False Negative Rate: ( )
FNFNR TP FN= +  

Positive Predictive Value: ( )
TPPPV TP FP= +  

Negative Predictive Value: ( )
TNNPV TN FN= +  

Clearly neither of these measures is adequate by 
themselves. So some different evaluation criteria are 
devised and they are presented in Table IV. 

 
 

TABLE IV.   SEVERAL MEASURES 

100%
TP TN

Accuracy
TP TN FP FN

+
= ×

+ + +
 

TPRecall 100%
TP FN

= ×
+

 

TPPrecision 100%
TP FP

= ×
+

 

2 Recall PrecisionF Measure 100%
Recall Precison
× ×

− = ×
+

 

TPpd Recall 100%
TP FN

= = ×
+

 

FPpf 100%
FP TN

= ×
+

 

Traditionally, accuracy is the most commonly used 
measure for these purposes. For classification with the 
class imbalance problem, accuracy is no longer a proper 
measure since the rare class has very little impact on 
accuracy as compared to the prevalent class [18]. F-
Measure represents a harmonic mean between recall and 
precision, a high F-Measure value ensures that both recall 
and precision are reasonable high. According to the 
results of above, we choose the F-Measure with 
confusion matrix as our performance measure on the test 
data. 

C. Unsupervised NMF classification for software defect 
data  

Unsupervised NMF classification is a technique in 
which the algorithm uses only the predictor attribute 
values. There are no target attribute values and the 
learning task is to gain some understanding of relevant 
structure patterns in the data. Each row in a data set 
represents a point in n-dimensional space and NMF 
classification algorithms investigate the relationship 
between these various points in n-dimensional space. 

In NMF classification, using data from the training set, 
the data matrix V is created (each column vj contains a 
feature vector computed from software defect data sets). 
The training procedure is performed by applying an NMF 
algorithm to the data matrix yielding the basis matrix W 
and the encoding matrix H. 

In the test phase, for each test data recording, 
represented by a feature vector vtest, a new test encoding 
vector is obtained by:  

test + testH =W   V∗                                                          (6) 
where W+ is defined as the Moore-Penrose generalized 
inverse matrix of W. Having formed during training N 
classes of encoding vectors hl, l = 1, 2, . . . , N (by 
applying an NMF algorithm on V, yields matrices W and 
H as in (1), a nearest neighbor classifier is employed to 
classify the new test sample by using the cosine similarity 
measure (CSM). The class label l' of the test data is: 

l=1,2,...,N

*l' = arg max || || * || ||

T
test l

test l

h h
h h

⎧ ⎫
⎨ ⎬
⎩ ⎭

                                    (7) 

thus maximizing the cosine of the angle between htest and 
hl.  

Fig. 1 presents the flow of classification method based 
on NMF algorithm. 
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Figure 1.  Classification method based on NMF 

Step1: Split software defect data set V into V1 and V2, 
respectively, as training sets and testing sets. 

Step2: Initialization of Matrices W1 and H1 during 
training sets. Set parameter r=min (nm / (n+m)) and 
choose C1 cost function. 

Step3: Perform NMF for training sets decomposition: 
V1=W1*H1. 

Step4: Take W2=W1; 
Step5: Calculate W1

+ as the Moore-Penrose 
generalized inverse matrix of W1, H2=W1

+ * V2. 
Step6: Classifier Design: a nearest neighbor classifier 

is employed to classify the new test sample by using the 
cosine similarity measure (CSM). 

Step7: Evaluation of Classifier. 
 

IV.  COMPARISONS AND ANALYSIS OF EXPERIMENTAL 
RESULTS 

In this section, we investigate the results of employing 
the Non-Negative Matrix Factorization algorithm (NMF) 
for feature extraction and classification. Our experimental 
environment was Pentium (R) 3.2G CPU, 1G DDR 
memory, Windows XP operating system and so on. 
Classifier based NMF algorithm was development and 
implemented using MatLab 7.0a.  

In this experiment, we split the data set into training 
data sets and testing data sets, respectively, 80% and 
20%, firstly. In order to avoid bias, we run the experiment 
100 times and calculated its average. 
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Figure 2.  Different rank of NMF for classification  
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Figure 3.  Different rank of NMF for classification  

Fig. 2 and Fig. 3 present the results of iterative 200 
times and 500 times. Meantime, we recorded the time that 
was taken by them. From Fig. 2, it is observed that when 
the r sets smaller, its performance of classification is 
better during four software defect data sets. The result of 
Fig. 3 is in the same with the results of Fig. 2. 

In order to investigate the efficiencies of NMF 
classification, we recorded the cost time of it. From Table 
V and Table VI, we can find that the algorithms of NMF 
classification are effective as it takes time less than 0.3 
second almost for all software defect data sets.  

TABLE V.  COST TIME ITERATIVE 200 TIMES(S) 

Rank CM1 MC2 KC3 PC3 PC4 
5 0.2599 0.2498 0.2517 0.2506 0.2539 
8 0.2545 0.2478 0.2547 0.2494 0.2559 
10 0.2528 0.2548 0.2623 0.2542 0.2608 

TABLE VI.  COST TIME ITERATIVE 500 TIMES(S) 

Rank CM1 MC2 KC3 PC3 PC4 
5 0.2534 0.2498 0.2522 0.2526 0.2571 
8 0.2533 0.2478 0.2553 0.2494 0.2570 
10 0.2530 0.2548 0.2509 0.2539 0.2616 

And in order to compare its applicability in software 
defect prediction, we also chose three classifiers trained 
on five software datasets and compared with NMF 
classification. Ten-fold cross validation method is used to 
validate their performance. The classifiers are Naïve 
Bayes, RIPPER and C4.5. 

Naïve Bayes (NB) classifiers use statistical 
combinations of features to predict for class value. Such 
classifiers are called ‘naive’ since they assume all the 
features are statistically independent. Nevertheless, a 
repeated empirical result is that, on average, seemingly 
Naïve Bayes classifiers perform as well as other 
seemingly more sophisticated schemes. 

Rule learners like RIPPER (RR) generate lists of rules. 
When classifying a new code module, we take feature 
extracted from that module and iterate over the rule list. 
The output classification is the first rule in the list whose 
condition is satisfied. To noisy dataset, RIPPER is more 
search-efficient. 

Decision tree learners like C4.5 build one single-parent 
tree whose internal nodes test for feature values and 
whose leaves refer to class ranges. The algorithm is 
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known to be one of the most robust induction learning 
algorithms available [21]. 

In Fig. 4, 5nmf, 8nmf and 10nmf means NMF with its 
rank equals 5, 8 and 10, separately. From this Figure, we 
can find that NMF outperforms the three classifiers, 
especially for MC2 dataset. To PC4 dataset, all above 
classifiers receive similar F-Measure, but we find that 
C4.5, NB and RIPPER take much more time than 
classification based NMF algorithm during experiments. 
From Fig. 4, it is obvious that to different software defect 
data, the performance of NMF classification is better 
almost, and difference among software data sets is trivial. 
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Figure 4.  Comparison between NMF and 3 different classifiers  

V.  CONCLUSIONS  

Non-negative matrix factorization (NMF) is a recent 
method for matrix decomposition. Although NMF has 
been successfully applied to several research fields, it is 
at the beginning of software defect classification using 
NMF algorithm. In this paper, we introduce an algorithm 
named NMF to extract external features and propose a 
new method of classifying software defect data. 
Classification using NMF algorithms provides simple 
learning rule guaranteeing monotonic convergence to a 
local maximum without the need for setting any 
adjustable parameters. Also it is easily interpreted by the 
programmers and testers. The results indicate that the 
standard NMF algorithms can perform classification with 
high F-Measure even compared with the state of art 
classifiers. In the future, extended NMF can be applied to 
the problem of software defect prediction. And a 
supervised NMF classification scheme could be 
developed, considering information of software defects. 
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