
Research on Deep Web Query Interface

Clustering Based on Hadoop

Baohua Qiang
1
, Rui Zhang

2
, Yufeng Wang

3
, Qian He

1
, Wei Li

1
 and Sai Wang

1

1
Guangxi Key Lab of Trusted Software, Guilin University of Electronic Technology, Guilin 541000, China

2
North China University of Water Resources and Electric Power, Zhengzhou 450045, China

3
The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050000, China

Email: qiangbh@guet.edu.cn Email: zhangrui@ncwu.edu.cn

Abstract—How to cluster different query interfaces

effectively is one of the most core issues when generating

integrated query interface on Deep Web integration domain.

However, with the rapid development of Internet technology,

the number of Deep Web query interface shows an explosive

growth trend. For this reason, the traditional stand-alone

Deep Web query interface clustering approaches encounter

bottlenecks in terms of time complexity and space

complexity. After further study of the Hadoop distributed

platforms and Map Reduce programming model, a Deep

Web query interface clustering algorithm based on Hadoop

platform is designed and implemented, in which the Vector

Space Model (VSM) and Latent Semantic Analysis (LSA)

are employed to represent “Query Interfaces-Attributes”

relationships. The experimental results show that the

proposed algorithm has better scalability and speedup ratio

by using Hadoop architecture.

Index Terms—Hadoop, Map Reduce, Deep Web, LSA,

Query Interface Clustering

I. INTRODUCTION

According to the depth of the information, the Web

can be divided into “Surface Web” and “Deep Web”.

With the rapid development of Internet technology, the

information contained on the Web, especially on the

Deep Web, is showing an explosive growth trend. As

Bright Planet speculated in year 2000 that the entire

Internet contains 40 to 90 thousands of Deep Web pages,

the information capacity of which is about 7500T [1].

MetaQuery had made more accurate statistics about the

whole internet Deep Web pages in the year 2004; the

results show that there were some 450 thousands of Deep

Web databases [2]. It turns out that the amount of the

pages had increased by nearly 9 times after only 4 years.

Compared to that contained on the “Surface Web”, the

information on the “Deep Web” has 5 characteristics

below: (1) it could not be obtained by traditional search

engines; (2) users acquire the information by filling out a

form; (3) the information has a higher quality and a larger

quantity; (4) the domain characteristics is more obvious

and ; (5) most of the information has a free access. The

explosive growth of information contained on Deep Web

as well as the great value strongly attracts the attention of

academia and business community.

As the Deep Web information portal, how the Deep

Web query interface can be clustered effectively is one of

the core issues need to be addressed while generating the

integrated query interface [3]. At present, researches on

Deep Web mainly focus on query interface integration

algorithm based on single machine [4-7]. The proposed

algorithms can effectively match the related query

interfaces among a few Deep Web sites. But facing with

the huge amounts of emerging Deep Web databases, the

present approaches encounter great challenges in terms of

time complexity and space complexity. So it is absolutely

necessary and meaningful to study how to use distributed

platforms to analyse the massive information on the Deep

Web.

In view of the massive characteristic of Deep Web

query interfaces, an effective approach is to introduce the

parallel processing technology and design a rational and

efficient parallel clustering algorithm [8]. Hadoop as a

software framework which is able to make a distributed

processing on massive data has been widely used. It has

high reliability, scalability, efficiency and high fault

tolerance [9]. On the basis of further study of the Hadoop

platform, we designs and implements Deep Web query

interface clustering algorithm on Hadoop platform, and

before clustering, we employ constructed domain

ontology and latent semantic analysis to make semantic

expansions. Thus, the effectiveness of the query

interfaces clustering is further improved. Besides, we

have verified the correctness and effectiveness of the

parallel algorithm design from the recall ratio and

precision ratio in contrast to the results on single machine

experiment. The results also show that the proposed

parallel algorithm has good scalability and speedup ratio.

The main body of this paper is organized as follows.

Firstly, we introduce the Hadoop architecture for Deep

Web query interface clustering in Section II. And Section

III describes the approach of parallelizable clustering

algorithm based on VSM and LSA. Then the detailed

Deep Web query interface clustering algorithm based on

Hadoop is presented in section IV. The experiments and

conclusion are given in Section V and Section VI,

respectively.

JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014 3057

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.12.3057-3062

mailto:qiangbh@guet.edu.cn

II. HADOOP PLATFORM ARCHITECTURE FOR DEEP WEB

QUERY INTERFACE CLUSTERING

Taking Hadoop Distributed File System (HDFS) and

MapReduce as the core, Hadoop provide users with

distributed infrastructure which is transparent in system

bottom layer [10]. With high fault tolerance, high

scalability of HDFS, users can deploy Hadoop on cheap

hardware to form a distributed system. MapReduce

allows users to develop parallel applications without

knowing the details of the distributed system bottom

layer. Thus, users can easily build their own distributed

platforms and finish the processing of massive data using

the computing and storage capability of the cluster.

HDFS uses Master/Slave structured distributed file

system and an HDFS cluster consists of a NameNode and

several DataNodes. NameNode as the primary server,

manages the file system namespace and client access to

file operations; DataNode manages the stored data. HDFS

allows users to store the data in the form of documents.

Internally, the file is divided into several data blocks and

they are stored in a group of DataNodes. NameNode

performs file system namespace operations, such as open,

close, rename a file or a directory, it is also responsible

for the mapping from data blocks to specific DataNode.

The task of DataNode is processing the read and write

requests of the system clients and handling create, delete,

and copy to data blocks under the unified coordination of

NameNode. Fig. 1 shows the architecture of HDFS.

Figure 1. HDFS architecture

MapReduce is a parallel programming model that

enables software developers to write distributed parallel

programs easily. In the Hadoop architecture, MapReduce

is a software framework that is easy to use, the principle

of which is: use an input <key, value> collection to

produce an output of <key, value> collection;

Specifically, MapReduce framework consists of two

stages: Map and Reduce. In Map stage, MapReduce

divides the input data of the task into fixed-size split,

each split is then further broken into a number of key

values<key1, value1>. After that, Hadoop creates a Map

task for each split to execute user-defined Map functions,

takes the corresponding split in <key1, value1> as input,

and then calculates and generates an intermediate <key2,

value2> collection. MapReduce collects all the value

collections that have the same key, forms <key2,

list(value2)>, and then divides the meta group into

several groups according to the range of the key,

corresponding to different Reduce tasks. In the Reduce

stage, Reducer integrates the received data from different

Mappers together and sorts them according to the key

value, then calls the user-defined reduce function and

processes the input <key2, list(value2)> to obtain the key

value <key3,value3> and then output to HDFS. Fig. 2

shows the process of MapReduce data processing.

Figure 2. The process of MapReduce data processing

To sum up, the distributed storage used by Hadoop

platform can improve the read and write speed and

expand the storage capacity; using MapReduce

programming model to integrate data on HDFS will

ensure the efficiency of data analysis and processing. In

view of the rapid growth of the information contained on

the Deep Web, if we want to store and manage these

useful data and information efficiently and then make

further analysis, Hadoop platform is undoubtedly an

excellent choice.

III. DETERMINE THE LATENT SEMANTIC RELATIONSHIPS

BASED ON VSM AND LSA

A. The Vector Space Model of Deep Web Query

Interface

The first step in clustering Deep Web query interface is

to convert the Deep Web query interface set to Vector

Space Model (VSM) [11]. Assume that we get N Deep

Web query interface expressed as and

consider it as the column index of VSM model, with

 representing all attributes obtained

from F and consider it as the row index. So that we get a

“Query Interfaces-Attributes” matrix C:

 (1)

Each row of this matrix represents a single attribute

and each column stands for a single query interface, the

element indicates the number of attributes occurred in

query interface. TF-IDF weight will be selected to

evaluate the importance of attributes, its basic thought is:

if an attribute in a query interface appears a lot, it will

also appears much in another similar query interface, and

vice versa. Weight is calculated as follows:

 (2)

Where represents the numbers of times attribute

 occurs in query interface ; N stands for the total

number of query interfaces; signifies the total

number of attribute appears in the N query interfaces.

While calculating the distance between cluster objects,

the general way is to use Euclidean distance, but

considering the existing difference about the number of

query interface in different areas, we choose the Cosine

Similarity, and it is calculated as follows:

3058 JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014

© 2014 ACADEMY PUBLISHER

|)(||)(|

)()(
),(

21

21
21

iViV

iViV
iisim

 (3)

At this point, the vector space model of Deep Web

query interface is set up.

B. Determine the Latent Semantic Relationships by LSA

VSM can be used to compute the similarities of Deep

Web query interfaces by evaluating keywords matching

literally. But it is difficult to determine their latent

semantic relationships. Latent semantic analysis (LSA) is

an effective indexing and searching approach [12], which

can be employed to discern the latent semantic

similarities among Deep Web query interfaces through

constructing latent semantic space model.

The core issue of LSA is how to project

high-dimensional “Query Interfaces-Attributes” matrix to

lower dimensional latent semantic space by low rank

approximation effectively [3]. Singular value

decomposition (SVD) is the mathematical basis of LSA.

Let C be the nm “Query Interfaces-Attributes”

matrix, it can be represented as formula 2.1 by SVD:

TVUC
 (4)

U and V stand for orthogonal matrix of nm , and

their columns are orthogonal feature vector of
TCC ,

respectively. is nm matrix, needs to be

explained specially:

(1) The eigenvalues of nm

T

nm CC are r 21, ;

(2)],1[ri , there exists ii
and 1 ii

,

nm
meets iii

, and other elements of matrix is 0.

ii
is also called singular value of nmC .

In LSA, noise data can be removed by low rank

approximation [4]. Low rank approximation is defined as

follows. Suppose C is a matrix of nm , its rank is r ,

and kC
 is a matrix of nm with rank K and kr .

Let KCCX , if X ’s norm F as formula 5 is the

smallest one, we call kC is the low rank approximation

matrix of C when k is much smaller than r .

M

i

N

j

ijF XX
1 1

2||||

(5)

SVD is an effective means to solve the problem of low

rank approximation. We can firstly obtain k by

reserving the k biggest singular values and setting

other kr singular values as 0 of nm
, then

calculate
T

kk VUC according to formula 4, finally

we can obtain the approximation kC
 of C . Theorem is

shown as follow:

r

ki
iFkF

kZrankZ
CCZC

1

2

)(|
||||||||min

(6)

It can be demonstrated that the above process will

produce a matrix kC with rank k , and its norm has the

minimum error. By VSM and LSA, the latent semantic

similarities among Deep Web query interfaces can be

obtained effectively.

IV. DEEP WEB QUERY INTERFACE CLUSTERING

ALGORITHM BASED ON HADOOP

A. Parallelizable Clustering Algorithms

K-Means and K-medoids clustering are the most

commonly used partition-based algorithms in clustering

domain [13]. The latter is more “robust” than the former

when there were noise and outliers. Unlike mean value,

the K-medoids clustering is not sensitive to outliers or

other extreme values. However, it is not suitable for

distributed scenarios. In contrast, the similarity

calculation between each node and the center point in

K-Means algorithm is independent, and the center point

calculation is done in one cluster. In terms of the code

implementation, a new center point calculation could be

finished in one reduce function; therefore it is very

suitable for parallelization transformation. Sequential

execution procedure of the K-Means algorithm is given

below firstly, and its parallel design will be given in

subsequently.

Input：

k：the number of the Clustering；

S：Deep Web Query Interfaces Set

Output：

K clusters

Steps：

(1) Represent “Query Interfaces-Attributes”

matrix with VSM and find the latent

semantic relationships by LSA;

(2) Randomly select k query interfaces from S

as the initial center point;

(3) Repeat

(4) Classify each query interface into the

most similar cluster of center point;

(5) Calculate the mean value of each

cluster as the new center point;

(6) Until no change occurs

B. Map Function Design

TextInputFormat is the default input method of

Hadoop, each split is separately a map input, each row of

data will generate a record and each record is represented

as a form of <key, value> which can be accepted by map

function, and key represents record byte offset in current

split, the type of which is LongWritable, value stands for

the content of each row, the type of which is Text. As in

this experiment, value is represented by the column string

of the vector space model matrix of the query interface.

The setup function is executed prior to map in Mapper,

and it is executed only once in the Mapper life cycle.

Therefore, we can do some initialization operation in the

function. The role of setup function in this algorithm is

initializing the center point of each cluster, and then

storing it into centerList. The pseudo-code of map

function is given below:

JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014 3059

© 2014 ACADEMY PUBLISHER

http://scholar.google.com.hk/scholar_url?hl=zh-CN&q=http://eliezer-msc-literature-review.googlecode.com/svn/trunk/clustering/%255B2009%255D%255Bjun,park%255D%2520a%2520simple%2520and%2520fast%2520kmedoid.pdf&sa=X&scisig=AAGBfm0gFWyjw9c7pjMFcCaNUaGNI70Alg&oi=scholarr&ei=6MW_UozgBqe6iAeFv4GIDw&ved=0CCkQgAMoATAA
http://scholar.google.com.hk/scholar_url?hl=zh-CN&q=http://eliezer-msc-literature-review.googlecode.com/svn/trunk/clustering/%255B2009%255D%255Bjun,park%255D%2520a%2520simple%2520and%2520fast%2520kmedoid.pdf&sa=X&scisig=AAGBfm0gFWyjw9c7pjMFcCaNUaGNI70Alg&oi=scholarr&ei=6MW_UozgBqe6iAeFv4GIDw&ved=0CCkQgAMoATAA

map(LongWritable key, Text value){
/* Parse the value to node object */

Node node = parse(value);
/* Calculate the center point that each node belongs to */

node.setCenter(centerList);

/* Take the serial number of cluster that nodes belong to as

key, the string representation of current node as value */

context.write(new IntWritable(node.center.id),

new Text(node.toString()));

}

C. Combine Function Design

Combine process is a part of Mapper and executed

after map function. Normally, it can effectively reduce

the number of intermediate results; thereby reduce

network traffic during data transmission. If designed

properly, this process can significantly enhance the

execution efficiency of the program. The pseudo-code of

the Combine is as follows:
combine(IntWritable key, Iterator<Text> values){

/*Parse “values” to Node, record the number of node in

values set, then use “count” to save the node number

belonging to cluster key in current split */

int count = 0;

float[] vector;

while(values.hasNext()){

Node node = parse(value.next());
/*Accumulate the component of each node and prepare for

the new center point that reduce function will calculate */

vector = plus(vector, node.vector);

count++;

}
/*Splice “vector” and “count” into string value1 */

Text value1 = toString(count) + “#” +

toString(vector);
/* Output “key” and “value” */

context.write(new IntWritable(key),

new Text (value1));

}

D. Reduce Function Design

The parameter that reduce function receives is

<IntWritable key, Iterator<Text> values >, in which key

is the serial cluster number, values are the string

representation of all the node component values in cluster.

Reduce function is similar to combine function and

pseudo-code is as follows:

reduce(IntWritable key, Iterator<Text> values){
/* Parse values to Node and use count to record the

number of node in values set, define newCount to store the

node number of each cluster. Use vector to store the

component of center point */

int count = 0;

int newCount = parseInt(value);

float[] vector;

while(values.hasNext()){

 Node node = parse(value.next());

 vector = plus(vector, node.vector);

 count++;

}
/* Update newCount */

newCount += count;
/* Update the component of center point */

vector /= newCount;
 /* value1 is the string representation of vector */

 Text value1 = toString(count) + “#” +

toString(vector);
 /* Output key and value1 */

context.write(new IntWritable(key),

 new Text (value1));

}

After a round of , we get newCenters, then compute

the next round until convergence.

V. EXPERIMENTS

A. Selection of the Experiment Data

The data in this experiment comes from the Web

integration resource library of UIUC which contains the

query interface in many fields and store in the form of

XML [14]. 221 query interfaces in 4 domains i.e. airfares,

automobiles, books and musicRecords are selected in the

experiment. In order to simulate the situation of big data,

we have made a proportional copy of the original data to

expand the size. The experiment data is shown in Table I:
TABLE I

EXPERIMENT DATA

Data

Groups

Data Size Number of Query

Interfaces

Copy

Multiples

A 1G 210613 953

B 2G 421005 1095

C 3G 631397 2857

D 4G 841789 3809

E 5G 1052181 4761

B. Experiment Data Preprocessing

The irregular definition of query interface attributes

has brought too much noise, because of that, some part of

query interfaces are lack of enough semantic information.

In the light of the characteristics of this experiment, four

steps are needed to process the data:

(1) Remove the stop words, but retain the words that

have domain meanings, for example in the airfares

domain “to”, “from” etc.

(2) Stemming reduction and morphology normalization.

Revert the different state of attribute words, singular and

plural forms to the stemming of the word.

(3) Semantic expansion of query interfaces. Build

domain ontology for each of these domains. Take the

aviation domain for example, we can build ontology. Fig.

3 shows the hierarchy diagram of aviation domain

ontology:

3060 JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 3. Aviation domain ontology

If an attribute of query interface appears in the

ontology, the related attributes of the entire path will be

added to the attribute set of the query interface and make

semantic expansion.

(4) The latent semantic analysis to query interface is

employed to find the latent semantic relations among

Deep Web query interfaces and improve the similarity of

query interface belonging to the same domain.

C. Experiment Environment

The experiment environment is composed of 4 HP

desktops of the same model, configured as follows:
TABLE II

EXPERIMENT ENVIRONMENT CONFIGURATION

CPU Intel Pentium 2.80HZ dual-core

RAM 4GB

OS Ubuntu12.4

Hadoop Version 0.20.2

D. The Recall and Precision

The results of Deep Web query interface are unordered

collections, so we choose precision ratio P and recall ratio

R as criteria to evaluate our proposed algorithm. The

formula of R and P is given below:

Where tp (true cases) represents the correct assignment

to the corresponding cluster cases; fp (pseudo-positive

cases) indicates the wrong assignment cases; fn

(pseudo-negative cases) represents the cases that is

assigned to the cluster but is not retrieved. The specific

values of precision P and recall ratio R is shown in Fig. 4:

Figure 4. Comparison of Precision and Recall

Since this experiment expands the size of the data by

replicating the raw data, 5 groups of Deep Web query

interface data: A、B、C、D、E are respectively tested ,

each group of data has been run respectively on the

cluster of 2、3、4 machines. Fixed initial centers, recall

ratio and precision ratio remains unchanged. We also get

the same P and R value in the case of single machine.

Besides, the experiment results that the value of P and R

are greater than 90% are also very encouraging. So we

can say that the map/reduce distributed algorithm of Deep

Web query interface clustering is reliable and significant

in the era of big data.

E. Cluster Scalability

Run the data of A, B, C, D, E group on the cluster

formed by different number of nodes and compare the

run-time. The results are shown in Fig. 5:

Figure 5. Run-time of different nodes

From the Figure above we can see that when process

the same number of query interface, if the number of

nodes in the cluster increases, time consuming

significantly reduces; the larger the data size, the faster

the run-time speed decreases. Therefore, while dealing

with the large-scale data, we can improve the process

capability of the system by increasing the number of

nodes, which reflects the good scalability of the system.

F. Cluster Speedup Ratio

Speedup ratio [15] is the time-consuming ratio of the

same task running on a single-processor system and

parallel processor system. It is used to measure the

performance and effects in parallel system or program

parallelization. Speedup ratio is calculated as follows:

Where Sp represents Speedup ratio, denotes the

running time in a single processor, denotes the running

time in a p-processors parallel system. The experiment

results are shown in Fig. 6:

Figure 6. Speedup Ratio

As can be seen from Fig. 6, the speedup ratio of the

algorithm is close to linear speedup ratio, with the

increment of the data scale, the speedup ratio of the

distributed system tend to stabilize. This fully

demonstrates the advantages of handling with big data on

Hadoop platform. In the view of algorithm design, we

introduce the combine function between map and reduce

JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014 3061

© 2014 ACADEMY PUBLISHER

which can effectively merge locally, reduce the network

data transmission between different nodes in cluster, and

greatly reduce the unnecessary time consuming. What’s

more, due to the reasonable design of data structure, the

extra system time consuming is also reduced

correspondingly.

VI. CONCLUSIONS

In light of the bottleneck that Deep Web query

interface clustering meets in handling with massive data

on traditional single machine, we designed and

implemented the Deep Web query interfaces clustering

algorithm based on Hadoop. By experiment on different

scale of data sets and different nodes of cluster, the

results show that our proposed algorithm has excellent

scalability and speedup ratio. However, there is still room

for improvement in the implementation details of the

algorithm and the platform configurations, for example:

how to compress the data to reduce the pressure of

network bandwidth; how to set a more reasonable number

of reducer, etc. Therefore, the next step we will focus on

the Hadoop platform and algorithm design, and further

tap the potential of cluster computing.

ACKNOWLEDGEMENT

This work is supported by National Natural Science

Foundation of China (grant 61163057, 61201250,

61363029, 61462020), Guangxi Nature Science

Foundation (grant 2012jjAAG0063), Open Fund of

Guangxi Key Laboratory of Trusted Software (kx201308).

The authors would also like to express their gratitude to

the anonymous reviewers for providing helpful

suggestions.

REFERENCES

[1] Bergman M K. The Deep Web: Surfacing Hidden Value.

Bright Planet white paper in Journal of Electronic

Publishing. 2001, 7(1):8921-8914

[2] Bin He, Mitesh Patel, Zhen Zhang, Kevin Chen-chuan

Chang. Accessing the Deep Web. Communications of the

ACM. 2007, 50(5):94-101

[3] Li Yanni, Wang Yuping, Jiang Peng. Multi-objective

Optimization Integration of Query Interfaces for the Deep

Web Based on Attribute Constraints. Data and Knowledge

Engineering, 2013, 86(1):38-60

[4] Furche Tim, Gottlob Georg, Grasso Giovanni. The

Ontological Key: Automatically Understanding and

Integrating Forms to Access the Deep Web. VLDB Journal,

2013, 22(5):615-640

[5] Wei Liu, Xiaofeng Meng, and Weiyi Meng. ViDE: A

Vision-Based Approach for Deep Web Data Extraction.

IEEE Transactions on Knowledge and Data Engineering.

2010, 22(3):447-460

[6] Balakrishnan Raju, Kambhampati Subbarao, Jha

Manishkumar. Assessing Relevance and Trust of the Deep

Web Sources and Results Based on Inter-Source

Agreement. ACM Transaction on the Web, 2013, 7(2):1-32

[7] Furche Tim, Gottlob Georg, Grasso Giovanni. OXPATH:

A Language for Scalable Data Extraction, Automation, and

Crawling on the Deep Web. VLDB Journal, 2013,

22(1):47-72

[8] Tien James M. Big Data: Unleashing Information. Journal

of Systems Science and Systems Engineering, 2013, 22(2):

127-151

[9] Gattiker A, Gebara F. H., Hofstee H. P. Big Data

Text-oriented Benchmark Creation for Hadoop. IBM

Journal of Research and Development, 2013, 57(3), 3-4

[10] Tom White. Hadoop: The Definitive Guide. O'Reilly

Media, ISBN: 978-1-4493-1152-0, 2012

[11] G. Salton, A. Wong, C. S. Yang. A Vector Space Model

for Automatic Indexing, Communications of the ACM,

1975, 18(11), 613–620.

[12] Olney, Andrew.M. Generalizing Latent Semantic Analysis.

IEEE International Conference on Semantic Computing.

2009, p40-46

[13] Velmurugan T., Santhanam, T. Computational Complexity

between K-Means and K-Medoids Clustering Algorithms

for Normal and Uniform Distributions of Data Points.

Journal of Computer Sciences, 2010, 6(3):363-368.

[14] http://metaquerier.cs.uiuc.edu/repository/datasets/tel-8/.

[15] Mostovyi Oleksii, Prokopyev Oleg A., Shylo Oleg V. On

Maximum Speedup Ratio of Restart Algorithm Portfolios.

Informs Journal on Computing, 2013, 25(2), 222-229.

Baohua Qiang was born in 1972. He

received the B.E. degree and M.A.

degree from Southwest University in

1996 and 2002 respectively and the

Ph.D. degree from ChongQing

University in 2005. He went to

University of Illinois as a visiting

scholar from May to August in 2007. He

had finished his postdoctoral research at

South China University of Technology from 2007 to 2009. Now

he works at Guilin University of Electronic Technology. His

major research interests are Web information processing,

intelligent search, massive data processing and network

information integration.

Rui Zhang was born in 1980. She

received her Master degree at

information institute in Southwest

University at 2006 and now is studying

for her doctorate. Her research interests

are Software Engineering, Data Mining

and Big Data.

3062 JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014

© 2014 ACADEMY PUBLISHER

http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=1AP9jg1goPmrRHmaMTa&page=1&doc=1
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=1AP9jg1goPmrRHmaMTa&page=1&doc=1
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=1AP9jg1goPmrRHmaMTa&page=1&doc=1
http://www.bibsonomy.org/bibtex/f96896aa122e9c60f74b51af84366d24
http://www.bibsonomy.org/bibtex/f96896aa122e9c60f74b51af84366d24
http://metaquerier.cs.uiuc.edu/repository/datasets/tel-8/

