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Abstract—In this paper, we propose a new sparse 
decomposition based single-channel speech separation 
method using orthogonal matching pursuit (OMP). The 
separation is performed using source-individual dictionaries 
consisting of time-domain training frames as atoms. OMP is 
used to compute sparse coefficients to estimate sources. We 
report the separation results of our proposed method and 
compare them with a separation method based on sparse 
non-negative matrix factorization (SNMF) which is a 
classical sparse decomposition based separation method. 
Experiments show that our proposed method results in 
higher signal-to-noise ratio (SNR) and signal-to-interference 
ratio (SIR). 
 
Index Terms—Single-channel speech separation (SCSS), 
sparse decomposition, orthogonal matching pursuit (OMP), 
dictionary  
 

I.  INTRODUCTION 

In a natural environment, several speech signals are 
usually mixed. Speech separation aims to estimate such 
individual speech sources from their mixture. It has 
several obvious applications, e.g., in hearing aids or as a 
preprocessor to offer robustness in speech recognition, 
speaker recognition, and speech coding [1-2]. Single-
channel speech separation (SCSS) discussed in this paper 
is an extreme case, where only one mixture is known. It is 
considered as the most difficult case since no information 
of mixing matrix can be used. However, the human 
auditory system has impressive ability to solve this 
problem, that is, even using an ear, we can still isolate 
each individual speech when multi talkers speak at the 
same time. 

SCSS aims to recover underlying speech sources from 
a mixture. It is an ill-conditioned problem since the 
number of mixture is less than the number of sources.  

Previous state-of-the-art SCSS approaches can be 
divided into two groups: source-driven method or method 
based on computational auditory scene analysis (CASA) 

[3], and model-driven method [4-6]. CASA-based 
method tries to achieve human performance in auditory 
scene analysis (ASA) based on the perceptual 
organization of sound. Ideal binary time-frequency (T-F) 
mask has been proposed as the main computational goal 
of CASA [7]. CASA generally consists of two major 
stages: segmentation and grouping. In the segmentation 
stage, the input mixture is decomposed into time-
frequency cells dominated by one individual source. In 
the grouping stage, multiple segments are grouped into 
simultaneous streams, and subsequently streams are 
organized into whole streams corresponding to individual 
sources. The grouping principles in speech organization 
prominently used are harmonicity of voiced speech, 
temporal continuity, onset and offset synchrony, common 
amplitude modulation, etc. CASA-based method does not 
rely heavily on priori knowledge of sources. It seeks 
discriminative features in the mixed signal for separation. 
However, in general, its separation performance is not as 
good as that of model-based method.  

Model-driven method relies heavily on a priori 
knowledge about the speakers, hence generally 
outperforms CASA-based method. From a separation 
viewpoint, model-driven method can be divided into two 
classes: statistical model-driven method and 
decomposition based method. Statistical model-driven 
method is based on statistical models (e.g. vector 
quantization (VQ) [8], Gaussian mixture model (GMM) 
[4] [8] [9-11], hidden Markov model (HMM) [6] and 
sinusoidal model [12]) or codebooks (e.g. independent 
component analysis (ICA ) basis [5], VQ codebook [10] 
[12]) trained for individual speakers. It tries to solve out 
model parameters or find codebook atoms which can 
generate mixture optimally to estimate sources by 
statistical methods, e.g. minimum mean square error 
(MMSE) estimation [9], maximum likelihood (ML) 
estimation [5] [10], maximum a posterior (MAP) 
estimation [5] [9], etc. Though statistical model-driven 
method has been reported to be effective, its training is 
rather time consuming and estimation is significantly 
complex. In [12], every possible combination needs to be 
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considered during distortion function minimization to 
find the optimal codebook atoms. 

In model-driven SCSS method, sparsity has been 
proven to be useful for SCSS. In [5], a priori sets of ICA 
basis filters are learned for SCSS. The associated 
coefficients of ICA basis functions are made use of as a 
function of learning algorithm. Based on the observation 
that only a small number of coefficients of ICA basis 
functions differ significantly from zero, generalized 
Gaussian distribution is used.  In [13], a sparse-distribute 
code of spectro-temproral basis functions where basis 
functions are more than the dimensionality of the space is 
generated , leading to better separation results than a 
compact code of basis functions extracted in [14]. On the 
other hand, due to sparsity, there is less overlap between 
the sparse decomposition coefficients of different sources, 
which means different sources are less likely to be 
simultaneously active in the sparse domain. Obviously, 
this feature is helpful for separation.  

Decomposition based method is a more intuitive way 
to use sparsity to perform separation [15-18]. It generally 
works by two steps. First, personalized dictionaries are 
learned to give sparse representation of training signals. 
Second, sparse coefficients are obtained by computing 
sparse decomposition of the mixture on the union of 
learned dictionaries, and used to perform separation by 
combining dictionary atoms assigned to each speaker. In 
decomposition based method, sparsity is exploited to 
shrink the feasible solution region of the corresponding 
underdetermined problems, thus further simplifying the 
search for the optimal solution. Sparse non-negative 
matrix factorization (SNMF) is a classical sparse 
decomposition based SCSS method, and has achieved 
comparable performance [17-18]. Moreover, it has been 
proved in [19] that the unique sparse representation of a 
signal in a union of bases can be found by 0l  
optimization if the union of bases and the unique sparse 
representation satisfy certain conditions. Motivated by 
this result, we expect to perform high quality single-
channel speech separation based on sparse decomposition. 

Recently, various methods have been proposed for 
sparse decomposition. The most typical methods are 
Basis Pursuit (BP) [20] and orthogonal matching pursuit 
(OMP) [21-22]. The principle of BP is to find a 
representation of a signal whose 1l  norm is minimal. A 
BP problem can be equally reformulated as a linear 
program and solved by linear programming (LP) [20].   
OMP proposed in [21-22] is a recursive algorithm to 
compute sparse decomposition. It is a modification to the 
MP algorithm and leads to improved convergence. OMP 
achieves similar performance as BP, but more quickly. It 
is a greedy algorithm and selects atoms iteratively for 
signal recovery. At each iteration, an atom most 
correlated with the residual is chosen and then residual is 
updated by subtracting off the contribution of the chosen 
atom.  

In this paper, we propose a sparse decomposition based 
separation method using OMP. A source-specific 
dictionary is generated as a matrix consisting of time-
domain training frames of each speaker as columns 

termed as atoms. OMP is used to compute sparse 
coefficients in the union of source-specific dictionaries 
for the estimation of sources. Experiments show that the 
proposed separation method is effective since it results in 
higher signal-to-noise ratio (SNR) and higher signal-to-
interference ratio (SIR) than the separation method using 
SNMF. 

The remainder of this paper is structured as follows. In 
Section II, we introduce the general model of sparse 
decomposition based SCSS. In Section III, we introduce 
SCSS algorithm using OMP. The experiment results are 
reported in section IV. Finally, we conclude and give 
future perspectives in Section V. 

II.  SPARSE DECOMPOSITION BASED SCSS 

Consider the SCSS problem where the mixed signal 
)(ty  is the sum of two individual speech signals: )(1 ts  

and )(2 ts . )(ty  is given as 

 )()()( 2211 tsatsaty +=  (1) 

where )2,1( =iai  is the gain of each source fixed over 
time. Note that the same mixture can be obtained by 
adjusting the value of ia  or the power of sources. 
Therefore, the problem in (1) can be simplified as the 
following equivalent mixing model 

 )()()( 21 tststy +=  (2) 

It can be written in vector as  

 21 ssy
GGG

+=  (3) 

where y
G

 and )2,1( =isi
G

 denote the mixed signal and the 
thi  individual speech source in time-domain respectively.  

Suppose that y
G

 can be sparsely represented in a 
known overcomplete dictionary D  which is the 
concatenation of the source-individual dictionaries 

[ ]21 DDD = . That is, [17] 

 θ
GG

D=y  (4) 

where θ
G

 is the sparse code which is the concatenation of 
the source-individual codes )2,1( =iiθ

G
, that is, 

[ ]TT
2

T
1 θθθ

GGG
= . The sparsest representation of y

G
 in D  

can be found by solving the following problem,  

 θθ
GGG

D=yts ..,min
0

 (5) 

where 0. denotes the 0l  norm of a vector. The problem 
(5) is equivalent to the following problem,  

∑∑
==

==
2

1

2

1
021 ..,min),(min

i
ii

i
i ytsf θθθθ

GGGGG
D       (6) 
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The solution of problem (5) is denoted as θ̂
G

, which is the 
concatenation of estimated source-individual codes 

)2,1(ˆ =iiθ
G

, the solution of problem (6), that is, 
T

T
2

T
1

ˆˆˆ
⎥⎦
⎤

⎢⎣
⎡= θθθ

GGG
. If the source-individual dictionaries 

are diverse enough, we can separate y
G

 into its individual 

sources iŝ
G

 as [17] 

                                 iiis θ̂ˆ GG
D=                                   (7) 

As a consequence of above, there are two connected 
tasks to be solved in sparse decomposition based SCSS: 
learning source-individual dictionaries and computing 
sparse decomposition in (5). In this paper, we do not 
focus on dictionary learning and generate )2,1( =iiD  as 

the matrix consisting of the thi  speaker’s training frames 
as columns called atoms. The proposed separation 
method using that dictionary is proved effective since it 
leads to a higher SNR and SIR in our experiments than 
the separation method based on SNMF which is a 
classical sparse decomposition based method. (The 
performance of separation using iD  generated as 
unsupervised clustering of training frames has also been 
tested, and it is much lower in SNR and SIR.) 

For the computation of sparse decomposition, two 
classical approaches are used extensively: BP and OMP. 
The principle of BP is to find the optimal decomposition 
coefficients having the smallest 1l  norm. That is, one 
solves the problem [20] 

 θθ
GGG

D=yts ..,min
1

           (8) 

where 1. denotes the 1l  norm of a vector. In [23], it has 
been proven that, the solution to the problem (5) can be 
approximated by the solution of the problem (8). Since 
problem (5) is NP-hard and difficult to solve, one turns to 
solve the problem (6) to obtain an approximate solution 
to (5).  The solution of BP problem (6) can be obtained 
by solving an equivalent linear program as [20] 

bztszc
GGGG =A..,min T                       (9) 

where  

),( DDA −⇔ ; yb
GG

⇔ ; )1;1(⇔c
G

; );( vuz
GGG

⇔ ; 

vu
GGG

−⇔θ . 

OMP is a sparse approximation algorithm which is not 
based on optimization.  It is a recursive algorithm to 
compute coefficients of atoms in a dictionary which is 
nonorthogonal and possibly overcomplete. It is a 
modification to MP by maintaining orthogonality of 
residual at each iteration, thus leads to improved 
convergence. The major advantage of OMP is its speed 

and ease of implementation. It achieves comparable 
performance as BP. The recovery of  y

G
 based on sparse 

decomposition with OMP is given as follows [21-22]. 
 

Algorithm (Signal recovery with OMP) 
 

INPUT:  
Dictionary D  
Mixed signal y

G
 

The sparsity level m of y
G

 
OUTPUT:  
An estimate ŷ

G
of mixed signal  

A set mD  containing chosen atoms to approximate y
G

 

A sparse approximation mθ̂
G

 of y
G

 

A residual mmm yr θ̂
GGG

D−=  

PROCEDURE: 

1)  Initialize the residual yr
GG

=0 , the matrices of 

chosen atoms ∅=0D , the iteration counter 0=t . 

2)  Find the index that solves the optimization problem 
[21-22] 

k
t

Kj
t dr

GG
… ,maxarg ,,1==λ             (10) 

where kd
G

 is the thk atom in D , and K  is the number of 

atoms in D . Select 
t

dλ
G

 as the newly selected atom. 

3) Argument the matrix of chosen atoms 
[ ]tdtt

λ

G
1−= DD .  

4) Solve a least squares problem  to obtain a new 
approximation  of y

G
 supported in tD  [21-22],   

2
minarg θθ θ

GGG
G tt y D−=                  (11) 

5) Calculate residual as [21-22], 

ttt yr Dθ̂1 GGG
−=+                             (12) 

6) Increment t , and return to step 2) if mt < . 

The mixed signal is estimated by mmy θ̂ˆ GG
D= . 

 
As stated above, OMP picks atoms to recover the 

original signal in a greedy fashion. At each iteration, an 
atom that is most strongly correlated with the remaining 
part of the original signal called residual is chosen from 
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the dictionary, and its contribution to the residual is 
subtracted off for the next iteration.  

III.  PROPOSED SEPARATION METHOD 

We will now proceed to describe the proposed new 
sparse decomposition based separation method using 
OMP. Fig.1 shows the block diagram of the proposed 
separation algorithm.  

1D 2D

2θ̂
G
1θ̂
G

1̂s
G

2ŝG

Fig.1. Block algorithm of proposed speech separation method using 
OMP. 

As stated in Fig.1, the proposed algorithm works in 
two stages: training and separation. In the training stage, 
two source-individual dictionaries consisting of training 
frames of individual speakers as atoms are generated.  In 
the separation stage, separation is performed frame after 
frame and then speech is synthesized by overlap-adding. 
Each mixed frame is separated based on sparse 
decomposition using OMP algorithm proposed.  

In the following, we give the separation algorithm 
using OMP.  

 
Algorithm (Separation using OMP) 

 
INPUT:  
Source-individual dictionaries 21,DD  
Mixed frame y

G
 

Stopping criterion 
OUTPUT: (suppose procedure stops after m  iterations): 
Two estimates 21

ˆ,ˆ ss
GG

 for original individual source 
frames 21, ss

GG
 

Two sets mm
21 ,DD  containing chosen atoms to 

approximate 21, ss
GG

 

Two decomposition coefficients mm
21

ˆ,ˆ θθ
GG

 supported in 
mm
21 ,DD  to approximate 21, ss

GG
 

A residual [ ] TT
2

T
121

ˆˆ
⎥⎦
⎤

⎢⎣
⎡−= mmmmm yr θθ

GGGG
DD  

PROCEDURE: 

1)  Initialize the residual yr
GG

=0 , the matrices of 

chosen atoms ∅=∅= 0
2

0
1 ,DD , the iteration counter 

0=t . 
2)  Find the index that solves the optimization problem 

(10). 

3)  Merge the newly selected atom with the previous 
matrices of chosen atoms, 

[ ]
⎪⎩

⎪
⎨
⎧ ≤

=
−

−

others,
if

1
1

1
1

1
1 t

tt
t Kd t

D
DD λλ ，

G
                 (13) 

[ ]
⎪⎩

⎪
⎨
⎧ +≤≤

=
−

−

others,
if

2
1

211
1

2
2

t

tt
t KKKd

t

D
D

D
λλ ，

G
   (14) 

where iK  is the number of atoms in iD , satisfying 

∑
=

=
2

1i
iKK .  

4) Solve the least squares problem (11) to obtain a new 
decomposition coefficient to approximate y

G
 supported in 

tD  [21-22], the concentration of t
1D  and t

2D , 

[ ]ttt
21 DDD = .The solution of (11) is given by 

( ) ytttt GG
DDD

1Tˆ −

⎟
⎠
⎞⎜

⎝
⎛=θ  [21-22]. We denote t

1θ̂
G

 and t
2θ̂
G

 as 

the parts of tθ̂
G

 belonging to the support t
1D  and t

2D  
respectively.   

5) Update residual as (12). 
6) Increment t , and return to step 2) until satisfying 

e
tr δ≤

2

G
 or ck

t
Kj dr δ≤=

GG
… ,max ,,1  where eδ  and 

cδ  are chosen thresholds.  
The separated speech source is estimated by 

)2,1(ˆˆ == is m
i

m
ii Dθ
GG

.

 

IV.  EXPERIMENTS 

As a proof of concept, we evaluate the proposed 
separation algorithm using the Grid corpus provided for 
SCSS by Cooke et. al [24] and compare its performance 
with SNMF based SCSS method which is a classical 
sparse decomposition based method [17-18]. We selected 
four speakers including two female (speakers 18 and 20) 
and two male speakers (speakers 1 and 2) from the 
database and denoted them as F1, F2, M1 and M2 in 
sequel. For each speaker, half of the sentences in the 
database were used for training and ten other sentences 
are selected randomly for testing. Speech sources are 
added directly at 0 dB SNR for each speech pair to have 
400 female-male mixtures, 100 female-female mixtures 
and 100 male-male mixtures. The original sampling 
frequency was decreased from 25 kHz to 8 kHz and a 
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hamming window of duration 32 ms with a frame-shift of 
16 ms was used.  

To evaluate the separation performance, average of 
signal-to-noise ratio (SNR) and average of source-to-
interferences ratio (SIR) are used. SNR is defined as 

T

T
SNR 10 lg( ˆ ˆ( )( )

i i
i

i i i i

x x
x x x x

= ×
− −

G G
G G G G ）                    (15) 

where ixG  and ˆ
ixG  are original and estimated source speech 

signals respectively, and SNR i  is the SNR of estimated 
ˆ

ixG . SIR is defined as in [25]. 

In our experiments we set 1010−=eδ  and 510−=cδ . 
We compare the separation results of the proposed 

method using OMP with that of the separation method 
using SNMF in SNR and SIR respectively. The average 
results of 600 mixtures tested are shown in TABLE I and 
II. The same training sentences are used to generate each 
SNMF source dictionary with the sparsity 1.0=λ  and 
the size of 560 as in [36].  

TABLE I 
PERFORMANCE OF SEPARATION USING SNMF AND PROPOSED 

SEPARATION METHOD USING OMP IN SNR (DB) ON 600 MIXTURES 

 SNMF Proposed method 

F/F 4.7/4.5 4.8/4.7 

F/M 5.5/5.3 5.7/5.8 

M/M 3.3/3.9 3.7/4.4 

TABLE II 
PERFORMANCE OF SEPARATION USING SNMF, TRADITIONAL OMP AND 

OMP IN SIR (DB) ON 600 MIXTURES 

 SNMF Proposed method 

F/F 5.0/6.3 8.7/11.4 

F/M 9.3/8.7 12.7/11.7 

M/M 3.3/4.9 8.9/8.9 

As shown in TABLE I and II, the proposed separation 
method outperforms the method using SNMF in both 
SNR and SDR. The average SNR result of the proposed 
method is 0.15dB, 0.35dB and 0.45dB higher than that of 
the method using SNMF for female/female, female/male 
and male/male mixture respectively. The average SIR 
result of the proposed method is 4.4dB, 3.2dB and 4.8dB 
higher than that of the method using SNMF for 
female/female, female/male and male/male mixture 
respectively.  

We also report the separation results of the sentences 
which are shown in TABLE III.  

 
 
 

 

TABLE III 
LABELS OF SPEAKERS AND FILE NAMES USED FOR TESTING 

F1 speaker 18 “lwix2s” “sbil4a” “prah4s” 

F2 speaker 20 “lwwy2a” “sbil2a” “prbu5p” 

M1 speaker 1 “pbbv6n” “sbwozn” “prwkzp” 

M2 speaker 2 “lwwm2a” “sgai7p” “priv3n” 

For each speech pair, the speech sources are added 
directly to form a mixture, resulting 54 mixtures 
including 36 male-female mixtures, 9 male-male mixtures 
and 9 female-female mixtures.  

Fig.2. shows the first 16 atoms chosen using OMP to 
separate a mixed frame. In this example, 70 and 51 atoms 
are selected to estimate two sources based on OMP. 

 (a)                                               (b) 

     
(c)                                          (d) 

Fig.2. Waveforms of sources and selected atoms.(a-b) source frames 1,2; 
(c-d) the first 16 atoms selected to estimate source frames 1,2 using 

traditional OMP;  
We compare the average results of separation using 

OMP with the separation method using SNMF in SNR 
and SIR respectively. The results are shown in TABLE 
IV and V.  

From TABLE IV and V, it is also observed that the 
proposed method outperforms the separation method 
using SNMF in both SNR and SIR. The proposed method 
achieves 0.2dB higher SNR and 2.55dB higher SIR 
results respectively than the method using SNMF for 
female/female mixtures. It achieves o.15 dB higher SNR 
and 1.35dB higher SIR result than the method using 
SNMF for female/male mixtures. It achieves o.3 dB 
higher SNR and 3.9dB higher SIR result than the method 
using SNMF for male/male mixtures.  
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TABLE IV 
PERFORMANCE OF SEPARATION USING SNMF AND PROPOSED 

SEPARATION METHOD USING OMP IN SNR (DB) ON 54 MIXTURES 

 SNMF Proposed method 

F/F 4.4/4.1 4.2/4.3 

F/M 5.5/5.7 5.7/5.8 

M/M 3.2/3.3 3.4/3.7 

TABLE V 
PERFORMANCE OF SEPARATION USING SNMF, TRADITIONAL OMP AND 

OMP IN SIR (DB) ON 54 MIXTURES 

 SNMF traditional OMP 

F/F 6.8/3.5 6.0/7.8 

F/M 8.3/9.6 9.3/11.3 

M/M 1.3/3.6 5.1/7.6 

Finally, Fig.2. illustrates the waveforms of the original 
sources and the separated results for the mixture of a 
female and male speech.  

V.  CONCLUSION AND FUTURE WORK 

In this paper, we presented a new sparse 
decomposition based SCSS method using OMP. In the 
proposed method, we generate source dictionaries as 
matrices consisting of time-domain training frames as 
atoms and use OMP for the computation of sparse 
coefficients in the union of source dictionaries. We 
compared our separation results to the results of 
separation using SNMF, and showed that our proposed 
method achieved higher SNR and SIR. 

In the proposed separation method, matrices consisting 
of training frames as atoms are used as source-individual 
dictionaries directly. In the future, we plan to unite 
dictionary learning and the presented separation work to 
improve separation speed. Moreover, we plan to discuss 
whether we can improve the OMP algorithm for 
separation by considering mutual independence between 
sources. 
 
 
 
 
 
 
 

 
(a)                                                     (b) 

 
(c) 

 
(d)                                                     (e) 

 
(f)                                                        (g) 

Fig.2. Separated speech waveforms of a female and a male speech. (a-
b)original sources; (c) mixed signal ; (d-e) separated sources estimated 

using SNMF based method; (f-g) separated sources estimated using 
OMP. 
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