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Abstract— A skyline query finds objects that are not domi-
nated by another object from a given set of objects. Skyline
queries can filter unnecessary information efficiently and
provide us important clues for various decision making
tasks. Now a days, GPS devices and location based services
are very popular and they can easily connect users and
make groups. Conventional skyline queries are not sufficient
to obtain valuable knowledge to fulfil the needs of such
groups. Considering this fact, in this paper, we proposed a
spatial skyline query for groups of users located at different
positions. Our proposed skyline query algorithm selects a set
of spatial objects to fulfil the groups’ needs. For example, if
a group wants to find a restaurant to hold a meeting, our
method can select a convenient place for all users of the
group. We performed several extensive experiments to show
the effectiveness of our approach.

Index Terms— Spatial skyline, Skyline for a group, Voronoi
diagram.

I. INTRODUCTION

Given a k-dimensional database DB, a skyline query
retrieves a set of skyline objects, each of which is not
dominated by another object. An object p is said to dom-
inate another object q if p is not worse than q in any of the
k dimensions and p is better than q in at least one of the k
dimensions. Figure 1 shows a typical example of skyline.
The table in Figure 1 is a list of five hotels, each of which
contains two numerical attributes “Price” and “Rating”. In
the list, h2 and h5 are dominated by h3, while others are
not dominated by any other hotel. Therefore, the skyline
of the list is h1, h3, h4. Such skyline results are important
for users to take effective decisions over complex data
having many conflicting criteria. In database literature,
there are many recent studies for efficient computation of
skyline queries from databases [1]–[9]. All of these works
just consider non-spatial information like price and rating.

Recently, GPS devices and location based services
become popular. As a result, we have large databases
containing spatial information. Therefore, we often have
to select spatial objects from a spatial database. Conven-
tional skyline queries are not sufficient to handle spatial
objects. To solve the problem, spatial skyline queries have
been proposed [14]–[21]. Most of those spatial skyline
queries select a set of objects based on proximity from a
given query point.

Different from other works, we consider a spatial
skyline query for a group of users located at different
positions. This is because there are situations where a
group of users at different locations may want to choose
a particular object that can fulfil the group’s needs. For
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Figure 1. Skyline example

example, assume that members of a multidisciplinary task
force team located at different offices want to put together
in a restaurant to hold a lunch-on meeting. Conventional
spatial skyline query cannot take into account the group’s
convenience.

The problem of spatial skyline queries can be defined
as follows. Given the two sets P of data points and Q
of query points, the spatial skyline of P with respect to
Q is the set of those points in P , which are not spatially
dominated by any other point of P . A data point p1 is
said to spatially dominate another point p2 with respect
to Q iff we have d(p1, qi) ≤ d(p2, qi) for all qi ∈ Q and
d(p1, qj) < d(p2, qj) for some qj ∈ Q, where d(p, q) is
the Euclidean distance between p and q. Figure 2 shows
a set of nine points and two query points q1 and q2 in a
plane. The point p1 spatially dominates the point p2 since
both q1 and q2 are closer to p1 than to p2.

Social network services can connect users of different
positions and make groups easily. Therefore, we often
have to solve this spatial problem. Some of the existing
spatial skyline queries consider the same spatial problem.
However, most of those works only consider spatial
information such as locations of the users and objects and
do not take into account non-spatial features of objects,
such as price and rating. Since both spatial and non-
spatial features of objects are very important for efficient
knowledge discovery tasks, we consider a method that
can select objects based on both spatial and non-spatial
features.

A. Motivating Example

Assume there is a database of restaurants as in Table I.
The database has two non-spatial attributes: “Rating”
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Figure 2. Spatial skyline example

TABLE I.
RESTAURANT DATABASE

ID Location Rating Price
r1 (3, 9) 3 2
r2 (7, 5) 2 2
r3 (7, 7) 3 4
r4 (5, 1) 3 2
r5 (4, 4) 2 3
r6 (4, 8) 3 3
r7 (5, 6) 3 1
r8 (1, 3) 3 2
r9 (5, 3) 2 2
r10 (9, 3) 1 1

and “Price”, in addition to the “Location” attribute. We
assume that lower value is better in each of the non-spatial
attributes. We also assume there are four users u1, u2, u3,
and u4, whose current locations are at (4.5, 5.5), (5, 6.8),
(6, 5), and (5, 3.8), respectively, as in Table II.

To select a good restaurant for the four users, at first, we
calculate the Euclidean distance of each restaurant from
each of the four users (query points) and construct the
table as shown in Table III. In the table, the attribute r-
u1 represents Euclidean distances of the restaurants from
user u1. Similarly, r-u2, r-u3, and r-u4 are the Euclidean
distances of restaurants from u2, u3, and u4, respectively.
Sum-Distance attribute in Table III contains the sum of
Euclidean distances of each data point (restaurant) from
the users u1, u2, u3, and u4.

Note that a restaurant that is the closest from one user
can be an attractive candidate. In addition, a restaurant
whose sum of Euclidean distances from the four users
is smallest must be an attractive candidate. Therefore, we
use those five spatial attributes for the four users problem.

Next, we join the non-spatial attributes of Table I and
spatial information of Table III and obtain the information
of Table IV. After computing Table IV, we can get the
skyline for the four users by using conventional skyline
query, which are r2, r5, r7, r9, and r10. However, we

TABLE II.
USERS’ LOCATION DATABASE

ID Location
u1 (4.5, 5.5)
u2 (5, 6.8)
u3 (6, 5)
u4 (5, 3.8)

TABLE III.
SPATIAL ATTRIBUTES OF RESTAURANTS

ID r-u1 r-u2 r-u3 r-u4 Sum-Distance
r1 3.81 2.97 5.12 5.57 17.47
r2 2.55 2.69 1 2.33 8.57
r3 2.92 2.01 2.24 3.77 10.94
r4 4.53 5.8 4.12 2.8 17.25
r5 1.58 2.97 2.24 1.02 7.81
r6 2.55 1.56 3.61 4.32 12.04
r7 0.71 0.89 1.41 1.48 4.49
r8 4.30 5.52 5.39 4.08 19.29
r9 2.54 3.8 2.24 0.8 9.38
r10 5.15 5.18 3.61 4.08 18.38

have to compute spatial features like Table III for each
of different query, which are time-consuming and not
affordable.

In this paper, we consider an efficient method for com-
puting such a spatial skyline query without constructing
all the information of Table IV for a group of users of
different locations. Instead, we only compute necessary
spatial information for each of different query (group)
efficiently. For simplicity, we consider the above examples
as running examples throughout the paper.

The proposed method can be summarized as follows:
• First, we compute skyline objects based on “spatial

sub-space” of the data points. In this step, we do
not compute all values in Table III but compute only
necessary distances to find dominated objects on the
spatial sub-space.

• Next, we compute dominated objects on “non-spatial
sub-space” of the data points.

• Then, we integrate those information to compute
final skyline result.

We intensively evaluate our framework using both
synthetic and real data and validate the effectiveness of
our method.

The remainder of this paper is organized as follows. In
Section II, we provide a brief survey of related works.
In Section III, we describe some preliminary concepts
related to our work. Section IV briefly explains over all
procedure of the proposed skyline computation method.
In Section V, we report our evaluation results, and finally
this paper is concluded in Section VI.

II. RELATED WORKS

A. Skyline Computation

Skyline queries were originally considered for maximal
vectors computation [1]. Borzsonyi et al. [2] first intro-
duced skyline queries in database applications and pro-
posed Block Nested Loop (BNL), Divide-and-Conquer,
and B-tree based algorithms. Later, a number of differ-
ent algorithms such as progressive skyline computation
algorithm [3], nearest neighbor algorithm [4], branch and
bound skyline (BBS) algorithm [5], and sort-filter-skyline
(SFS) algorithm [6] were proposed for efficient skyline
computation.

Due to the increase in data dimensionality, there have
been many research efforts to address the dimensionality
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TABLE IV.
NON-SPATIAL AND SPATIAL ATTRIBUTES OF RESTAURANTS

ID Rating Price r-u1 r-u2 r-u3 r-u4 Sum-Distance
r1 3 2 3.81 2.97 5.12 5.57 17.47 dominated by r2, r7
r2 2 2 2.55 2.69 1 2.33 8.57 not dominated
r3 3 4 2.92 2.01 2.24 3.77 10.4 dominated by r7
r4 3 2 4.53 5.8 4.12 2.8 17.25 dominated by r7
r5 2 3 1.58 2.97 2.24 1.02 7.81 not dominated
r6 3 3 2.55 1.56 3.61 4.32 12.04 dominated by r7
r7 3 1 0.71 0.89 1.41 1.48 4.49 not dominated
r8 3 2 4.30 5.52 5.39 4.08 19.29 dominated by r2, r7, r9
r9 2 2 2.54 3.8 2.24 0.8 9.38 not dominated
r10 1 1 5.15 5.18 3.61 4.08 18.38 not dominated

problem of skyline queries such as skyline frequency [7],
k-dominant skylines [8], and k-representative skylines [9].

All these efforts, however, do not consider spatial
relationships between data points.

B. Spatial Skyline Query

Spatial query processing was first studied for ranking
neighboring objects. Several works [10]–[12] considered
spatial query mechanism for ranking neighboring objects
using the distance to a single query point. Papadias et
al. [13] considered ranking of objects using aggregate
distance of multiple query points.

Sharifzadeh et al. [14] first addressed the problem of
spatial skyline queries. They proposed two algorithms,
B2S2 and V S2, for static query points and one al-
gorithm, V CS2, for the query points whose locations
change over time. V CS2 exploits the pattern of change
in query points to avoid unnecessary re-computation of
the skyline. The main limitation of V S2 algorithm is
that it can not deliver correct results in every situation.
To overcome the limitation of V S2 algorithm, Son et al.
[15] presented a simple and efficient algorithm that can
compute the correct results. Guo et al. [16] introduced the
framework for direction-based spatial skyline computation
that can retrieve nearest objects around the user from
different directions. They also developed an algorithm to
support continuous queries. However, their algorithm for
direction-based spatial skyline can not handle more than
one query point. Kodama et al. [17] proposed efficient
algorithms to compute spatial objects based on a single
query point and some non-spatial attributes of the objects.

There are some considerations about spatial skyline
computation in road networks. Deng et al. [18] first
proposed multi-source skyline query processing in road
network and proposed three different spatial skyline query
processing algorithms for the computation of skyline
points in road networks. In [19], Safar et al. considered
nearest neighbour based approach for calculating skylines
over road networks. They claimed that their approach
performs better than the approach presented in [18].
Huang et al. [20] proposed two distance-based skyline
query techniques those can efficiently compute skyline
queries over road networks. Zheng et al. [21] proposed a
query processing method to produce spatial skylines for
location-based services. They focus on location-dependent
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Figure 3. Example of an R-tree

spatial queries (LDSQ) and consider a continually chang-
ing user location (query point). In their approach, it is not
easy to decide how often the skyline result needs to be
updated.

None of the above works considered the computation
of spatial skyline objects for a group of users based on
both spatial and non-spatial information. In this paper,
we consider the issue and propose an efficient method
for computing such spatial skyline objects.

III. PRELIMINARIES

A. Skyline Queries

Let p and q be objects in a database DB. Let p.al and
q.al be the l-th attribute values of p and q, respectively,
where 1 ≤ l ≤ k. An object p is said to dominate another
object q, if p.al ≤ q.al for all the k attributes al, (1 ≤
l ≤ k) and p.aj < q.aj on at least one attribute aj ,
(1 ≤ j ≤ k). The skyline is a set of objects which are not
dominated by any other object in DB.

B. Spatial Skyline Queries

Assume that there are two point sets. One is a set
of data points, say P , and the other is a set of query
points, say Q. We also assume that each point in P and Q
has spatial attributes, which are 2-dimensional coordinate
attributes. Let us also consider that the distance function
d(p, q) returns the Euclidean distance between a pair of
points p and q.
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Definition 1: We say that p1 “spatially dominates” p2
if and only if d(p1, q) ≤ d(p2, q) for every q ∈ Q, and
d(p1, q) < d(p2, q) for some q ∈ Q.

The spatial skyline of P with respect to Q is the set of
those points in P , which are not spatially dominated by
any other point of P .

C. R-Tree

R-tree is the most prominent index structure widely
used for spatial query processing. Figure 3 shows an R-
tree containing P = {p1,· · · ,p14}. We set the capacity of
each node to three. The leaf nodes N1, ..., N5 store the
coordinates of the grouped points together with optional
pointers to their corresponding records. Each intermediate
node contains the Minimum Bounding Rectangle (MBR)
of the sub-tree of the nodes. For example, node e1
corresponds to MBR N1, which covers the points, p1,
p2, and p3. Similarly, node e6 and node e7 correspond to
MBR N6 and MBR N7, respectively.

D. Voronoi Diagram

Let P is the set of n distinct data points on the plane.
The Voronoi diagram of P is the subdivision of the plane
into n cells. Each cell contains only one point of P , which
is called the Voronoi point of the cell. In this paper, we
denote V (pj) as a cell of a Voronoi point pj , pj ∈ P ,
and V N(pj) as a set of cells that are adjacent to V (pj).

Assume that P contains fourteen data points
{p1, p2, · · · , p14} and two query points q1 and q2.
Figure 4 shows the Voronoi diagram of the points in P .
We can say that a query point is nearest to a data point if
the query point is within Voronoi cell of the data point.
As for example, from the Voronoi diagram of Figure 4,
we can find that the nearest Voronoi point of the query
point q1 is p8, since q1 is within the Voronoi cell of p8.
Similarly, the nearest Voronoi point of query point q2 is
p1.

Voronoi diagram provides an efficient data structure to
compute the nearest Voronoi point for a given query point
q. We use Fortune’s algorithm [22] to construct Voronoi
diagram for a set of points. Fortune’s algorithm is a sweep
line algorithm for generating a Voronoi diagram from a set
of points in a plane. Though the worst time complexity
for constructing Voronoi diagram for a set of n points
using Fortune’s algorithm is O(n2), the expected time
complexity is O(n log n).

E. V oR-Tree

A V oR-tree [23] is a variation of R-tree that index
the data points using the concepts of Voronoi diagram
and R-tree. Each leaf node stores a subset of data points.
Each leaf node also includes the data records containing
extra information about the corresponding points. In the
record of a data point pj in a V oR-tree, we store the
pointer to the location of Voronoi neighbors V N(pj) and
the vertices of V (pj), i.e., vertices of the Voronoi cell of
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V(p6)= {...} 
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V(p5)= {...} 
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Figure 5. (a) Voronoi diagram (b) V oR-tree (adapted from [22])

pj . Here, a vertex represents a common endpoint of two
edges of a Voronoi cell.

For constructing V oR-tree, at first, we index the data
points using an R-tree. Then, we use the Voronoi diagram
of the data points to find the Voronoi neighbors and
vertices of a Voronoi cell for each data point pj . Next, we
store both information as a record associated with each
data point pj . Each Voronoi neighbor of pj in this record
is a pointer to the disk block storing the information of
that Voronoi neighbor. A disk block also known as a
sector is a sequence of bytes for storing and retrieving
data.

Figure 5(b) shows an example of V oR-tree for the
data points of Figure 3. Each rectangular in Figure 5
is a node of the V oR-tree. In Figure 5, rectangular N2

contains three points, i.e., p4, p5, and p6. N2 and two
other rectangular boxes N1 and N3 are contained by the
parent, which is the rectangular N6. For simplicity, we
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show only the contents of the records of the data points
of node N2. From Figure 5 (b), we can see that data point
p5, p6, p7, p8, p12, and p14 are Voronoi neighbors of p4
and its Voronoi cell has vertices a, b, c, d, e, and f .

Since the expected time complexity for constructing a
Voronoi diagram using Fortune’s algorithm is O(n log n),
we can expect to construct the V oR-tree with a time-
complexity very close to O(n log n). Since the locations
of spatial objects, such as restaurants, are static, we can
construct V oR-tree before processing the groups’ skyline
query.
V oR-tree provides us an efficient way to search non-

dominated objects in spatial sub-space, since we can find
the nearest spatial object in V oR-tree from a given query
point in O(log n) time. Using V oR-tree, we can signifi-
cantly reduce the search space that dramatically improves
the performance of our query. We give detail explanation
of how V oR-tree improves our query performance in
subsection IV-A.

IV. QUERY PROCESSING

It is possible to calculate skyline query after construct-
ing a table like Table IV by conventional skyline queries.
However, the number of data points such as restaurants is
too large that the construction of a table like Table IV and
computation of skyline result from such a table using any
conventional skyline query algorithm are not affordable.

Considering this fact, in this paper, we compute the
skyline results in two phases.

In the first phase, we compute skyline results in the
spatial sub-space like (r − u1, r − u2, r − u3, r − u4,
Sum-Distance) of Table IV. We utilize the concept of
Sum-Distance for spatial processing which can easily
eliminate a large number of objects during the computa-
tion of skyline objects in the spatial sub-space.

Based on the skyline result of the spatial sub-space,
the second phase efficiently computes whether some other
objects can be in the skyline in the non-spatial sub-space
like (Rating, Price) of Table IV. In this phase, we
check the dominance of non-skyline objects of spatial
sub-space against the skyline objects of spatial sub-space.
Such an approach can easily eliminate many objects from
domination check.

A. Spatial Processing

We say that an object is “spatially dominated” if the
object is dominated in the spatial sub-space. For example,
we can say that a restaurant in Table III is “spatially
dominated”, if the restaurant is dominated in its sub-space
{r-u1, r-u2, r-u3, r-u4, Sum-Distance}.

For selecting non-dominated objects in spatial sub-
space, at first, we select the Voronoi point (restaurant)
that is nearest to the centroid of the query points (user
locations). For example, if we consider the users (query
points) of Table II, we can find that the centroid of r-
u1, r-u2, r-u3, and r-u4 is (5.13, 5. 28). From Table I,
we can find that rj is nearest to (5.13, 5. 28). So, we
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Figure 6. (a) Location of users and restaurants (b) V oR-tree

select r7. Next, for each of the user, we draw a circle.
The radius of each circle is the Euclidean distance from
the user and rj . Let C(ui, rj) be a circle whose center
is the position of user ui. The radius of C(ui, rj) is the
Euclidean distance from ui to data point rj . We denote
this distance by D(ui, rj). We call the region within the
union of the circles of rj as the “search region” of rj .

We, then, search for the data points within the “search
region”. To obtain the data points within the “search
region”, we just consider the Voronoi cells those are either
completely inside the “search region” or those have some
intersections with any of the circles. If a Voronoi cell
is completely inside the search region, we can say that
corresponding data point is within the “search region”. If
a Voronoi cell intersects with any of the circles, we need
to check the distance of the corresponding data point from
the center of the circles. If we find that the Euclidean
distance is less than or equal to the radius of any of
the circles, we can decide that the data point is inside
the “search region”. Otherwise, it is outside the “search
region”.

Later, we compute the sum of Euclidean distances of a
data point (restaurant) from the query points (users). We
call this distance “Sum Distance”.

We can efficiently compute the set of objects those
are not spatially dominated using “search region”, “Sum
Distance” and V oR-tree that incrementally returns the
skyline points as explain below.

First, we compute the sum of Euclidean distances for
each data point within the “search region”. Then, we pick
the data point, say rk that has minimum “Sum Distance”
and add rk along with its “Sum Distance” to a heap. Next,
we examine the Voronoi neighbours of rk, V N(rk) and
add the Voronoi neighbors within the search region in the
heap in increasing order of their “Sum Distance”. When
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TABLE V.
SPATIAL INFORMATION OF THE DATA POINTS WITHIN SEARCH

REGION

ID r-u1 r-u2 r-u3 r-u4 Sum-Distance
r2 2.55 2.69 1 2.33 8.57
r5 1.58 2.97 2.24 1.02 7.81
r7 0.71 0.89 1.41 1.48 4.49
r9 2.54 3.8 2.24 0.8 9.38

TABLE VI.
HEAP FOR TRAVERSING V oR-TREE

Step Heap content Skyline S
1 (r7, 4.49) ⊘

2 (r7, 4.49), (r5, 7.81), (r2,
8.57), (r9, 9.38) ⊘

3 (r5, 7.81), (r2, 8.57), (r9,
9.38) {r7}

4 (r2, 8.57), (r9, 9.38) {r7, r5}
5 (r9, 9.38) {r7, r5, r2}
6 ⊘ {r7, r5, r2, r9}

a data point rk is explored, we pop it from the heap and
add it to the skyline list if it is not dominated in spatial
sub-space by some other objects already in the skyline.
We continue the process until the heap becomes empty.

Now, consider the computation process of skyline ob-
jects in spatial sub-space from the example as shown in
Figure 6. In the Figure 6(a), white dots are locations of
four users and black dots are locations of restaurants. We
first pick up r7 and compute C(ui, r7) for each user ui

(i = 1, ..., 4) to get the “search region”. We, then, find
that restaurants r2, r5, r7, and r9 are within the “search
region” of r7. Next, we compute the “Sum Distance” for
each of these restaurants and construct the table as shown
in Table V. In the process, we keep the heap data structure
like Table VI.

Looking at the information of Table V, we can find that
returant r7 has minimum “Sum Distance”. So, we add
(r7, dist(r7, U)) to the heap and marks r7 as “checked”.
Next, we collect the Voronoi neighbors of r7 and find
that its Voronoi neighbors r2, r5, and r9 are inside the
“search region” (union of C(ui, r7) for user ui (i =
1, ..., 4)). Then, we add (r2, dist(r2, U)), (r5, dist(r5, U))
and (r9, dist(r9, U)), to the heap in ascending order of
their “Sum Distance”.

After the steps, restaurant r7 is added to the skyline
list S as shown in step-3 of Table VI. Next, we pick the
top element r5 from the heap and find that its Voronoi
neighbours are r1, r6, r7, r8 and r9. Among them r1, r6

TABLE VII.
NON-SPATIAL INFORMATION OF DOMINATED OBJECTS IN SPATIAL

SUB-SPACE

ID Rating Price
r1 3 2
r3 3 4
r4 3 2
r6 3 3
r8 3 2
r10 1 1

TABLE VIII.
NON-SPATIAL INFORMATION OF THE SKYLINE OBJECTS IN SPATIAL

SUB-SPACE

ID Rating Price
r2 2 2
r5 2 3
r7 3 1
r9 2 2

and r8 are outside the search region and r7 and r9 are
already checked. Therefore, no new entry is added in the
heap by r5. After that, we examine the spatial dominance
of r5 against r7. Since r5 is not spatially dominated by
r7, we add r5 in S as in step-4. Similarly, we continue
the process and add r2 and r9 to the skyline. After the
process of r9, the heap becomes empty. Finally, we get
S = {r2, r5, r7, r9} as skyline result based on spatial
sub-space.

Since the “search region” is relatively very small com-
pared with the whole space, such computation is very
much efficient with respect to space and time.

B. Non-spatial Processing

In non-spatial processing, at first, we collect all dom-
inated data points at spatial sub-space. Table VII shows
such data points with non-spatial information. From Ta-
ble VII, we can see that data points r1, r3, r4, r6, r8, and
r10 are spatially dominated. So, we need to check their
dominance in the non-spatial sub-space.

To obtain non-dominated objects at non-spatial sub-
space, we check their dominance against the skyline
objects r2, r5, r7, and r9 of spatial sub-space. Table VIII
shows non-spatial information of these skyline objects in
spatial sub-space. Note that objects of Table VIII are in
the final skyline as well.

If we check the objects of Table VII against the objects
of Table VIII, we can find that r7 also dominates r1, r3,
r4, r6, r8 in non-spatial sub-space. So, they are not in
the skyline. However, object r10 is not dominated in its
non-spatial sub-subspace by any object of Table VIII and
there is no other non-dominated object in Table VII. So,
r10 is also in the skyline. Finally, we find r2, r5, r7, r9
and r10 as final skyline result.

Algorithm 1 shows the proposed computation proce-
dure of the spatial skyline queries. It first computes “spa-
tially dominated” objects based on spatial sub-space (line
3-20). Then, Algorithm 1 computes whether there are
skyline objects among the “spatially dominated” objects
by examining non-spatial sub-space (line 21-29). Finally,
the algorithm returns the spatial skyline objects (line 30).

C. Correctness of Algorithm

The correctness of Algorithm 1 follows some basic
properties of geometry and skyline query. From Algo-
rithm 1, we can see that for a set of query points Q, it
first adds the data point rj with minimum “Sum Distance”
to the skyline S. All the Voronoi neighbors of rj are
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Algorithm 1 Computation
Input: Set of query points U = {u1, u2, · · · , ui} and data points R = {r1, r2, · · · , rj}
Output: Spatial skyline objects Set S, S ⊆ R

1: begin
2: set D, (D ⊆ R) = the set of dominated objects in spatial sub-space
3: select a data point rj that is closest to the centroid of the query points U = {u1, u2, · · · , ui}
4: compute the search region of rj
5: obtain the data points set, say T within the “search region“, T ⊆ R
6: compute the “Sum Distance” distk of each data point rk, rk ∈ T
7: select the data point rk that has minimum “Sum Distance”
8: add (rk, distk ) to the heap H
9: select the Voronoi neighbors of rk those are within the “search region” and add

them to H in increasing order of their “Sum Distance”
10: remove (rk, distk ) from H and add rk to S
11: repeat
12: choose the top element, say rl from H
13: select the Voronoi neighbors of rl those are within the “search region” and add

them to H in increasing order of their “Sum Distance”
14: pop (rl, distl) from H
15: if rl is not dominated by some other objects in S in spatial sub-space then
16: add rl to S
17: else
18: add rl to D
19: end if
20: until H becomes empty
21: for each data point rm ∈ D do
22: if rm is dominated by some other objects of S in non-spatial sub-space then
23: rm /∈ S
24: else if rm is dominated by some other objects of D in non-spatial sub-space then
25: rm /∈ S
26: else
27: add rm to S
28: end if
29: end for
30: return S as the spatial skyline result
31: end

then checked and added to the heap in increasing order of
their their “Sum Distance” if they are within the “search
region”.

The traversal started from the data point with minimum
“Sum Distance” towards the Voronoi neighbors in increas-
ing order of “Sum Distance” and we can find that the data
point rj with minimum “Sum Distance” is in the skyline
S. The reason is that “Sum Distance” is considered as an
attribute in the spatial sub-space. During the consideration
of Voronoi neighbors of a data point, we just consider
the Voronoi neighbors within the “search region”. We
can easily ignore the Voronoi neighbors of a data point
those are outside the “search region”. This is because,
the Euclidean distances between a Voronoi neighbor that
is outside the “search region” and query points must
be larger than the Eucledian distances between rj and
query points. Hence, any Voronoi neighbor that is outside
the “search region” will never be in the skyline in the
spatial sub-space. However, the Voronoi neighbors those
are within the “search region” can be in the skyline

TABLE IX.
DATASETS FOR EXPERIMENTS

Datasets Total Objects Density
r 50,747 –
s1 80,000 0.08
s2 50,000 0.05
s3 20,000 0.02

of spatial sub-space. So, Algorithm 1 further checks
such Voronoi neighbors against the data points in S to
determine whether they are in the skyline of the spatial
sub-space or not.

Line 21-29 of Algorithm 1 shows the computation of
skyline objects in non-spatial sub-space. The correctness
of Algorithm 1 for computing skyline objects in non-
spatial sub-space comes from the basic idea of skyline.
If an object is in the skyline of d − i ( i = 1 to d -1)
dimensions, it will also be in the skyline of d dimensions.
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Figure 7. Number of skyline objects

V. PERFORMANCE EVALUATION

To evaluate the efficiency and effectiveness of the pro-
posed skyline queries algorithm, we conducted extensive
experiments. We implemented all algorithms using Mi-
crosoft Visual C++ V6.0, and conducted the experiments
on a PC with Intel core i5 processor, 2.3 GHz CPU, 4G
main memory and 200G hard disk, running Microsoft
Windows 7 Professional Edition. Our developed system
is able to handle large volume of data containing both
spatial and non-spatial information.

A. Experimental Setup

We implemented the experiments by deploying both
real and synthetic datasets. The real datasets came from
line segment data of Long Beach from the TIGER
database [24]. We made this point set by extracting the
midpoint for each road line segment. The set consists
of 50,747 points normalized in [0,1000] × [0, 1000]
space. There are three synthetic datasets s1, s2, and s3
with different densities normalized in [0,1000] × [0,1000]
space as in Table IX. In Table IX, r stands for real dataset
of TIGER database and density means how many points
fall into one square unit in average. The points in each
synthetic dataset are distributed randomly. We indexed all
datasets by using a V oR-tree. By default, we consider a
location attribute and two category attributes for each data
set.

B. Experimental Results

The first experiment studies the numbers of skyline
objects under different densities and different group size.
Figure 7 shows the total numbers of skyline objects from
datasets r, s1, s2, and s3. From Figure 7, we can see that
total number of skyline objects increases with the increase
in density and group size.

The second experiment explores the performance of
the algorithm under different group size and different
densities. From Figure 8, we can observe that the running
time increases with the increase in group size. Also, it is
observed that running time increases if the density of data
points increases.
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Figure 8. Running time varying group size 
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Figure 9. Running time varying number of category attributes

Next experiment shows the effect of the increase in
the number of category attributes while keeping the
group size to 32. In this experiment, we considered three
synthetic datasets. Figure 9 shows result. From the result,
we can see that there is an increase in computation time
with the increase in the number of category attributes.

In the fourth experiment, we compared our algorithm
with BBS approach using the dataset r. Although there
are some other spatial skyline query algorithms, we
considered BBS algorithm for comparison due to its
effectiveness in handling both spatial and non-spatial
attributes. From the result of Figure 10, we can see
that our algorithm (VR) significantly outperforms BBS
algorithm.

Next experimental results are shown in Figure 11. It
shows the relative dominance check between our algo-
rithm and BBS algorithm. From Figure 11, we can see
that our algorithm constantly performs less number of
dominance check compared with BBS algorithm.

Figure 12 shows the results of our sixth experiment. It
shows the effectiveness of our algorithm while there is
an increase in the number of category attributes. In this
experiment, we considered the synthetic dataset s1 and
group size 2. From the result of Figure 12, we can see
that in case of fixed number of users and more category
attributes, the performance of our algorithm is still better
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Figure 10. Comparative performance in running time varying group
size
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Figure 11. Comparative performance in dominance check varying group
size

than BBS algorithm.
The final experiment shows the effectiveness of our

algorithm in case of large number of category attributes
while there is an increase in group size. In this ex-
periment, we considered ten category attributes. From
the result of Figure 13, we can find that our algorithm
becomes comparatively better than BBS algorithm with
an increase in group size.

VI. CONCLUSION

In this paper, we proposed a framework for computing
skyline of spatial objects for a group of users located at
different locations. In the proposed framework, different
from existing works, we took into account not only spatial
features, but also non-spatial features of the objects.

Recently, many social network services create groups
considering users located in different places. Spatial sky-
line queries for a group can be able to play an important
role in such environments.

In our computation framework, we utilized V oR-tree
and “Sum Distance” to calculate spatial skyline objects for
a group of users of different locations efficiently. Exper-
imental results demonstrate that the proposed algorithm
is scalable enough to handle large and high dimensional
datasets.
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Figure 12. Comparative performance in running time varying number
of category attributes 
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Figure 13. Comparison in running time varying group size for large
number of category attributes

In this paper, we have considered static query points,
which mean all query points do not move. However, in
general, query points are not static. Therefore, we have to
develop an efficient algorithm that can handle the change
in the locations of query points in our future works.
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