
Socio-Technical Dependencies in Forked OSS
Projects: Evidence from the BSD Family

M.M. Mahbubul Syeeda, Imed Hammoudab
a Department of of Pervasive Computing, Tampere University of Technology, Finland.

Email: mm.syeed@tut.fi
b Chalmers and University of Gothenburg, Sweden.

Email: imed.hammouda@cse.gu.se

Abstract— Existing studies show that open source projects
may enjoy high level of socio-technical congruence despite
their open and distributed character. Such observation is
yet to be confirmed in the case of forking, where projects
originating from the same root evolve in parallel and are
typically lead by different development teams. In this paper,
we empirically investigate the endogenous and exogenous
characteristics of BSD family projects related to socio-
technical congruence. Our motivation is that BSD family,
as a representative example of forked projects, share a
common development ground for both the code-base and
the development community, which may influence their
evolution from a socio-technical perspective. Our study
results show that the BSD family maintain a certain level
of collaboration throughout the project history, mainly due
to a shared portion of the community. This partly explains
the relative harmony of socio-technical congruence levelsin
the BSD projects.

Index Terms— Open Source Software, Evolution, Conway’s
Law, Socio-Technical Congruence, Forking

I. I NTRODUCTION

SOFTWARE development requires effective commu-
nication, coordination, and collaboration among de-

velopers working on interdependent modules of the same
project. The need for coordination is even more evident in
Open Source Software (OSS) projects where development
is often more dispersed and distributed [1]. As argued
in the literature, such coordination and communication
may be influenced and guided by the cooperation needs
devised by the design of the software [2]. This suggests
that there might exist a two way mapping between the
communication patterns of the developer community and
the architectural dependencies among the components of
the software, in which one can be used to approximate
the other.

This collaboration can effectively be examined and
verified through the notion of socio-technical congruence
which defines the match between the coordination needs
established by the technical domain (i.e., the architectural
dependencies in the software) and the actual coordination
activities carried out by project members (i.e., within the
members of the development team) [3].

This work was supported in part by TiSE Graduate School, Tampere,
Finland and Nokia Foundation Grant, Finland.

In fact, socio-technical congruence provides an em-
pirical verification of a well-known but insufficiently
understood phenomenon known as Conway’s Law [4] and
describes to which extent the law is enforced in a given
software development project [3] [5]. Such empirical ver-
ification has been a primary motivation for many research
efforts in the realm of socio-technical congruence [6] [7].
However, research on the topic has always assumed that
development of a software project is performed by the
same organization or group of developers. In the case
of open source, projects may evolve in parallel, lead by
different development teams. This is known as “forking”
[8]. To the knowledge of the authors, no research has
been performed yet on socio-technical congruence in the
context of forked projects.

In an earlier work we have studied socio-technical
congruence, and the significance of Conway’s Law, in
the FreeBSD open source project [9]. Our previous study
showed that the congruence measure is significantly high
in FreeBSD and that the congruence value remains stable
as the project matured. In this work, we extend our
earlier study to cover the BSD project family, empiri-
cally investigating the endogenous and exogenous char-
acteristics of BSD projects. BSD projects are popularly
known in the research community. For instance, in [10],
change history information is extracted from BSD projects
for the visualization of change dependencies. Similarly,
FreeBSD project has been studied to verify the viability
of incremental development approach, and to identify the
common characteristics of successful OSS development
process in relation to their quality, in [11] and [12],
respectively.

Within the endogenous characteristics we investigated
the notion of socio-technical dependency through the
measure of socio-technical congruence in the individual
projects. In the technical domain, the architectural depen-
dencies have been constructed out of source code syntac-
tic information such as functional dependency, attribute
referencing and header file inclusion dependency. On the
social side, the coordination network has been built out
of email conversations between developers.

Among the exogenous characteristics, we examined to
what extent the forked projects collaborate and commu-
nicate with each other. As a measuring criteria of such

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2895

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.11.2895-2909

collaboration, we quantitatively measured the alignment
among the source code and the developer community
of the forked projects. The rationale here is that forked
projects hold the same root for both the code-base and the
community, thus sharing a common development ground.
Hereof it is worth to empirically investigate the extent to
which such common ground is maintained during projects
evolution.

The remaining of the paper is organized as follows.
Section II introduces a number of key concepts that this
study uses. Section III introduces the research questions
explored and Section IV presents our study design. Re-
sults are reported and discussed in Section V, followed
by final discussion and related work in Section VI. The
overall impact of missing data on the reported results and
the replication guidelines are presented in Section VII.
Possible limitations and threats to validity are highlighted
in Section VIII. Finally, Section IX concludes the paper
and sheds light on future research.

II. D EFINITIONS

In this section we define a set of concepts used in this
study.

A. Conway’s Law

Conway’s Law in its purest form states that “organi-
zations which design systems are constrained to produce
systems which are copies of the communication structures
of these organizations” [4]. In other words, the software
product architecture reflects the organizational structure
of its development team [4] [3]. In [13], Conway’s
Law is considered homomorphic and thus claimed to be
true in reverse as well. This means the communication
pattern within a developer community should reflect the
architectural dependency in the developed software. Thus,
Conway’s Law can effectively be interpreted as the basis
for studying the social and technical interdependency
within a software project [14].

B. Socio-technical congruence

The contemporary phenomenon “Socio-technical con-
gruence” is actually the conceptualization of Conway’s
Law. Socio-technical congruence can be defined as the
match between the coordination needs established by the
technical domain (i.e., the architectural dependency in the
software) and the actual coordination activities carried
out by project members (i.e., within the members of the
developer community) [3]. This coordination need can
be determined by analyzing the assignments of people
to a technical entity such as a source code module, and
the technical dependencies among the technical entities
[3]. Accordingly, developers within the community should
communicate if there exists a communication need. For
example, developers working on the same module or on
the interdependent modules should be coordinating.

C. Developer Contribution

In this work, developer contribution to a software
project can be defined as code contribution or any form
of commit made to the code base.

D. Explicit Architecture

The explicit architecture of a software presents the rela-
tionship among components of a software (e.g., modules,
files or packages) based on the actual design and imple-
mentation. For this work, functional dependency, attribute
referencing and header file inclusion dependency at code
file level are used to derive the Explicit Architecture of a
software product.

E. Explicit Coordination Network

The explicit coordination network is a social network
in which two developers have a relationship if they have
direct communication history as seen by the mailing
archives representing the social and technical interactions
among the developers.

F. Implicit Architecture

The implicit architecture defines an architecture of the
software where any two components (e.g., packages or
code files) are related if there are developers who have
either (a) contributed to both components, or (b) have
direct communication at organizational level (e.g., a one
to one email conversation). For instance, consider that
developer D1 has contributed to packages P1 and P2, and
developer D2 has contributed to package P3. Also con-
sider that both developers have direct communication at
organizational level as shown in Fig. 1(a). Thus according
to the definition, packages P1, P2 and P3 are linked to
each other in the Implicit Architecture (Fig. 1(b)).

G. Implicit Coordination Network

The implicit coordination network is the developer rela-
tionship network in which two developers have a relation-
ship if they have contributed either (a) to a common code
file or (b) to the code files that have direct relationships
in the Explicit Architecture. For instance consider that
developers D1 and D2 have contributed to package P1
and developer D3 has contributed to package P2. Also
consider that P1 and P2 have a functional dependency
(i.e., a direct relationship) as shown in Fig. 2(a). Then,
according to the definition, developers D1, D2 and D3 are
linked to each other in the Implicit Coordination Network
as shown in Fig. 2(b).

H. Forking

In the context of open source development,forking
occurs when a part of a development community (or a
third party not related to the original project) starts a
completely independent line of development based on
the source code of the original project [8] [15]. To be
considered as a fork, a project should have:

2896 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 1. (a) Explicit Coordination Network with contribution to code base (b) Corresponding Implicit Architecture

Figure 2. (a) Explicit Architecture with contributing developers (b) Corresponding Implicit Coordination Network

• A new project name.
• A branch of the software.
• A parallel infrastructure (web site, version control

system, mailing lists, etc.).
• And a new developer community.

Based on this definition, we propose the following
set of relationships within a pair of forked projects: (a)
parent-child, in which one project is forked from the
other, (b) siblings, if two projects are forked from the
same parent project, and (c) lineages, for all descendant
relationships in which (a) and (b) do not hold. For exam-
ple, in Fig. 3, NetBSD and OpenBSD have a parent-child
relationship, FreeBSD and NetBSD are sibling projects,
whereas FreeBSD, and OpenBSD are the lineages of
386BSD.

III. R ESEARCHQUESTIONS

Our choice of research questions is motivated by
our agenda to measure the exogenous and endogenous
characteristics of forked OSS projects related to socio-
technical congruence.

(RQ1) How does the software architecture compare
and evolve across forked OSS projects?

When a project is forked, the source code of the
parent project is copied [8]. Thus it is natural that at the
initial stage the source code, and hence the architecture,
of both systems are similar. Based on this observation,
we are interested in exploring the extent to which the
forked projects share common architectural structure
during their evolution. In doing so, we calculated and
compared the architectures of the forked projects at
three abstraction levels. Namely, at package level, at
first directory level and atnth directory level (i.e., the
last directory where the files reside). We argue that
this three level comparison can provide a holistic view
of the architectural overlapping. For instance, it might

be possible that forked projects maintain homogeneous
architectural design at higher level of abstraction (e.g.,
in package level), yet getting liberated at detailed
architectural level (e.g.,nth directory level).

(RQ2) How does the community compare and
evolve across forked OSS projects?

Traditionally, the developer community divides when
a project is forked [8]. This is typically followed by
a community rebuild and restructuring process in both
projects. Community members in both projects might
communicate and coordinate in such circumstances in
making both projects survive. Thus, our intention here
is to examine how these fragmented communities act in
building the projects: do they contribute to both projects?
Does such collaboration sustain during the evolution of
the projects?

(RQ3) How does the socio-technical congruence
evolve within the forked OSS projects?

Socio-technical congruence is a natural consequence
and a desired property for collaborative development
activities, like OSS projects [16]. Conventional wisdom
suggests that correspondence between the social
and technical domain of a project may reduce the
communication overhead and may increase productivity
[7]. Furthermore, lack of collaboration is classified
as a negative stimuli to performance [17] and has an
influence on lowering productivity [5]. Consequently,
socio-technical congruence can be a decisive property of
a successful project [3] [5] [16]. With strong congruence
measure projects can get more cohesive, organized,
and self-dependent with higher productivity. Thus our
intention here is to stress these reported observations in
forked OSS projects by examining the extent to which
Socio-Technical Congruence holds in forked projects.

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2897

© 2014 ACADEMY PUBLISHER

IV. STUDY DESIGN

This section presents in detail our study design, cover-
ing discussion on the case study selection, required data
sets, data acquisition, cleaning, and analysis process.

A. Case and Subject Selection

To explore the three research questions, we performed
a case study with three large (more than 1,414,641 LOC
[18]), long-lived (around 20 years of evolution history)
OSS projects that were forked from their predecessors.
These case study projects are FreeBSD [19], NetBSD [20]
and OpenBSD [21]. All three projects originate from the
386BSD project, which is the version of UNIX devel-
oped at the University of California, Berkeley. FreeBSD
and NetBSD were directly forked from 386BSD dur-
ing late 1993, and therefore have a sibling relationship.
OpenBSD was forked from NetBSD in 1995, thus having
a parent-child forking relationship. Whereas, FreeBSD
and OpenBSD are lineages of 386BSD. As a conse-
quence, the core of these projects encompass the code
base of 386BSD. The forked relationship among these
projects are shown in Fig. 3 and the lifetime of these
projects till 2013 are shown in Fig. 4.

Figure 3. Rough time line of the forked BSD projects

Our selection of the BSD project family was influ-
enced by the following factors: (a) the code base of
these projects have undergone continuous development,
improvement, and optimization for twenty years [19], (b)
these projects have been developed and maintained by
a large team of individuals [20], (c) the properties of a
forked project hold for these projects, (d) these projects
have extensively been used in earlier research on the
evolution of OSS projects [22] [23] [18], and (e) results
reported in this study can be stressed to OSS projects
having similar properties, e.g., forking history, domain,
community structure, and size.

B. Data Sets

OSS projects often consist of a number of software
development repositories. These repositories contain a
plethora of information on both the underlying software
and the associated communication and development
process [24] [25]. In the literature [26] a great

Figure 4. Life time of the BSD projects

emphasis was given to leveraging these repositories for
deriving technical dependencies as well as developers’
coordination patterns. The repository data are often
longitudinal, allowing for analysis along the whole
project evolution phases. Such data sources are highly
accepted and utilized medium for empirical studies on
OSS projects [27] [28] [29]. In this study we utilized the
following repositories.

Source code repository:We downloaded the source code
of each stable release of the three projects. FreeBSD
maintains its source code in Subversion version control
system, whereas NetBSD and OpenBSD use CVS. In
Fig. 5 we provide the details of the stable releases, the
data collected from each release, and the corresponding
download sources.

Mailing list archive: In OSS projects, email archives
provide a useful trace of task-oriented communication
and co-ordination activities of the developers during
project evolution [30]. In the studied projects, email
archives are categorized according to their purpose
including commit records, stable release planning, chat,
user emails, and bug reports. The archives contain the
commit history and the email conversations since the
initiation of the projects. In this study we used a complete
list of commit records and email conversations from the
beginning of each studied project. Consequently, data
from relevant email archives was extracted and refined
from each project, detail of which is presented in Fig. 6.

C. Data Collection

From source code repositories:The source code
of each stable release of the selected projects was
downloaded to a local directory. Fig. 5 lists the stable
releases that were downloaded for each project. To extract
data from each of the releases, a parser was written
in Java. The parser searched through each directory of
a stable release, read through the files in a directory
and parsed relevant data. Each code file in a release
contains a copyright directive. Under this directive the
contributing developer name, email, and the copyright
year is mentioned. The developers that were found in
the process were considered as the initial contributors
to that file. To get a complete list of contributors for
a stable release, developers names were extracted from
the commit history log and were merged with this
contributor list. This process is described in following

2898 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 5. Stable Releases of BSD Projects (FreeBSD, NetBSD and OpenBSD)

Figure 6. FreeBSD, NetBSD and OpenBSD email archives

sections. Information that was extracted using the parser
is listed in Fig. 5, column 5. The parsed data for each
stable release was then stored in a spreadsheet for further
analysis.

From email archives: Data that is maintained in
the email archives can be broadly classified into two
groups, (a) email archives that maintain CVS/SVN
commit records, and (b) archives that store general
community discussions (e.g., on stable release planning,
chat entries). Fig. 6 presents the total number of email
archives that were extracted for each project along
with specific names of archives containing the commit
records, data collection period, collected data, and their
analysis purpose.

For extracting data from each email entry, a data extrac-
tion program was written in Java. This data extractor used
the web interface of the email archives. Thus each email
was read as an HTML page and the data was extracted
using the Jsoup HTML parser [31]. Data extracted from
each email entry is listed in Fig. 6, column 4. This data
was then stored in spreadsheets according to the archive

name and year. After that, email data was sorted according
to each stable release as follows: (a) emails and commit
records were categorized into a specific release if the
release number was mentioned in email subject (e.g., SVN
commit emails provide release number in email subject
for FreeBSD) and (b) other emails for which the re-
lease numbers were not mentioned (e.g., freeBSD-stable,
freeBSD-chat and some of the CVS commit emails), the
posting dates were checked. In this case, for instance, an
email was categorized to stable release 3 if its posting
date falls between the release date of stable release 2 and
3. The rationale here is that developers would commit to
the code base and discuss on its release strategy before it
is officially released.

For the CVS/SVN commit email, we parsed the
commit path to the repository. The commit path was
either mentioned in the subject or in the email body
(in specified format). We extracted information like the
directory path, package name, and if provided, the name
of the modified code file(s) and the stable release number.
The name of the committer for each of these CVS/SVN
commit emails was considered as a contributor to the

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2899

© 2014 ACADEMY PUBLISHER

code base. Contributors found in this process were
combined with the contributors found in the code base
to get a complete list of contributing developers for each
stable release.

Data preprocessing: Data that was extracted and
parsed following the above process contained anomalies
in many cases. For instance, developer names and email
addresses might contain punctuation characters like
semi-colons, inverted comas, brackets, unnecessary white
space, and hyphens. Furthermore, parsers may have
parsed data inappropriately in some cases. For example,
the textcopyright rights reservedcan be treated as part
of developer name while parsing copyright directive from
a code file. To clean such anomalies data and punctuation
characters, data cleaning programs were written in Java.
To ensure the correctness of this process, we performed
a manual checking on a randomly selected data to verify
their correctness.

D. Data Analysis

This section is focused on topics related to the con-
struction of the communication networks, architectures,
and their use in measuring the socio-technical congruence
utilizing the collected data.

Data analysis is restricted to the stable releases of the
projects. This means, analysis point of this study is the
stable release dates for a project. This choice of analysis
point (instead of discrete time stamps) is made due to
the following reasons: (a) a stable release reflects clear
milestone for a project, which can also be counted as
a step towards successful evolution, and (b) the source
code for this study is available for stable releases only,
which makes it obvious choice to take release dates as
analysis points.

Developer Contribution: Developer contributions
were measured release-wise in two ways: (a) from the
copyright information provided in each source code
file of a release and (b) from the commits made by
a developer for a release. Fig. 7(a) shows a sample
contribution made by developerJohn Birrell in FreeBSD
stable release 3.

Explicit Architecture: The Explicit Architecture of
a stable release was constructed based on functional
dependency, attribute referencing, and header file
inclusion dependency at code file level. For doing
this, we used a tool named Understand [32]. This tool
takes a source code repository as input and generates
the corresponding Explicit Architecture. This tool has
been used in previous research, e.g., in [33] [34]. The
explicit architecture for each stable release of a project
was derived at two abstraction levels, e.g., at code file
level and at package level. An example of these two
architectures for FreeBSD release 3 is shown in Fig. 8.

Explicit Coordination Network:Following the definition

in Section II-E, the Explicit Coordination Network
was derived for each stable release of a project. Email
conversations for each stable release were used for
this purpose. Fig. 7(b) shows example relationships in
the Explicit Coordination Network of FreeBSD stable
release 3. The weight column in this figure shows the
number of email conversations that took place between
two developers.

Implicit Architecture: The implicit architecture was
generated following the definition in Section II-F. A
partial snapshot of the package level Implicit Architecture
for FreeBSD stable release 3 is shown in Fig. 9(a). In
this architecture, a link weight between two packages
designates the number of times the conditions (from
Section II-F) hold. The significance of this network lays
in the fact that developer communication patterns within
the community may simulate the actual architectural
dependency. That is, two developers should have
communication if they are contributing to same or
interrelated components of the software.

Implicit Coordination Network: This network was
generated according to the definition presented in Section
II-G. A snapshot of this network for FreeBSD stable
release 3 is shown in Fig. 9(b). The network shows
the actual communication need among developers,
based on the design of the software (i.e., the Explicit
Architecture). This network is essential due to the fact
that if two subsystems exchange information, it is likely
that communication among the developers of the two
subsystems exists [4].

Measuring concurring and congruence among
architectures and networks: Comparison among the
architectures and communities was measured for two
purposes: (a) to measure how the software architectures
and communities compare and evolve across forked
projects, and (b) to identify how the socio-technical
congruence evolve within each forked project.

We applied the following similarity measure to serve
both purposes. This approach is analogous to the fit
measure used in organizational theory method [5]. An
identical approach was applied in [9] for measuring the
congruence in FreeBSD project.

Concurring/Congruence =
RefA/N

⋂
AnalogousA/N

|RefA/N |
×

100) (1)

In the above equation,RefA/N is the reference
architecture or network (either explicit or implicit), and
AnalogousA/N it the analogous architecture or network
(either explicit or implicit) with which concurring or
congruence will be measured.

This equation measures concurring between the two
architectures or networks with respect to the reference
one,RefA/N . Therefore, the numerator of equation (1)
identifies the commonalities between the two given ar-

2900 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 7. (a) Sample contributions made by developer John Birrell (b) Sample relationships in Explicit Coordination Network

Figure 8. (a) Code file level Explicit Architecture (b) Package level Explicit Architecture

Figure 9. (a) Implicit Architecture (b) Implicit Coordination Network

Figure 10. (a) Explicit Architecture (b) Implicit Architecture (c) Congruence

chitectures or networks, then is divided by the size of the
reference architecture and expressed in a scale of 100.

The application of Equation (1) to specific cases is
presented next.

Comparing the Architecture:To measure and compare

the architectural concurring among the three projects,
we performed a stable release wise comparison of the
explicit architectures for each pair of forked projects.
Thus in this case, bothRefA/N and AnalogousA/N

represent two comparable explicit architectures taken
from two projects. To be comparable, the stable releases

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2901

© 2014 ACADEMY PUBLISHER

of two projects should be released around the same
time period. For instance, consider the stable releases
of FreeBSD and NetBSD projects. FreeBSD has 10
stable releases whereas NetBSD has 14 (Fig. 5, column
2). Thus to compare two releases, each taken from
the two projects, we determined the release date-wise
correspondence. Therefore, FreeBSD release 6 and
NetBSD release 3.0 have a correspondence as they
were released in November, 2005 and December, 2005,
respectively.

The intersection operation in numerator of equation (1)
is calculated at three abstraction levels of the explicit
architectures, namely, package level (p), first directory
level (d1) and code file directory level (dn). For package
level, the intersection operation results in the number of
packages that are common (by comparing the names of
the packages) between two releases. On the other hand,
for the directory level, e.g.,d1 and dn, the intersection
operation provides the total number of directories that
have the complete match in their directory paths. As
an illustrative example, consider FreeBSD release 6 and
NetBSD release 3.0 which have 19 and 22 packages,
respectively. Thus|FreeBSD − release− 6| = 19 and
|NetBSD − release− 3.0| = 22. The intersection oper-
ation between these two explicit architectures resulted in
16 packages having the same names.

Finally, the concurring value was calculated taking
each of these architectures as a reference architecture.
This value depicts the extent to which each of these
stable releases coincide with the other. In continuation
to the above example, FreeBSD release 6 has 84.21%
(16/19*100) and NetBSD release 3.0 has 72.72%
(16/22*100) concurring with each other. These values
were then plotted in a trend chart to visualize how such
concurring evolves with the projects. An example of this
process is presented in Fig.11 and discussed in Section
V-A.

Comparing the Community: To compare the
communities among the three forked projects using
the similarity measure in Equation (1), we carried out
the following: first, the release wise developer list was
generated for each project. This step was discussed
in section IV-C. Second, for a given pair of releases,
the union operation in the numerator identifies the
number of contributors in both releases whose names are
lexically identical. Finally, for each of the stable releases,
concurring value was calculated considering each as a
reference network. These values were then plotted in a
trend chart. An example of this process is presented in
Fig. 14 and discussed in Section V-B.

Socio-technical Congruence: To measure socio-
technical congruence using the similarity measure in
(1) the following approach was applied: the intersection
operation in numerator was carried out between (a)
Explicit Architecture and Implicit Architecture, and
between (b) Explicit Coordination Network and Implicit

Coordination Network. This operation identifies the
number of edges (or relationships) that are identical for
both the architectures or the networks.

The former measure (in (a)) illustrates the match
between the architectural dependency and the architecture
produced due to the communication structure of the
community. The latter measure (in (b)) in turn depicts
the match between the actual coordination activities in
the community and the coordination need established
by the architectural dependency of the software. These
measures verify Conway’s Law and the reverse Conway’s
Law, respectively. Both the measures were determined
for each stable release for all three projects. A partial
snapshot of the congruence between Explicit and Implicit
Architectures of FreeBSD stable release 3 is shown in
Fig. 10.

Then to identify the extent to which the implicit
architecture and implicit network approximate the
corresponding explicit one, we calculated the similarity
measure in (1), taking each of the explicit architecture and
network as the reference one. The resulting values were
plotted in a trend chart for each project to conceptualize
their evolution pattern. An example of this analysis is
presented in Fig. 17 and discussed in Section V-C.

E. Implementation and Verification

Tools Used In the Study:A number of existing tools
and OSS packages were used in this work. For instance,
we used the toolUnderstand (version: 3.1.659)[32] to
generate the Explicit Architectures. To read/write excel
files Apache POI [35] was used. Also, Jsoup HTML
parser [31] was used to parse the HTML files.

Implementation and Verification of the Developed
Programs: We implemented several data extraction,
cleaning, and analysis programs in Java for this work.
Data extraction programs were used to extract data from
relevant sources and cleaning programs were used for
removing the anomalies in the collected data. To verify
the correctness of these programs, a two pass evaluation
were conducted. First, the programs were tested with a
limited number of data samples taken from each of the
projects. Notified bugs (e.g., errors in the parsed data for
an HTML tag) were fixed accordingly. Second, a manual
checking on a random sample of the actual collected
data was done. The accuracy of collected data in the
second pass was reported to be over 97%.

Additionally, analysis programs were written for gener-
ating the architectures, communication networks, release-
wise comparisons, and for measuring congruence. These
programs in turn were tested following a similar method
as stated above.

V. RESULT ANALYSIS

The target of this study is three-fold. First, we verify
the extent to which the forked projects collaborate in

2902 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

both technical and social domain. Second, we measure
the socio-technical congruence in each project to concep-
tualize the socio-technical dependencies. Finally, we study
the projects’ pattern of evolution during their maturation.

A. Pattern of Architecture Evolution

In this section we present the results of the evolution
of the architectural design for each forked project in
relation to the other projects. In verifying this, pair-
wise comparison of the architectural designs (each taken
form the compared projects) were made at three abstrac-
tion levels. This action was performed according to the
procedure presented in Section IV-D. The result of this
comparison is presented in Figs. 11, 12 and 13, one for
each pair of projects. These figures show the concurring of
architectures (plotted in the Y-axis) for each comparable
stable release pair (plotted in the X-axis) of the projects.

Overall architectural evolution revealed similar patterns
for all three types of forking relationships, e.g., sibling
projects, parent-child projects, and lineages. At higher
abstraction level (e.g., package level) the architecturesof
the forked projects maintain high correspondence between
them, which remains consistent as the projects evolve.
However, at the detailed architectural level (e.g., at di-
rectory levelsd1 anddn), the design and implementation
became more disjoint and independent.

For instance, in Fig. 11, the package level concur-
ring between the architectures of FreeBSD and NetBSD
projects remain high throughout their release history. For
FreeBSD it remains between 61,9% and 84,21%, whereas
for NetBSD it is between 57,69% and 80% with slight
drifts between the ranges. Contrary to this, directory level
overlapping (d1 and dn) point out a different trend. In
both of these cases, a consistent decrease in concurring
can be noticed. For example, for NetBSD and FreeBSD
the overlapping atd1 directory level begins with 82,81%
and 56,1% respectively, which gradually decreases to
37,39% and 41.72% respectively. Likewise, atdn level,
the overlapping goes down to 3,63% and 3,34% from
29,77% and 10,82% respectively.

For the other two cases (Fig. 12 and 13), a similar trend
was noticed with minor distinction during the early stages
of the projects. For instance, in Fig. 13 the overlapping
of all three architectural level starts with a very low ratio,
which however had a sharp rise in the next release. For
the subsequent releases, the pattern remains similar to the
observations stated earlier.

Additionally, at any given point of the comparison,
the adherence to common architectural design falls off
significantly from abstract to detail level of the design. For
instance, in 2012, the FreeBSD package level overlapping
is 75%, which is however around 41,72% and 3,34% for
directory level overlappingd1 anddn, respectively. This
observation holds for all the three projects.

These observations indicate that the BSD forked
projects preserve a common structure at higher level of
design, which are however, get liberated progressively
at the detailed architectural design. However, thorough

analyses of architectural design need to be conducted to
fully affirm this claim.

B. Pattern of Community Evolution

Forking of a project causes a split in the community.
The fragmentation of the community is typically followed
by a rebuild and restructuring phases in both projects
(the original and the fork). However, both projects share
the same source of code-base, which could stimulate
the development communities of the two projects to
contribute to both. This observation lead us to investigate
the extent to which the community members (from each
project) contribute during the evolution of both projects.

The investigation was done according to the process
defined in Section IV-D. The results are presented in
Fig. 14, 15, and 16, one for each pair of projects.
The findings reveal that the level of participation of the
community members in the compared projects remains
consistent within a given range. Also, a similar pattern
of participation is noticed for the three types of forking,
confirming the earlier observation in Section V-A.

Relating these observations to individual cases show
that for the FreeBSD and NetBSD projects (Fig. 14),
the community overlapping remains between 23,49% and
44,9%, whereas for NetBSD it is between 26,47% and
44,23%. Within this range of participation there exist
several drifts. For instance, in 1999 and 2007 (Fig. 14), a
decrease in participation can be observed.

For the other two cases (Fig. 15, and 16), the pattern
of overlapping follows a similar trend, except for the first
two releases. This observation is similar to that discussed
in Section V-A. For instance, the level of contribution
rises sharply after having a low participation at the early
release. Apart from this, the participation level (in Fig.
15) for NetBSD remains between 42,69% and 50,3%, and
for OpenBSD between 34,42% and 38,31%. Similarly, for
FreeBSD and OpenBSD (Fig. 16) it is 30,58%-35,05%
and 27,18%-30,38%, respectively.

These results lead to the point that a certain group
of community members maintain contributions to all the
projects. The number of participation also remains stable
throughout the evolution.

C. Evolution pattern of Socio-technical Congruence

The measurement of Socio-technical Congruence for a
project is a two step process. First, the extent to which the
communication patterns of the members of the developer
community resemble the actual architectural dependencies
is verified. And then, the resemblance of the architecture
to the community communication is investigated. In doing
so, we derived both the implicit and explicit architectures
and community collaboration networks, and measured the
corresponding congruence. This process was discussed in
detail in Section IV-D.

The evolution of congruence at architectural level for
the three projects is shown in a trend chart in Fig. 17. In
this figure, the congruence approximation is plotted in the

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2903

© 2014 ACADEMY PUBLISHER

Figure 11. Architectural evolution between the sibling forked projects (FreeBSD and NetBSD)

Figure 12. Architectural evolution between parent-child forked projects (NetBSD and OpenBSD)

Y-axis (in percentile value) against each stable release of
the projects (plotted in the X-axis).

For FreeBSD (the blue line in Fig. 17), the approxima-
tion of the congruence consistently has risen starting from
60,5% at the first stable release and has gone up to 89,4%.
It had a sharp rise during the early five releases and got
stabilized for the later six releases. During this period the
congruence level remained between 84,83% and 89,4%.
We considered the first four congruence values as outliers
as a project usually goes under considerable restructuring
and reformation after it is being forked.

For OpenBSD (the green line in Fig. 17) we observed
a similar trend of congruence to that of FreeBSD. For the
initial two releases the approximation of congruence were
around 75%, that increased sharply to 88,38% on the third
stable release. Till then onwards it remained stable within

the range 85,56% and 88,78%.

In contrast to these two projects, NetBSD (the maroon
line in Fig. 17) had a different pattern. In NetBSD the
congruence approximation started with 85% and remained
stable around 80,77% to 87,5% for the first twelve re-
leases. Nevertheless, for the recent releases (e.g., the last
two stable releases), the project experienced a decrease in
congruence which has gone bellow 80%.

Accumulation of these results portrays that the approx-
imation of the Explicit Architecture by the congruence
is considerably high in all these three projects, which
remains stable throughout the evolution. This implies that
the architecture derived from the communication pattern
of the developer community effectively represents the ac-
tual architecture of the software. That is, to a considerable
extent the communication of the contributing developers

2904 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 13. Architectural evolution pattern between lineage forked projects (FreeBSD and openBSD)

Figure 14. Community concurring pattern between FreeBSD and
NetBSD projects

Figure 15. Community concurring pattern between NetBSD and
OpenBSD projects

in the community may actually be due to the coordination
needs as identified by the architectural dependencies.

On the other hand, the approximation level of the
congruence to that of the Explicit Coordination Network
reveals a similar pattern for the three projects. Fig. 18

Figure 16. Community concurring pattern between FreeBSD and
OpenBSD projects

shows the evolution of approximation against each stable
release of the projects.

For FreeBSD (the blue line in Fig. 18), the approx-
imation of the congruence remained between 70,63%
and 87,31% from the fourth stable release onwards. A
few drifts in congruence in the early three releases were
noticed, which can be justified with the same reasoning as
before. Yet, there was a decreasing trend of congruence
noticed for the last two stable releases.

In the case of OpenBSD (the green line in Fig. 18),
the approximation of the congruence to that of Explicit
Coordination Network started with 80%, and remained
stable between the value 73,35% and 87,77% during the
entire evolution of the project. Only for the last release the
congruence value went down to 39,58%, which is mainly
due to missing data.

For NetBSD (the maroon line in Fig. 18) the congru-
ence approximation started with a high value of 98,87%
and remained stable between 8139% and 98,87% as
the project progressed. Only for the tenth release (May
2005 in the chart) the congruence has gone as bellow as

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2905

© 2014 ACADEMY PUBLISHER

Figure 17. Evolution of Congruence at Architectural Level of the BSD Projects

Figure 18. Evolution of Congruence at Community Level of theBSD Projects

17,23%. But it can be treated as an outlier due to missing
data. Yet there was a slight decrease noticed for the last
three stable releases.

To summarize these results, it can be conceived that
the congruence approximation to that of Explicit Coordi-
nation Network is considerably high for the three projects.
That is, the communication pattern of the developer
community derived from the architectural dependency of
the components effectively resembles the actual com-
munication pattern. Thus, the communication pattern of
contributing developer community can be used to simulate
the underlying architectural dependency of the software
to a great extent.

VI. D ISCUSSION

In this section we hereby summarize the findings of
this study and possible implications in relation to prior
works.

A. Research Questions Revisited

The evidence presented provides a strong indication
that each forked project in the BSD family enjoys a
high level of Socio-technical congruence throughout their

evolution history. Thus, it can be affirmed that to a
considerable extent the communication of the contributing
developers in the BSD communities might be due to the
coordination needs as identified by the technical depen-
dency, and vice-versa. This observation is in-line with the
prior work that reported congruence as a desired property
and a natural phenomenon of collaborative development
works [16] [36].

Alongside these observations, communities of the
forked BSD projects have maintained a certain level of
collaboration throughout the project history. Our reported
model of collaboration shows that a portion of the com-
munity is mutual for both the projects. In literature, this
group of community members are termed as the bridge
between the projects [37], and a means of information
flow and collaboration [37] [38].

Moreover, the architectural design at higher abstrac-
tion level has remained homogeneous among the forked
projects. This might have supported the developer com-
munity with better understanding of the overall system
designs and have created a common ground for collabo-
ration and contribution. However contrary to this, at detail
architectural level these projects are progressively getting
liberated. This could be explained by the fact that the

2906 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

developer community of each fork has adopted their own
implementation strategies when it comes to fine grained
design decisions.

Finally, it was noticed that the pattern of community
and architectural evolution for all the three forking rela-
tionships (e.g., siblings, parent-child and lineages) have
followed similar patterns. This observation highlights the
point that forked projects that have originated from the
same root project would ideally share a common archi-
tectural design and a healthy inter-project collaboration.

B. Implications

It can be argued here that Socio-technical congruence
plays a pivotal role in forming cohesive and organized
community driven projects, which eventually leads to
their successful evolution with high quality. This argu-
ment is also affirmed in earlier literature conducted on
in-house projects: Higher congruence influences project
success [3] [5] [16], with improved productivity [39] [6],
maintainability [40], and quality [7].

This measure of socio-technical congruence would bet-
ter serve the purpose of software development process and
organization. Because it provides a quick index of how
well the organization is actually aligned with the current
and planned sub-division of responsibility in the project
[41]. Additionally, the Implicit Architecture can be used
as a complementary to the traditional reverse engineering
process [42] [43] to derive and validate the recovery of
the Explicit Architecture of legacy systems.

The identified pattern of collaboration among the three
projects could be one way to explain the sustainability of
the forked projects [44], particularly during their early
formation stages. Additionally, further study could be
initiated to verify the impact of such collaboration on
cross project porting and code cloning [45] [46].

Overall, based on our study results, we claim that
the traditional perception of forking in OSS projects,
which is thought to have negative stimuli for sustainable
evolution of the projects [8], can be effectively remedied
though (a) maintaining a consistent and cohesive abstract
architectural design to form a common ground of collabo-
ration among the forked projects, (b) adopt a collaboration
model in which members of a project could participate in
other forks, and (c) maintain a consistent and high socio-
technical congruence within the project.

None-the-less, this study puts a step forward in reason-
ing about the successful evolution of forked OSS projects,
as this perspective has rarely been studied in current
literature on OSS evolution analysis [8] [47].

VII. O N THE M ISSING DATA AND REPLICATION OF

THE STUDY

Data collection process for this study sufferers from
some missing data. The missing data constitutes the gen-
eral communication emails stored in the email archives.
Missing email conversations are encountered for NetBSD
and OpenBSD projects. To be specific, email conver-
sations during the period of April, 2005 to May, 2005

can not be extracted fully for NetBSD project. Whereas
for OpenBSD project, missing emails are noticed during
the period of September and October, 2012. In case of
NetBSD it is mainly due to broken links to the archives,
and for OpenBSD it is probably due to unavailability of
the data during that time period.

However, the volume of such missing data is not
massive, and thus, have little impact on the overall results.
Only at the two points of congruence measure (as dis-
cussed in Section V-C), such missing data injected drifts,
which however, do not hamper the overall trend of the
congruence.

Replication of the study depends on addressing several
issues, which includes, (a) data collection from the rele-
vant sources, (b) cleaning and representation of the data
and finally, (c) carrying out the analysis. In what follows,
a guideline to accomplish these tasks.

Data is collected from two sources, SVN/CVS reposito-
ries and email archives. A detail discussion on download-
ing and extracting data from these sources are presented
in Sections IV-B and IV-C. However, to ease this process
of data collection for interested researchers, we make
available the extracted data in the link given bellow1.
Further instructions on how to interpret and use the data
in replicating this study is discussed in the given link.

Finally, generating the architectures and networks, and
carrying out the congruence measure are done thorough
the implementation of scripts. There scripts are directly
derived from the definitions and analysis methods dis-
cussed in Sections II and IV-D, respectively. Tools and
packages listed in Section IV-E are used for script imple-
mentation. All the packages are open source and are avail-
able online for free downloading. However, the scripts
used in this study are not made available in the given
link. If researchers require assistance in implementing
the scripts, we could provide adequate guidelines and the
scripts upon request2.

VIII. T HREATS TOVALIDITY

The following aspects have been identified which
could lead to threats to validity of this study.

External validity (how results can be generalized):As
case study subject, projects from the BSD family were
selected, which are FreeBSD, NetBSD and OpenBSD.
All these projects belong to the operating system domain,
have large developer and user communities, and have
over twenty years of evolution history. Additionally, OSS
evolution studies often used these projects as case study.
Thus it might be possible to stress the results reported
in this article to the population of OSS projects having
similar properties, e.g., domain, project size, evolution
history. Yet, we cannot claim complete external validity
of the results.

1http://msyeed.weebly.com/replication-package.html
2Contact:rajit.cit@gmail.com

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2907

© 2014 ACADEMY PUBLISHER

Internal validity (confounding factors can influence
the findings):Missing historical data - the study has been
able to make use only of available data. It is possible,
for instance, that there are commit records and developer
chat entries other than that recorded in the emails.
Additionally, we encountered several broken URL links
for emails that could not be retrieved. Thus, we make
no claim on the completeness of the email entries with
relevance to this study target.

Construct validity (relationship between theory and
observation):There exist a few issues that concern the
construct validity of the study. First, part of the email
entries were categorized to a specific stable release
according to their date of post. The reasoning here is
that developers commit and discuss on release planning
before the product is officially released. Yet, we do not
claim the perfection of this approach. Second, the data
extraction programs written for this study provided an
accuracy of 97%, which was measured with random
sample of the collected data. This may affect the
construct validity.

IX. CONCLUSIONS

The current study provides empirical evidence that
successful OSS forked projects that are lineages of an
ancestor project may follow similar evolution patterns
in terms of (a) technical and social dependencies and
(b) achieving a high level of congruence that sustains
throughout their evolution. Though from a technical per-
spective the forked projects get more and more indepen-
dent by time, they may enjoy a sustainable level of cross
project collaboration. Keeping in line with prior evidence
[9], we can argue that congruence is an implicit character-
istic of successful forked OSS projects, and combining it
with inter project collaboration would portray the reason
behind the success of such projects. This claim however
needs further empirical evidence. As an alternative to the
qualitative argumentation approach taken in our study,
one could frame our research questions as hypotheses
and perform statistical analysis to evaluate them. This
constitutes our future work.

REFERENCES

[1] A. Mockus, R. Fielding, and J. Herbsleb, “Two case
studies of open source software development: Apache and
mozilla,” Journal of TOSEM, vol. 11, no. 3, pp. 309–346,
2002.

[2] G. Valetto, S. Chulani, and C. Williams, “Balancing the
value and risk of socio-technical congruence,”Workshop
on Sociotechnical Congruence, 2008.

[3] I. Kwan, A. Schrter, and D. Damian, “Does socio-technical
congruence have an effect on software build success? a
study of coordination in a software project,” inIEEE Trans.
Software Eng., vol. 37, no. 3, 2011, pp. 307–324.

[4] M. E. Conway, “How do committees invent?”Datamation,
vol. 14, no. 4, pp. 28–31, 1968.

[5] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.
Carley, “Identification of coordination requirements: Im-
plications for the design of collaboration and awareness
tools,” in ACM CSCW, 2006, pp. 353–362.

[6] L. Colfer and C. Baldwin, “The mirroring hypothesis: The-
ory, evidence and exceptions,” inworking paper, Harvard
Business School, 2010.

[7] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality: an empirical
case study,” inICSE ’08 Proceedings of the 30th inter-
national conference on Software engineering, 2008, pp.
521–530.

[8] G. Robles and J. Gonzalez-Barahona, “A comprehensive
study of software forks: Dates, reasons and outcomes,” in
OSS, IFIP AICT 378, 2012, pp. 1–14.

[9] M. Syeed and I. Hammouda, “Socio-technical congruence
in oss projects: Exploring conways law in freebsd oss
evolution,” inProceedings of 9th International Conference
of Open Source Systems (OSS), Springer, 2013.

[10] M. Fischer, J. Oberleitner, J. Ratzinger, and H. Gall, “Min-
ing evolution data of a product family,”ACM SIGSOFT
Software Engineering Notes, vol. 4, no. 30, pp. 1–5, 2005.

[11] J. Niels, “Putting it all in the trunk: incremental software
development in the freebsd open source project,”Informa-
tion Systems Journal, vol. 11, no. 4, pp. 321–336, 2001.

[12] T. Dinh-Trong and J. Bieman, “The freebsd project: A
replication case study of open source development,”Soft-
ware Engineering, IEEE Transactions on, vol. 31, no. 6,
pp. 481–494, 2005.

[13] J. Han, C. wu, and B. Lee, “Extracting development
organization from open source software,” in16th Asia-
Pacific Software Engineering Conference, IEEE., 2009, pp.
441–448.

[14] E. S. Raymond, “The new hacker’s dictionary (3rd ed.),”
in Cambridge, MA, USA: MIT Press, 1996.

[15] L. M. Nyman and T. Mikkonen, “To fork or not to fork:
Fork motivations in sourceforge projects,” inSource Sys-
tems: Grounding Research : IFIP Advances in Information
and Communication Technology, 2011, pp. 259–268.

[16] T. Browning, “Applying the design structure matrix to
system decomposition and integration problems: a review
and new directions,” inEngineering Management, IEEE
Transactions on, vol. 48, no. 3, 2001, pp. 292–306.

[17] M. E. Sosa, S. D. Eppinger, and C. M. Rowles, “The
misalignment of product architecture and organizational
structure in complex product development,” inManage-
ment Science, vol. 50, no. 12, 2004, pp. 1674–1689.

[18] I. Herraiz, J. Gonzalez-Barahona, G. Robles, and D. Ger-
man, “On the prediction of the evolution of libre software
projects,” in ICSM, oct. 2007, pp. 405 –414.

[19] FreeBSD, “http://www.freebsd.org/,” 2013.
[20] NetBSD, “http://www.netbsd.org/about/,” 2013.
[21] OpenBSD, “http://www.openbsd.org/,” 2013.
[22] J. Wu, R. Holt, and A. Hassan, “Empirical evidence for soc

dynamics in software evolution,” inSoftware Maintenance,
2007. ICSM 2007. IEEE International Conference on, oct.
2007, pp. 244 –254.

[23] I. Herraiz, “A statistical examination of the evolution and
properties of libre software,” inSoftware Maintenance,
2009. ICSM 2009. IEEE International Conference on, sept.
2009, pp. 439 –442.

[24] J. C. JE, L. V. LG, and A. Wolf, “Cost-effective analysis
of in-place software processes,” inIEEE Transactions on
Software Engineering, vol. 24, no. 8, 1998, pp. 650–663.

[25] D. Atkins, T. Ball, T. Graves, and A. Mockus, “Using
version control data to evaluate the impact of software
tools,” in Proceedings 21st International Conference on
Software Engineering, vol. 24, no. 8, 1999, pp. 324–333.

[26] I. Kwan, M. Cataldo, and D. Damian, “Conway’s law
revisited: The evidence for a task-based perspective,”IEEE
Software, vol. 29, no. 1, pp. 90–93, 2012.

[27] M. Goeminne and T. Mens, “A framework for analysing
and visualising open source software ecosystems,” inPro-
ceeding IWPSE-EVOL ’10, 2010, pp. 42–47.

2908 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

[28] D. M. German, “Using software trails to reconstruct the
evolution of software,” inJOURNAL OF SOFTWARE
MAINTENANCE AND EVOLUTION: RESEARCH AND
PRACTICE, vol. 16, 2004, pp. 367–384.

[29] Y. Wang, D. Guo, and H. Shi, “Measuring the evolution
of open source software systems with their communities,”
in ACM SIGSOFT Software Engineering Notes, vol. 32,
no. 6, 2007.

[30] W. Zhang, Y. Yang, and Q. Wang, “Network analysis of
oss evolution: An empirical study on argouml project,” in
IWPSE-EVOL11, 2011.

[31] jsoup: Java HTML Parser, “http://jsoup.org/,” 2013.
[32] U. S. C. Analysis and Metrics, “http://www.scitools.com/,”

2013.
[33] D. Darcy, S. Daniel, and K. Stewart, “Exploring com-

plexity in open source software: Evolutionary patterns,
antecedents, and outcomes,” inProceedings of the 43rd
Hawaii International Conference on System Sciences,
2010, pp. 1–11.

[34] M. Simmons, P. Vercellone-Smith, and P. Laplante, “Un-
derstanding open source software through software ar-
chaeology: The case of nethack,” inProceedings of the
30th Annual IEEE/NASA Software Engineering Workshop,
2006, pp. 47–58.

[35] A. P.-J. A. for Microsoft Documents,
“http://poi.apache.org/,” 2013.

[36] J. Herbsleb and R. Grinter, “Architectures, coordination,
and distance: Conway’s law and beyond,” inJournal IEEE
Software, vol. 16, no. 5, 1999, pp. 63–70.

[37] M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open
source communities,” inIFIP International Federation
for Information Processing, Volume 203, Open Source
Systems, 2006, pp. 21–32.

[38] J. Gonzalez-Barahona, L. Lopez, and G. Robles, “Com-
munity structure of modules in the apache project,” in
Workshop on Open Source Software Engineering, 2004.

[39] C. Baldwin and K. Clark, “Design rules: The power of
modularity,” in MIT Press, 2000.

[40] F. P. Brooks, “The mythical man-month,” inAnniversary
Edition: Addison-Wesley Publishing Company, 1995.

[41] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Weg-
man, and C. Williams, “Using software repositories to
investigate socio-technical congruence in development
projects,” in ICSE Workshops MSR, 2007, pp. 25–25.

[42] H. Dayani-Fard, Y. Yu, J. Mylopoulos, and A. Periklis,
“Improving the build architecture of legacy c/c++ software
systems,” in8th FASE, 2005.

[43] R. Kazman and S. Carrire, “Playing detective: Recon-
structing software architecture from available evidence,” in
Technical Report CMU/SEI-97-TR-010, Carnegie Mellon
University, 1997.

[44] J. Gamalielsson and B. Lundell, “Sustainability of open
source software communities beyond a fork: How and why
has the libreoffice project evolved?”Journal of Systems
and Software, vol. 89, pp. 128–145, 2014.

[45] B. Ray and M. Kim, “A case study of cross-system porting
in forked projects,” inProceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Soft-
ware Engineering. ACM, 2012, p. 53.

[46] D. German, M. D. Penta, Y.-G. G. éhéneuc, and G. An-
toniol, “Code siblings: Technical and legal implications of
copying code between applications,” inMSR’09. IEEE,
2009, pp. 81–90.

[47] M. Syeed, I. Hammouda, and T. Systa, “The evolution
of open source software projects: a systematic literature
review,” Journal of Software, vol. 8, no. 11, pp. 2815–
2829, 2013.

M.M. Mahbubul Syeed received his B.Sc degree in Computer
Science and Information Technology from Islamic University

of Technology, Bangladesh in September, 2002 and his M.Sc
degree in Information Technology from Tampere University of
Technology, Finland in April, 2010. He is currently working
towards his Ph.D. degree and working as a researcher in the
same university. His current research interest includes study of
Open Source Software ecosystem, ecosystem enabling architec-
ture, project evolution, experimental software development, and
big data mining and knowledge extraction.

Dr. Imed Hammouda joined University of Gothenburg in
September 2013. Before that, he was Associate Professor of
software engineering at Tampere University of Technology
(TUT), Finland. At TUT, he was heading the international
masters programme at the Department of Pervasive Computing.
He got his Ph.D. in software engineering from TUT in 2005. Dr.
Hammouda’s research interests include open source software,
software architecture, software development methods and tools,
and variability management. He was a founding member and
leader of TUTOpen - TUT research group on open source
software. He has been the principal investigator of several
research projects on various open initiatives. Dr. Hammouda’s
publication record includes over fifty journal and conference
papers.

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2909

© 2014 ACADEMY PUBLISHER

