JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2895

Socio-Technical Dependencies in Forked OSS
Projects: Evidence from the BSD Family

M.M. Mahbubul Syee#, Imed Hammouda
@ Department of of Pervasive Computing, Tampere Univerdityezhnology, Finland.
Email: mm.syeed@tut.fi
b Chalmers and University of Gothenburg, Sweden.
Email: imed.hammouda@cse.gu.se

Abstract— Existing studies show that open source projects In fact, socio-technical congruence provides an em-
may enjoy high level of socio-technical congruence despite pirical verification of a well-known but insufficiently
their open and distributed character. Such observation is understood phenomenon known as Conway’s Law [4] and

yet to be confirmed in the case of forking, where projects d ibes to which extent the | . f di .
originating from the same root evolve in parallel and are escribes to which extent the law IS entorced In a given

typically lead by different development teams. In this pape Software development project [3] [5]. Such empirical ver-
we empirically investigate the endogenous and exogenous ification has been a primary motivation for many research

characteristics of BSD family projects related to socio- efforts in the realm of socio-technical congruence [6] [7].
technical congruence. Our motivation is that BSD family, However, research on the topic has always assumed that

as a representative example of forked projects, share a . .
common development ground for both the code-base and development of a software project is performed by the

the development community, which may influence their ~Same organization or group of developers. In the case
evolution from a socio-technical perspective. Our study of open source, projects may evolve in parallel, lead by
results show that the BSD family maintain a certain level different development teams. This is known as “forking”
of collaboration throughout the project history, mainly due g1 74 the knowledge of the authors, no research has
to a shayed portion of the community. This partly explalns b f d vet io-technical in th
the relative harmony of socio-technical congruence levels een periormed ye (_)n socio-technical congruence In the
the BSD projects. context of forked projects.

In an earlier work we have studied socio-technical
congruence, and the significance of Conway’s Law, in
the FreeBSD open source project [9]. Our previous study
showed that the congruence measure is significantly high
. INTRODUCTION in FreeBSD and that the congruence value remains stable

OFTWARE development requires effective commu-8S the project matured. In this work, we extend our
earlier study to cover the BSD project family, empiri-

nication, coordination, and collaboration among de- v i tigating th d q h
velopers working on interdependent modules of the sam‘é‘f’lty _|nt_/es I?‘aBlggD € _entogsg%us an texogenous IC lar-
project. The need for coordination is even more evident i ctenstics o Projects. Projects are popularly

Open Source Software (OSS) projects where developme Eown n;].trt]e rgs]cearchtpommuT|ty.thr]c mstaBnSc[e), n '[1Ot]’
is often more dispersed and distributed [1]. As argue ange history information 1S extracted irom projects

in the literature, such coordination and communicatio or the visualization of change dependencies. Similarly,

may be influenced and guided by the cooperation nee SreeBSD project has been studied to verify the viability

devised by the design of the software [2]. This suggestgf incremental development approach, and to identify the
that there might exist a two way mapping between th&ommon characteristics of successful OSS development
rocess in relation to their quality, in [11] and [12],

communication patterns of the developer community and® .
spectively.

the architectural dependencies among the components G6f>PSC . . .
b g P Within the endogenous characteristics we investigated

the software, in which one can be used to approximat . ; :
the other PP ﬁwe notion of socio-technical dependency through the

. . . . measure of socio-technical congruence in the individual
This collaboration can effectively be examined and 9

verified through the notion of socio-technical congruencé)roje.CtS' In the technical domain, the architectural depen
O%enues have been constructed out of source code syntac-

tic information such as functional dependency, attribute

established by the technical domain (i.e., the architettur f : d header file inclusion d d on th
dependencies in the software) and the actual coordinatiof o ceing and header file inclusion dependency. ©n the

activities carried out by project members (i.e., within thez?(:;la?lldc%nt/r:eersz(:igrr?sint?:ts\?egr?t\clj\ggl:a:r:een built out
members of the development team) [3]. Pers.

Among the exogenous characteristics, we examined to
This work was supported in part by TiISE Graduate School, Eamp W_hat extent the forked projects collat_)orate_ an_d commu-
Finland and Nokia Foundation Grant, Finland. nicate with each other. As a measuring criteria of such

Index Terms— Open Source Software, Evolution, Conway’'s
Law, Socio-Technical Congruence, Forking

©2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.11.2895-2909

2896 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

collaboration, we quantitatively measured the alignmen€. Developer Contribution
among the source code and the developer community |5 this work, developer contribution to a software

of the forked projects. The rationale here is that forkedyrgject can be defined as code contribution or any form
projects hold the same root for both the code-base and thg commit made to the code base.

community, thus sharing a common development ground.
Hereof it is worth to empirically investigate the extent to D. Explicit Architecture

which such common ground is maintained during projects o]
evolution. The explicit architecture of a software presents the rela-

The remaining of the paper is organized as follows fionship among components of a software (e.g., modules,

Section Il introduces a number of key concepts that thidil€S Or packages) based on the actual design and imple-

study uses. Section Il introduces the research questiodgéntation. For this work, functional dependency, attebut

explored and Section IV presents our study design. RéeferenC|ng and header flle |nclu5|01j erenQency at code

sults are reported and discussed in Section V, followedile level are used to derive the Explicit Architecture of a

by final discussion and related work in Section VI. TheSoftware product.

overall impact of missing data on the reported results and

the replication guidelines are presented in Section VIIE. Explicit Coordination Network

Possible limitations and threats to validity are highleght The explicit coordination network is a social network

in Section VIII. Finally, Section IX concludes the paper in which two developers have a relationship if they have

and sheds light on future research. direct communication history as seen by the mailing

archives representing the social and technical intenastio

Il. DEFINITIONS among the developers.

In this section we define a set of concepts used in thig |mplicit Architecture

study. The implicit architecture defines an architecture of the

software where any two components (e.g., packages or
A. Conway’s Law cpde files) are related if there are developers who have
o ~either (a) contributed to both components, or (b) have
Conway’s Law in its purest form states that “organi- girect communication at organizational level (e.g., a one
zations which design systems are constrained to produgg one email conversation). For instance, consider that
systems which are copies of the communication structuregeyeloper D1 has contributed to packages P1 and P2, and
of these organizations” [4]. In other words, the softwareyeyeloper D2 has contributed to package P3. Also con-
product architecture reflects the organizational strecturgiger that both developers have direct communication at
of its development team [4] [3]. In [13], Conway's organizational level as shown in Fig. 1(a). Thus according
Law is considered homomorphic and thus claimed to bg, the definition, packages P1, P2 and P3 are linked to

true in reverse as well. This means the communicatioRach other in the Implicit Architecture (Fig. 1(b)).
pattern within a developer community should reflect the

architectural dependency in the developed software. Thu%

Conway's Law can effectively be interpreted as the basis R o)
for studying the social and technical interdependency The implicit coordination network is the developer rela-
within a software project [14]. tionship network in which two developers have a relation-

ship if they have contributed either (a) to a common code
file or (b) to the code files that have direct relationships
B. Socio-technical congruence in the Explicit Architecture. For instance consider that

The contemporary phenomenon “Socio-technical Congevelopers D1 and D2 have contributed to package P1

gruence” is actually the conceptualization of Conway’sand developer D3 has contributed to package P2. Also

Law. Socio-technical congruence can be defined as th onsider that P1 and P2 have a functional dependency

match between the coordination needs established by t K&~ @ direct relationship) as shown in Fig. 2(a). Then,

technical domain (i.e., the architectural dependencyeén thaccordmg to the definition, developers D1, D2 and D3 are

software) and the actual coordination activities carriedInked to each other in the Implicit Coordination Network

out by project members (i.e., within the members of the®s shown in Fig. 2(b).

developer community) [3]. This coordination need can)

be determined by analyzing the assignments of peopl- Forking

to a technical entity such as a source code module, and In the context of open source developmefatking

the technical dependencies among the technical entitiesccurs when a part of a development community (or a
[3]. Accordingly, developers within the community should third party not related to the original project) starts a
communicate if there exists a communication need. Focompletely independent line of development based on
example, developers working on the same module or othe source code of the original project [8] [15]. To be

the interdependent modules should be coordinating. considered as a fork, a project should have:

Implicit Coordination Network

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2897

(b)

(a) (b)

Figure 2. (a) Explicit Architecture with contributing deepers (b) Corresponding Implicit Coordination Network

« A new project name. be possible that forked projects maintain homogeneous

« A branch of the software. architectural design at higher level of abstraction (e.g.,

« A parallel infrastructure (web site, version controlin package level), yet getting liberated at detailed
system, mailing lists, etc.). architectural level (e.gn!" directory level).

« And a new developer community.

Based on this definition, we propose the following(RQ2) How does the community compare and
set of relationships within a pair of forked projects: (a)evolve across forked OSS projects?
parent-child, in which one project is forked from the
other, (b) siblings, if two projects are forked from the Traditionally, the developer community divides when
same parent project, and (c) lineages, for all descendadt Project is forked [8]. This is typically followed by
relationships in which (a) and (b) do not hold. For exam-2 community rebuild and restructuring process in both
ple, in Fig. 3, NetBSD and OpenBSD have a parent-child®rojects. Community members in both projects might
relationship, FreeBSD and NetBSD are sibling projectscommunicate and coordinate in such circumstances in

whereas FreeBSD, and OpenBSD are the lineages #faking both projects survive. Thus, our intention here
386BSD. is to examine how these fragmented communities act in

building the projects: do they contribute to both projects?
Does such collaboration sustain during the evolution of
the projects?

Our choice of research questions is motivated by
our agenda to measure the exogenous and endogenqg&)3) How does the socio-technical congruence
characteristics of forked OSS projects related to sociogyglve within the forked OSS projects?
technical congruence.

Ill. RESEARCHQUESTIONS

Socio-technical congruence is a natural consequence

and a desired property for collaborative development
(RQ1) How does the software architecture compare activities, like OSS projects [16]. Conventional wisdom
and evolve across forked OSS projects? suggests that correspondence between the social

and technical domain of a project may reduce the
When a project is forked, the source code of thecommunication overhead and may increase productivity
parent project is copied [8]. Thus it is natural that at the[7]. Furthermore, lack of collaboration is classified
initial stage the source code, and hence the architecturgs 5 negative stimuli to performance [17] and has an
of both systems are similar. Based on this observationpfluence on lowering productivity [5]. Consequently,
we are interested in exploring the extent to which thesocio-technical congruence can be a decisive property of
forked projects share common architectural structurg syccessful project [3] [5] [16]. With strong congruence
during their evolution. In doing SO, we calculated andmeasure projects can get more Cohesive’ organized,
compared the architectures of the forked projects and self-dependent with higher productivity. Thus our
three abstraction levels. Namely, at package level, ghtention here is to stress these reported observations in
first directory level and an'" directory level (i.e., the forked OSS projects by examining the extent to which

last directory where the files reside). We argue thakgcio-Technical Congruence holds in forked projects.
this three level comparison can provide a holistic view

of the architectural overlapping. For instance, it might

©2014 ACADEMY PUBLISHER

2898 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

IV. STUDY DESIGN BSD Projects Timeline

This section presents in detail our study design, cover 1992 1999 2006 2013
ing discussion on the case study selection, required da 3sessp ==

sets, data acquisition, cleaning, and analysis process. NetssD | |
OpenBSD |]
FreeBSD []

A. Case and Subject Selection

To explore the three research questions, we performed
a case study with three large (more than 1,414,641 LOC
[18]), long-lived (around 20 years of evolution history)

OSS projects that were forked from their predecessorgmphasis was given to leveraging these repositories for
These case study projects are FreeBSD [19], NetBSD [2Q}eriving technical dependencies as well as developers’

and OpenBSD [21]. All three projects originate from the coordination patterns. The repository data are often
386BSD project, which is the version of UNIX devel- |ongitydinal, allowing for analysis along the whole

oped at the Umversﬂy of California, Berkeley. FreeBSDproject evolution phases. Such data sources are highly
and NetBSD were directly forked from 386BSD dur- 5ccepted and utilized medium for empirical studies on

ing late 1993, and therefore have a sibling relationshipngg projects [27] [28] [29]. In this study we utilized the
OpenBSD was forked from NetBSD in 1995, thus havingso|iowing repositories.

a parent-child forking relationship. Whereas, FreeBSD

and OpenBSD are lineages of 386BSD. As a consesyrce code repositoryve downloaded the source code
quence, the core of these projects encompass the CO@e each stable release of the three projects. FreeBSD
base of 386BSD. The forked relationship among thesgnaintains its source code in Subversion version control
projects are shown in Fig. 3 and the lifetime of thesesystem, whereas NetBSD and OpenBSD use CVS. In
projects till 2013 are shown in Fig. 4. Fig. 5 we provide the details of the stable releases, the
data collected from each release, and the corresponding
download sources.

Figure 4. Life time of the BSD projects

Time
1991
f Mailing list archive: In OSS projects, email archives
Lm0 provide a useful trace of task-oriented communication
T and co-ordination activities of the developers during
= | NetBSDO.8 project evolution [30]. In the studied projects, email
| FreeBSD10 archives are categorized according to their purpose
; including commit records, stable release planning, chat,
1955 | OpenBsD user emails, and bug reports. The archives contain the
; commit history and the email conversations since the
1996 initiation of the projects. In this study we used a complete
’ list of commit records and email conversations from the
Figure 3. Rough time line of the forked BSD projects beginning of each studied project. Consequently, data
from relevant email archives was extracted and refined
Our selection of the BSD project family was influ- from each project, detail of which is presented in Fig. 6.
enced by the following factors: (a) the code base of
these projects have undergone continuous development, Data Collection
improvement, and optimization for twenty years [19], (b)

these projects hgvel peen developed and main.tained k@f each stable release of the selected projects was
a large team of individuals [20], .(C) the properties c_>f 4downloaded to a local directory. Fig. 5 lists the stable

forked project hold for these projects, (d) these ProjeCtSe eases that were downloaded for each project. To extract
have extensively been used in earlier research on th ata from each of the releases, a parser was written
evolution of OSS projects [22] [23] [18], and (€) resultsin Java. The parser searched th}ough each directory of

repc.)rted.m. this study- can be stres;ed FO OSS prOJ?CtziQ' stable release, read through the files in a directory
having similar properties, e.g., forking history, domam,and parsed relevant data. Each code file in a release

community structure, and size. contains a copyright directive. Under this directive the
contributing developer name, email, and the copyright
B. Data Sets year is mentioned. The developers that were found in
OSS projects often consist of a number of softwareghe process were considered as the initial contributors
development repositories. These repositories contain t that file. To get a complete list of contributors for
plethora of information on both the underlying softwarea stable release, developers names were extracted from
and the associated communication and developmenihe commit history log and were merged with this
process [24] [25]. In the literature [26] a great contributor list. This process is described in following

1994

From source code repositoriesThe source code

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

2899

Ne. Of Stable i
Case Study Programming) .
; Stahle Release Number Releases Data Extracted Use in Data Analysis
Project g Language
Studied
1. File name.
FreeBSD 205,21,22,3,4,5,6,7,8,9 1o C/C+ |2, File directory path
) Tyt 1. Generated the partial list of developers for each stable
3. File package name. | THisli P —
08,08,10,11,12,13, 14, 15, 1.6, 2.0, 30, 5. Contributing dedevloger release. This list was combined with the developer's list
NetBSD 40,50 60 14 Ut | ; ; found in the commit history to generate the complete
42U, 0. information from Copyright |
s e list for that release.
ag of each code file. Eg., 2 ; S 4
& & . |2. Identified to which code files a developer contributed
developer name, year, email
24,25,26,27,28,29,30, dd for a stable release.
address.
OpenBSD | 3.1,3.2,33,34,35,356,37,3.8,39,40, 41, 29 e e umber of code i 3. For each stable release, the Bxplicit Architecture, and
. Number of code files, . i
42,43 44,45,46,47,48,49,50,51,5.2 , Implicit Coordination Network were generated.
BEEHL SR A RS number of other files, number
of packages
FreeBSD http://svn.freebsd.org/base/stable
Download
W NetBSD http://www.netbsd.org/docs/guide/en/chap-fetch.html#chap-fetch-cvs-netbsd-release
0OpenBSD http://www.openbsd.org/anoncys.html
sk January, 2013.
Accessed:
Figure 5. Stable Releases of BSD Projects (FreeBSD, NetB®DOpenBSD)
Case Stud)
;E. :ty Email Archives Containing SVN/CVS commits Duration Data Extracted Use in Data Analysis
roje
cvs-bin, cvs-contrib, cvs-distrib, cvs-doc, cvs- a. Data extracted from commit records (if the
eBones, cvs-etc, cvs-games, cvs-gnu, cvs-include, mail is a SVN/CVS commit).
cvs-kerberaslV, cvs-ib, cvs-libexec, cvs-lkm, cvs- 1. committer name.
D other, cvs-ports, cvs-release, C\IS-SbiII'I, cvs-share, 10449013 Z-CﬂmmftSUbiECL .
cvs-sys, cvs-tools, cus-user, cus-usrbin, cvs- 3. commit date and time.
usrshin, cvs-all, svn-src-stable-6, svn-src-stable- 4. commit directory path. 1. Generated the developer list for each stable release
7, sun-sre-stable-8, svn-src-stable-9, svn-src- 5. commit file(s). from commit records.
stable-other 6. package name(s). 2. ldentified developer contributions for each stable
release.
b. Data extracted from other email archives. |3, For each stable release, Explicit Coordination network
NetBSD source-changes, source-changes-d 1994-2012 |1, Email subject and Implicit Architecture were generated.
2. Sender name
3. Sender email
4. Receiver name
OpenBSD source-changes 1995-2012 |5 Receiver email
6. Date and time Posted.
Last
January, 2013.
Accessed: N

Figure 6. FreeBSD, NetBSD and OpenBSD email archives

sections. Information that was extracted using the parserame and year. After that, email data was sorted according
is listed in Fig. 5, column 5. The parsed data for eacho each stable release as follows: (a) emails and commit
stable release was then stored in a spreadsheet for furthecords were categorized into a specific release if the

analysis. release number was mentioned in email subject (e.g., SVN
commit emails provide release number in email subject
From email archives: Data that is maintained in for FreeBSD) and (b) other emails for which the re-

the email archives can be broadly classified into twdease numbers were not mentioned (e.g., freeBSD-stable,
groups, (a) email archives that maintain CVS/SVNfreeBSD-chat and some of the CVS commit emails), the
commit records, and (b) archives that store genergbosting dates were checked. In this case, for instance, an
community discussions (e.g., on stable release planningmail was categorized to stable release 3 if its posting
chat entries). Fig. 6 presents the total number of emaillate falls between the release date of stable release 2 and
archives that were extracted for each project alon@. The rationale here is that developers would commit to
with specific names of archives containing the committhe code base and discuss on its release strategy before it
records, data collection period, collected data, and theis officially released.
analysis purpose. For the CVS/SVN commit email, we parsed the
For extracting data from each email entry, a data extraccommit path to the repository. The commit path was
tion program was written in Java. This data extractor useeither mentioned in the subject or in the email body
the web interface of the email archives. Thus each emaf(in specified format). We extracted information like the
was read as an HTML page and the data was extractatirectory path, package name, and if provided, the name
using the Jsoup HTML parser [31]. Data extracted fromof the modified code file(s) and the stable release number.
each email entry is listed in Fig. 6, column 4. This dataThe name of the committer for each of these CVS/SVN
was then stored in spreadsheets according to the archigemmit emails was considered as a contributor to the

©2014 ACADEMY PUBLISHER

2900 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

code base. Contributors found in this process werén Section II-E, the Explicit Coordination Network
combined with the contributors found in the code basevas derived for each stable release of a project. Email
to get a complete list of contributing developers for eaclconversations for each stable release were used for
stable release. this purpose. Fig. 7(b) shows example relationships in
the Explicit Coordination Network of FreeBSD stable
Data preprocessing: Data that was extracted and release 3. The weight column in this figure shows the
parsed following the above process contained anomaligsumber of email conversations that took place between
in many cases. For instance, developer names and emaiNo developers.
addresses might contain punctuation characters like
semi-colons, inverted comas, brackets, unnecessary whiteplicit Architecture: The implicit architecture was
space, and hyphens. Furthermore, parsers may hagenerated following the definition in Section II-F. A
parsed data inappropriately in some cases. For examplpartial snapshot of the package level Implicit Architeetur
the textcopyright rights reserveatan be treated as part for FreeBSD stable release 3 is shown in Fig. 9(a). In
of developer name while parsing copyright directive fromthis architecture, a link weight between two packages
a code file. To clean such anomalies data and punctuatiatesignates the number of times the conditions (from
characters, data cleaning programs were written in Jav&ection II-F) hold. The significance of this network lays
To ensure the correctness of this process, we performed the fact that developer communication patterns within
a manual checking on a randomly selected data to verifthe community may simulate the actual architectural

their correctness. dependency. That is, two developers should have
communication if they are contributing to same or
D. Data Analysis interrelated components of the software.

This section is focused on topics related to the cony
struction of the communication networks, architectures

and their use in measuring the socio-technical congruen G. A snapshot of this network for FreeBSD stable

utilizing the collected data. release 3 is shown in Fig. 9(b). The network shows

Data analysis is restricted to the stable releases of tl}%e actual communication need among developers

projects. This means, analysis point of this study is th%ased on the design of the software (i.e., the Explicit

stable release dates for a project. This choice of analysl&rchitecture). This network is essential due to the fact
point (instead of discrete time stamps) is made due t

hat if two subsystems exchange information, it is likely

the following reasons: (a) a stable release reflects Cle%at communication among the developers of the two
milestone for a project, which can also be counted a%ubsystems exists [4]

a step towards successful evolution, and (b) the source
code for this study is available for stable releases onlyIVI

hich makes it obvious choice to take release dates easuring concurring and congruence among
which | >S | viou ! %rchitectures and networks: Comparison among the
analysis points.

architectures and communities was measured for two
Developer Contribution: Develober contributions purposes: (a) to measure how the software architectures
P . P and communities compare and evolve across forked

were .mea§ured re]ease-W|§e n FWO ways: (a) from th%rojects, and (b) to identify how the socio-technical
copyright information provided in each source codeCongruence evolve within each forked project.

file of a release and (b) from the commits made by W lied the followi nilarit ¢

a developer for a release. Fig. 7(a) shows a samplg the applie eTh(') owing S'T\' arty mleasure to stﬁrve}.t

contribution made by developdohn Birrell in FreeBSD oth purposes. This approach 1s analogous 1o e T
measure used in organizational theory method [5]. An

stable release 3. . i RO h
identical approach was applied in [9] for measuring the

congruence in FreeBSD project.

mplicit Coordination Network: This network was
enerated according to the definition presented in Section

Explicit Architecture: The Explicit Architecture of

a stable release was constructed based on function) _ Refa/n () Analogous 4,n

dependency, attribute referencing, and header fil oncurring/Congruence = |Refa/n]

inclusion dependency at code file level. For doingl00) (1)

this, we used a tool named Understand [32]. This tool

takes a source code repository as input and generat¥® the above equation,Ref,,y is the reference

the corresponding Explicit Architecture. This tool hasarchitecture or network (either explicit or implicit), and

been used in previous research, e.g., in [33] [34]. Thelnalogous,,y it the analogous architecture or network

explicit architecture for each stable release of a projecfeither explicit or implicit) with which concurring or

was derived at two abstraction levels, e.g., at code filgongruence will be measured.

level and at package level. An example of these two This equation measures concurring between the two

architectures for FreeBSD release 3 is shown in Fig. 8. architectures or networks with respect to the reference
one, Ref,/n. Therefore, the numerator of equation (1)

Explicit Coordination Network: Following the definition identifies the commonalities between the two given ar-

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2901

Developer |Package |File Dir File name Email Release
3/lib/libe_r/uthr jb@cimlogic.com. Developer |Developer Relationshi
John Birrell | 3/lib/ fibfi 1 uthread_attr_getstackaddr.c jo@uimlog stable-3 P 4) P
ead/ au name name weight
John Birrell | 3/lib/ | 3/lib/libc_r/uthr | uthread attr getstacksize.c |jo@cimlogic.com.| stable-3 IWunsch |Bruce Evans 15
3/lib/libe_r/uthr jb@cimlogic.com. Peter
John Birrell | 3/lib/ fibfite o uthread_attr_init.c Io@mlog stable-3 Brian Somers 61
ead/ au Dufault
3/lib/libc_r/uthr | uthread_attr setcreat jb@cimlogic.com. T
John Birrell | 3/lib/ i futhr| utread et setrestes.spen o @cimlcg com stable-3 o _ |Andreas Klemm]
ead/ d npe au Samplanius
3/libflibe_r/uthr jb@cimlogic.com, Mikael
John Birrell | 3/lib/ fibfi 1 uthread_attr setdetachstate.cl@ g stable-3 Bill Fenner 3
ead/ - au Karpberg
[a)]

Figure 7. (a) Sample contributions made by developer Johm®IB{b) Sample relationships in Explicit Coordination tNerk

Source File |Destination File| Source File path Destination File path

adjkerntz.c |sys/time.h |3/sbin/adjkerntz/adjker |3/sys/sys/time.h Source |Destination |Relationship
ntz.c Package |Package |Weight
adjkerntz.c |sys/param.h |3/shin/adjkerntz/adjker |3/sys/sys/param.h st/ |3l -
ntz.c
chkey.c |rpesvefypeinth |3/usr.bin/chkey/chkey.c :ft'i:clude/rpcsvc!ypcl afustbin] [yinclude/ -
ftpd.c arpaftelneth |3/libexec/ftpd/ftod.c Sj'u_sr.bin!tnSZ?D!distri 3fibexeq) |3/usroin/ '
bution/arpa/telnet.n
fa) (b)

Figure 8. (a) Code file level Explicit Architecture (b) Pagkaevel Explicit Architecture

source package (destination package Relatu.mshlp Developername | Developer name Relatu.mshlp
weight veight
Yoontrity et/ m Paul Traina Michael Smith il
e/ Yrelease/ il Sun Microsystems [Philippe Chamnier |~ 20
Yontrity |3fshere/ 156 JohnD.Palstra {Julian R, Elischer §
fo L]

Figure 9. (a) Implicit Architecture (b) Implicit Coordiriah Network

Pl | Foie Relationchip weight Pacakge name | Packege nae WEighlt o Weight gt
rame | name aichitectre) | architecture]
3fusroin/ [3/include/ 8 =T B lusthin/ 3fincluce/ 365 8
3lberec/ |3/usrbin/ 4 —sbin/ 3eys/ 806 0
b/ (3 usrskin/ 1]
3fchin/ [3fsys/ 0

Package | Package

Relationship weight
rame | name
3feontt/ {3/games/ i)
3usrhin/ [3finclude/ 35 -
3usrbin] [3/tools/ 19
3fchin/ [3fsys/ 406

t

Figure 10. (a) Explicit Architecture (b) Implicit Architaare (c) Congruence

chitectures or networks, then is divided by the size of thehe architectural concurring among the three projects,
reference architecture and expressed in a scale of 100.we performed a stable release wise comparison of the

The application of Equation (1) to specific cases iseXplicit architectures for each pair of forked projects.
presented next. Thus in this case, botRef,,n and Analogousa/n

represent two comparable explicit architectures taken
Comparing the Architecture:To measure and compare ffom two projects. To be comparable, the stable releases

©2014 ACADEMY PUBLISHER

2902 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

of two projects should be released around the sam€oordination Network. This operation identifies the
time period. For instance, consider the stable releasesumber of edges (or relationships) that are identical for
of FreeBSD and NetBSD projects. FreeBSD has 1Moth the architectures or the networks.

stable releases whereas NetBSD has 14 (Fig. 5, column The former measure (in (a)) illustrates the match
2). Thus to compare two releases, each taken frorbetween the architectural dependency and the architecture
the two projects, we determined the release date-wisproduced due to the communication structure of the
correspondence. Therefore, FreeBSD release 6 arebmmunity. The latter measure (in (b)) in turn depicts
NetBSD release 3.0 have a correspondence as thelge match between the actual coordination activities in
were released in November, 2005 and December, 200%he community and the coordination need established
respectively. by the architectural dependency of the software. These

The intersection operation in numerator of equation (1jn€asures verify Conway's Law and the reverse Conway’s
is calculated at three abstraction levels of the explicit-@W, respectively. Both the measures were determined
architectures, namely, package level (p), first director)for each stable release for all three projects. A part_la}l
level (d;) and code file directory levet(,). For package snap_shot of the congruence between Explicit _and Impllc_lt
level, the intersection operation results in the number of\rchitectures of FreeBSD stable release 3 is shown in
packages that are common (by comparing the names 19 10.
the packages) between two releases. On the other hand,)) . o
for the directory level, e.g.d, andd,,, the intersection Then to identify the extent to which the implicit
operation provides the total number of directories tha@rchitecture and implicit network approximate the
have the complete match in their directory paths. Ascorresponding explicit one, we calculated the similarity
an illustrative example, consider FreeBSD release 6 an@€asure in (1), taking each of the explicit architecture and
NetBSD release 3.0 which have 19 and 22 packageé‘,etworK as the reference one. The resultmg values were
respectively. ThugFreeBSD — release — 6| = 19 and plogted in a_trend chart for each project to_conceptqah_ze
|NetBSD — release — 3.0| = 22. The intersection oper- their evolution pattern. An example of this analysis is
ation between these two explicit architectures resulted iRrésented in Fig. 17 and discussed in Section V-C.

16 packages having the same names.

Finally, the concurring value was calculated takingE. Implementation and Verification
each of these architectures as a reference architecture.ools Used In the StudyA number of existing tools

This value depicts the extent to which each of thesgng 0SS packages were used in this work. For instance,
stable releases coincide with the other. In continuatiof,e ysed the tooUnderstand (version: 3.1.65932] to

to the above example, FreeBSD release 6 has 84.21nnerate the Explicit Architectures. To read/write excel
(16/19*100) and NetBSD release 3.0 has 72'72%'”65 Apache POI [35] was used. Also, Jsoup HTML
(16/22*100) concurring with each other. These valuesparser [31] was used to parse the HTML files.

were then plotted in a trend chart to visualize how such

concurring evolves with the projects. An example of thislmplementation and Verification of the Developed

process is presented in Fig.11 and discussed in SeCtiqf‘rograms: We implemented several data extraction,

V-A. cleaning, and analysis programs in Java for this work.

)) Data extraction programs were used to extract data from
Comparing the ~ Community: To compare the rejevant sources and cleaning programs were used for
communities among the three forked projects usingemoving the anomalies in the collected data. To verify
the similarity measure in Equation (1), we carried outihe correctness of these programs, a two pass evaluation
the following: first, the release wise developer list wasere conducted. First, the programs were tested with a
generated for each project. This step was discussgfhited number of data samples taken from each of the
in section IV-C. Second, for a given pair of releasesgjects. Notified bugs (e.g., errors in the parsed data for
the union operation in the numerator identifies they, HTML tag) were fixed accordingly. Second, a manual
number of contributors in both releases whose names atecking on a random sample of the actual collected

lexically identical. Finally, for each of the stable releas §5t3 was done. The accuracy of collected data in the
concurring value was calculated considering each as gcong pass was reported to be over 97%.

reference network. These valqes were th_en plotted in @ aqgditionally, analysis programs were written for gener-
trend chart. An example of this process is presented iRing the architectures, communication networks, release
Fig. 14 and discussed in Section V-B. wise comparisons, and for measuring congruence. These

_) _ programs in turn were tested following a similar method
Socio-technical Congruence: To measure socio- _as stated above.

technical congruence using the similarity measure in
(1) the following approach was applied: the intersection
operation in numerator was carried out between (a)
Explicit Architecture and Implicit Architecture, and The target of this study is three-fold. First, we verify
between (b) Explicit Coordination Network and Implicit the extent to which the forked projects collaborate in

V. RESULT ANALYSIS

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2903

both technical and social domain. Second, we measum@nalyses of architectural design need to be conducted to
the socio-technical congruence in each project to concegully affirm this claim.
tualize the socio-technical dependencies. Finally, weystu

the projects’ pattern of evolution during their maturation B. Pattern of Community Evolution

Forking of a project causes a split in the community.
The fragmentation of the community is typically followed
In this section we present the results of the evolutiorhy a rebuild and restructuring phases in both projects
of the architectural design for each forked project in(the original and the fork). However, both projects share
relation to the other projects. In verifying this, pair- the same source of code-base, which could stimulate
wise comparison of the architectural designs (each takefhe development communities of the two projects to
form the compared projects) were made at three abstragontribute to both. This observation lead us to investigate
tion levels. This action was performed according to thehe extent to which the community members (from each
procedure presented in Section IV-D. The result of thisproject) contribute during the evolution of both projects.
comparison is presented in Figs. 11, 12 and 13, one for The investigation was done according to the process
each pair of projects. These figures show the concurring afefined in Section IV-D. The results are presented in
architectures (plotted in the Y-axis) for each comparablqﬂ:ig_ 14, 15, and 16, one for each pair of projects.
stable release pair (plotted in the X-axis) of the projectsThe findings reveal that the level of participation of the
Overall architectural evolution revealed similar patgern Community members in the Compared projects remains
for all three types of forking relationships, e.g., sibling consistent within a given range. Also, a similar pattern
projects, parent-child projects, and lineages. At highepf participation is noticed for the three types of forking,
abstraction level (e.g., package level) the architectafes confirming the earlier observation in Section V-A.
the forked projects maintain high correspondence between Relating these observations to individual cases show
them, which remains consistent as the projects evolvghat for the FreeBSD and NetBSD projects (Fig. 14),
HOWeVer, at the detailed architectural level (e.g., at d|‘the Community Ove”apping remains between 23,49% and
rectory levelsd; andd,), the design and implementation 44,99, whereas for NetBSD it is between 26,47% and
became more disjoint and independent. 44,23%. Within this range of participation there exist
For instance, in Fig. 11, the package level concurseyeral drifts. For instance, in 1999 and 2007 (Fig. 14), a
ring between the architectures of FreeBSD and NetBSQecrease in participation can be observed.

projects rgmain high throughout their release history. For gor the other two cases (Fig. 15, and 16), the pattern
FreeBSD it remains between 61,9% and 84,21%, whereast overlapping follows a similar trend, except for the first
for NetBSD it is between 57,69% and 80% with slight tyq releases. This observation is similar to that discussed
drifts between the ranges. Contrary to this, directoryllevejny section V-A. For instance, the level of contribution
overlapping ¢, and d,) point out a different trend. In rises sharply after having a low participation at the early
both of these cases, a consistent decrease in concurripglease. Apart from this, the participation level (in Fig.
can be noticed. For example, for NetBSD and FreeBSO 5) for NetBSD remains between 42,69% and 50,3%, and
the overlapping atl, directory level begins with 82,81% for OpenBSD between 34,42% and 38,31%. Similarly, for
and 56,1% respectively, which gradually decreases t@reeBSD and OpenBSD (Fig. 16) it is 30,58%-35,05%
37,39% and 41.72% respectively. Likewise,dat level, and 27,18%-30,38%, respectively.

the overlapping goes down to 3,63% and 3,34% from These results lead to the point that a certain group

29,77% and 10,82% respectively. of community members maintain contributions to all the

For the other two cases (Fig. 12 and 13), a similar trenghrojects. The number of participation also remains stable
was noticed with minor distinction during the early stagesthroughout the evolution.

of the projects. For instance, in Fig. 13 the overlapping

of all three architectural level starts with a very low ratio)])

which however had a sharp rise in the next release. Fdr- Evolution pattern of Socio-technical Congruence

the subsequent releases, the pattern remains similar to theThe measurement of Socio-technical Congruence for a

observations stated earlier. project is a two step process. First, the extent to which the
Additionally, at any given point of the comparison, communication patterns of the members of the developer

the adherence to common architectural design falls offommunity resemble the actual architectural dependencies

significantly from abstract to detail level of the designt Fo is verified. And then, the resemblance of the architecture

instance, in 2012, the FreeBSD package level overlappintp the community communication is investigated. In doing

is 75%, which is however around 41,72% and 3,34% forso, we derived both the implicit and explicit architectures

directory level overlapping; andd,,, respectively. This and community collaboration networks, and measured the

observation holds for all the three projects. corresponding congruence. This process was discussed in
These observations indicate that the BSD forkedletail in Section IV-D.

projects preserve a common structure at higher level of The evolution of congruence at architectural level for

design, which are however, get liberated progressivelyhe three projects is shown in a trend chart in Fig. 17. In

at the detailed architectural design. However, thorouglhis figure, the congruence approximation is plotted in the

A. Pattern of Architecture Evolution

©2014 ACADEMY PUBLISHER

2904 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

(%) Overlapping of FreeBSD and NetBSD

T "-—__’____-

I R S —
0 1993 1934 1995 1996 1938 1999 2000 2002 2004 2005 2007 2008 2012

-.-PECKEEE UVET'EP (FTEEBSD) 73,33 73,33 70,59 63,16 71,43 63,16 68,42 73,68 84,21 84,21 61,9 75 75
——First Directory UVEF'ap(FFEEBED} 56,1 62,37 65,31 55,91 59,66 45,79 43,17 45,47 45,84 46,4 45,31 44,33 41,72
== Last Directory Overlap (FFEEESD} 10,82 13,43 12,72 9,84 8,88 4,96 4,03 4,38 4,48 4,7 3,58 3,72 3,34
—package Overlap (NetBSD) 7857 | 73,33 | =80 80 | 66,67 | 75 | 7647 | 73,68 | 7,73 | 72,73 | 619 50 | 57,69
—&— First Directory Overlap (NetBSD) | 82,81 79,28 75,83 73,32 69,82 45,79 56,38 47,66 44,39 43,56 41,84 37,97 37,39
—o—Last Directory Overlap (NetBSD) | 29,77 | 26,05 | 27,25 | 23,39 | 141 | 14,45 | 101 | 676 | 581 | 56 | 568 | 394 | 3,63

Figure 11. Architectural evolution between the siblingkit projects (FreeBSD and NetBSD)

110

. ~ A
. ~——"

" /K = * e
7 —

NN /74 —
. /748000 - T~

/4 T~

(%) Owverlapping of NetBSD and OpenBSD

1998 1999 2000 2002 2004 2005 2007 2009 2012
—4—Package Overlap (NetBSD) 0 31,25 88,24 78,95 68,18 68,18 61,9 60 57,69
—@—First Directory Overlap (NetBSD) 15,93 10,11 74,22 60,17 54,2 55,61 52,25 44,73 44,81
~=Last Directory Overlap (NetBSD) 10,23 6,9 41,91 24,26 18,65 17,61 19,94 11,64 9,48
—==Package Overlap (OpenBSD) 100 100 88,24 83,33 88,24 88,24 81,25 93,75 93,75
—a—First Directory Overlap (OpenBSD)| 55,49 50 74,67 75,42 75,19 74,83 72,32 70,83 67,09
—a—Last Directory Overlap (OpenBSD) | 17,28 14,15 47,67 42,23 34,02 34,16 31,79 28,12 20,91

Figure 12. Architectural evolution between parent-chitdkéd projects (NetBSD and OpenBSD)

Y-axis (in percentile value) against each stable release dhe range 85,56% and 88,78%.

the projects (plotted in the X-axis). In contrast to these two projects, NetBSD (the maroon
For FreeBSD (the blue line in Fig. 17), the approxima-line in Fig. 17) had a different pattern. In NetBSD the

tion of the congruence consistently has risen starting froneongruence approximation started with 85% and remained

60,5% at the first stable release and has gone up to 89,4%table around 80,77% to 87,5% for the first twelve re-

It had a sharp rise during the early five releases and gdéases. Nevertheless, for the recent releases (e.g.,she la

stabilized for the later six releases. During this periag th two stable releases), the project experienced a decrease in

congruence level remained between 84,83% and 89,4%ongruence which has gone bellow 80%.

We considered the first four congruence values as outliers accumulation of these results portrays that the approx-
as a project usually goes under considerable restructuringation of the Explicit Architecture by the congruence
and reformation after it is being forked. is considerably high in all these three projects, which
For OpenBSD (the green line in Fig. 17) we observedemains stable throughout the evolution. This implies that
a similar trend of congruence to that of FreeBSD. For thehe architecture derived from the communication pattern
initial two releases the approximation of congruence weref the developer community effectively represents the ac-
around 75%, that increased sharply to 88,38% on the thirtlal architecture of the software. That is, to a considerabl
stable release. Till then onwards it remained stable withiextent the communication of the contributing developers

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

2905

== Package Overlap (FreeBSD)

&
N

- —_——" +
N
y \-——-— a
& - 5
NI /4
§. 10 - A
L3 —

° 1998 2000 20-03 zo-os 2008 2009 e

14,29 68,42 63,16 63,16 57,14 60 60

—@=First Directory Overlap (FreeBSD) 52,49

41,78 40,89 38,38 37,58

== Last Directory Overlap (FreeBSD) 541

3,42 2,94 2,21

== Package Overlap {OpenBSD) 76,47

70,59 75 75

—+=—First Directory Overlap (OpenBSD) 63,81

52,78 52,19 50,42

=&~ Last Directory Overlap (OpenBSD) 12,83

7,9 7,24 5,3

Figure 13. Architectural evolution pattern between liredgrked projects (FreeBSD and openBSD)

Developer Sharing: FreeBSD and NetBSD Developer Sharing: FreeBSD and OpenBSD
w 0 : a0
a a
s © 5 ® - .
3 e NS—
'E 30 o
E E 20
£ 20 E
£ 8 10
o] l
5 ° 5
—_— ‘;‘ o
.B_e_ o = 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
1994 199 1998 2000 2OCQI 2004 2006 2008 2010 2012 Release year
Release Year
=4 FreeBSD-common (%) —+—FreeBsD-comman (%)
~f— NetBSD-commen(%) ~fi—0OpenBSD-common (%)
Figure 14. Community concurring pattern between FreeBSD an Figure 16. Community concurring pattern between FreeBSD an

NetBSD projects

Developer sharing: NetBSD and OpenBSD
w B0
z "
o
40
£
c 30
-]
E 20 4.:4
E &
g 10 -3
T o
';Q' 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
= Release Year
e b £t BSO-cOmMon (35)
=== OpenBSD-common (%)
Figure 15.

OpenBSD projects

OpenBSD projects

shows the evolution of approximation against each stable
release of the projects.

For FreeBSD (the blue line in Fig. 18), the approx-
imation of the congruence remained between 70,63%
and 87,31% from the fourth stable release onwards. A
few drifts in congruence in the early three releases were
noticed, which can be justified with the same reasoning as
before. Yet, there was a decreasing trend of congruence
noticed for the last two stable releases.

In the case of OpenBSD (the green line in Fig. 18),
the approximation of the congruence to that of Explicit
Coordination Network started with 80%, and remained

Community concurring pattern between NetBSD andstable between the value 73,35% and 87,77% during the

entire evolution of the project. Only for the last release th
congruence value went down to 39,58%, which is mainly
due to missing data.

in the community may actually be due to the coordination For NetBSD (the maroon line in Fig. 18) the congru-

needs as identified by the architectural dependencies. ence approximation started with a high value of 98,87%
On the other hand, the approximation level of theand remained stable between 8139% and 98,87% as

congruence to that of the Explicit Coordination Networkthe project progressed. Only for the tenth release (May

reveals a similar pattern for the three projects. Fig. 18005 in the chart) the congruence has gone as bellow as

©2014 ACADEMY PUBLISHER

2906 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

Socio-Technical Congruence (Architecture)

_ A
D =y
£, y \‘\-/'\
i / =4—FreeBSD congruence
8

75
/ =fl=NetB5D congruence
70 OpenBSD congruence

Apr Oct Mov Mar Oct May Mar Dec Dec Sep Jan Nov Nov May Dec Nov Nov Feb Nov May May May lJan Oct
1993 1994 1995 1997 1998 1999 2000 2000 2001 2002 2003 2003 2004 2005 2005 2006 2007 2008 2008 2009 2010 2011 2012 2012

Release Date

Figure 17. Evolution of Congruence at Architectural Levetle BSD Projects

Socio-Technical Congruence (Community)
120

100

i

E
fn
ﬁ

* \ =f=FreeBSD congruence
40 \ / \ / ~ == NetBSD congruence
V OpenBSD congruence
m \/

0

Apr Oct Mov Mar Oct May Mar Dec Dec Sep Jan Nov Nov May Dec Nov Nov Feb Nov May May May Jan Oct
1993 1994 19951997 1998 15992000 2000 2001 2002 2003 2003 2004 2005 2005 2006 2007 20082008 2009 20102011 2012 2012

Release Year

Figure 18. Evolution of Congruence at Community Level of B®D Projects

17,23%. But it can be treated as an outlier due to missingvolution history. Thus, it can be affirmed that to a
data. Yet there was a slight decrease noticed for the lasbnsiderable extent the communication of the contributing
three stable releases. developers in the BSD communities might be due to the
To summarize these results, it can be conceived thatoordination needs as identified by the technical depen-
the congruence approximation to that of Explicit Coordi-dency, and vice-versa. This observation is in-line with the
nation Network is considerably high for the three projectsprior work that reported congruence as a desired property
That is, the communication pattern of the developeand a natural phenomenon of collaborative development
community derived from the architectural dependency ofvorks [16] [36].
the components effectively resembles the actual com- Alongside these observations, communities of the
munication pattern. Thus, the communication pattern oforked BSD projects have maintained a certain level of
contributing developer community can be used to simulateollaboration throughout the project history. Our repdrte
the underlying architectural dependency of the softwarenodel of collaboration shows that a portion of the com-
to a great extent. munity is mutual for both the projects. In literature, this
group of community members are termed as the bridge
VI. DISCUSSION between the projects [37], and a means of information

In this section we hereby summarize the findings oiﬂow and coIIaboratlon. [37] [38]. i i
this study and possible implications in relation to prior Moreover, the architectural design at higher abstrac-
works. tion level has remained homogeneous among the forked

projects. This might have supported the developer com-
) o munity with better understanding of the overall system
A. Research Questions Revisited designs and have created a common ground for collabo-
The evidence presented provides a strong indicatioration and contribution. However contrary to this, at detai
that each forked project in the BSD family enjoys aarchitectural level these projects are progressivelyirgett
high level of Socio-technical congruence throughout theitiberated. This could be explained by the fact that the

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2907

developer community of each fork has adopted their owrtan not be extracted fully for NetBSD project. Whereas
implementation strategies when it comes to fine grainedlor OpenBSD project, missing emails are noticed during
design decisions. the period of September and October, 2012. In case of

Finally, it was noticed that the pattern of community NetBSD it is mainly due to broken links to the archives,
and architectural evolution for all the three forking rela-and for OpenBSD it is probably due to unavailability of
tionships (e.g., siblings, parent-child and lineages)ehavthe data during that time period.
followed similar patterns. This observation highlighteth However, the volume of such missing data is not
point that forked projects that have originated from themassive, and thus, have little impact on the overall results
same root project would ideally share a common archiOnly at the two points of congruence measure (as dis-
tectural design and a healthy inter-project collaboration cussed in Section V-C), such missing data injected drifts,

which however, do not hamper the overall trend of the
B. Implications congruence.

It can be argued here that Socio-technical congruence Replication of the study depends on addressing several
plays a pivotal role in forming cohesive and organizedSSUes: which mcIudes,.(a) data collection from the rele-
community driven projects, which eventually leads toVant sources, (b) cleaning and representation of the data
their successful evolution with high quality. This argu-and finally, (c) carrying out the analysis. In what follows,
ment is also affirmed in earlier literature conducted orf* 9uideline to accomplish these tasks. _
in-house projects: Higher congruence influences project Data is collected from two sources, SVN/CVS reposito-

success [3] [5] [16], with improved productivity [39] [6], €S and email grchlves. A detail discussion on download-
maintainability [40], and quality [7]. ing anc_i extracting data from these sources are presented
This measure of socio-technical congruence would bet Sections IV-B and IV-C. However, to ease this process
ter serve the purpose of software development process affi data collection for interested researchers, we make
organization. Because it provides a quick index of howAvailable the extracted data in the link given beflow
well the organization is actually aligned with the currentFurther instructions on how to interpret and use the data
and planned sub-division of responsibility in the projectn replicating this study is discussed in the given link.
[41]. Additionally, the Implicit Architecture can be used ~ Finally, generating the architectures and networks, and
as a complementary to the traditional reverse engineerin‘%a”}"”g out the congruence measure are done thorough
process [42] [43] to derive and validate the recovery ofthe implementation of scripts. There scripts are directly
the Explicit Architecture of legacy systems. derived from the definitions and analysis methods dis-
The identified pattern of collaboration among the threecussed in Sections Il and IV-D, respectively. Tools and
projects could be one way to explain the sustainability ofackages listed in Section IV-E are used for script imple-
the forked projects [44], particularly during their early mentation. All the packages are open source and are avail-
formation stages. Additionally, further study could beable online for free downloading. However, the scripts
initiated to verify the impact of such collaboration on Used in this study are not made available in the given
cross project porting and code cloning [45] [46]. link. If researchers require assistance in implementing
Overall, based on our study results, we claim thathe scripts, we could provide adequate guidelines and the
the traditional perception of forking in OSS projects, SCrpts upon request
which is thought to have negative stimuli for sustainable
evolution of the projects [8], can be effectively remedied VIII. T HREATS TOVALIDITY
though (a) maintaining a consistent and cohesive abstract)) -)
architectural design to form a common ground of collabo- 1he following aspects have been identified which
ration among the forked projects, (b) adopt a collaboratioifOU!d lead to threats to validity of this study.
model in which members of a project could participate in

other forks, and (c) maintain a consistent and high socioEXternal validity (how results can be generalizeds
technical congruence within the project. case study subject, projects from the BSD family were

None-the-less, this study puts a step forward in reasors€/ected, which are FreeBSD, NetBSD and OpenBSD.

ing about the successful evolution of forked OSS projects!! these projects belong to the operating system domain,
as this perspective has rarely been studied in curreft2ve large developer and user communities, and have

literature on OSS evolution analysis [8] [47]. over t_/venty years of evolution history. Additionally, 0SS
evolution studies often used these projects as case study.
VII. ON THE MISSING DATA AND REPLICATION OF Thus it might be possible to stress the results reported
THE STUDY in this article to the population of OSS projects having

. . similar properties, e.g., domain, project size, evolution

Data collection process for this study sufferers from, . . -~
- o . history. Yet, we cannot claim complete external validity

some missing data. The missing data constitutes the gen-

S . : . . 2~ of the results.

eral communication emails stored in the email archives.

Missing email conversations are encountered for NetBSD

and OpenBSD projects. To be specific, email conver- inp:/imsyeed.weebly.com/replication-package.html

sations during the period of April, 2005 to May, 2005 2Contact:rajit.cit@gmail.com

©2014 ACADEMY PUBLISHER

2908 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

Internal validity (confounding factors can influence [6] L. Colfer and C. Baldwin, “The mirroring hypothesis: The
the findings):Missing historical data - the study has been (éryéﬁ\éig:g%eh gggo%ceptions," working paper, Harvard
H H H usi .

e e e 1 205501) opuen & Mty an . st T nnce

7 > ! organizational structure on software quality: an empirica
chat entries other than that recorded in the emails. case study,” inICSE '08 Proceedings of the 30th inter-
Additionally, we encountered several broken URL links national conference on Software engineerir08, pp.
for emails that could not be retrieved. Thus, we make 521-530.

no claim on the completeness of the email entries with [8] G- Robles and J. Gonzalez-Barahona, "A comprehensive
study of software forks: Dates, reasons and outcomes,” in

relevance to this study target. 0SS, IFIP AICT 3782012, pp. 1-14.
[9] M. Syeed and I. Hammouda, “Socio-technical congruence
Construct validity (relationship between theory and in oss projects: Exploring conways law in freebsd oss

observation):There exist a few issues that concern the evolution,” in Proceedings of 9th International Conference
construct validity of the study. First, part of the email of Open Source Systems (OSS), Springed.3.

tri t ived t ifi tabl | S[elo] M. Fischer, J. Oberleitner, J. Ratzinger, and H. Galir-
entries were categorized (o a Speciic stable relea ing evolution data of a product familyACM SIGSOFT

according to their date of post. The reasoning here is software Engineering Notegol. 4, no. 30, pp. 1-5, 2005.
that developers commit and discuss on release plannirjgl] J. Niels, “Putting it all in the trunk: incremental sefire
before the product is officially released. Yet, we do not development in the freebsd open source projdnfgrma-
claim the perfection of this approach. Second, the dat?lz] tion Systems Journaol. 11, no. 4, pp. 321-336, 2001.

. . . . T. Dinh-Trong and J. Bieman, “The freebsd project: A
extraction programs written for this study provided an replication case study of open source developmeBoft-

accuracy of 97%, which was measured with random ware Engineering, IEEE Transactions ,ovol. 31, no. 6,
sample of the collected data. This may affect the pp. 481-494, 2005.
construct validity. [13] J. Han, C. wu, and B. Lee, “Extracting development
organization from open source software,” I6th Asia-
IX. CONCLUSIONS Zﬁifijl:goftware Engineering Conference, IEEER09, pp.
The current study provides empirical evidence thaf14] E. S. Raymond, “The new hacker's dictionary (3rd ed.),”
successful OSS forked projects that are lineages of an in Cambridge, MA, USA: MIT Pres4996.
ancestor project may follow similar evolution patterns[15] L. M. Nyman and T. Mikkonen, “To fork or not to fork:

. . : : Fork motivations in sourceforge projects,” 8ource Sys-
in terms of (a) technical and social dependencies and tems: Grounding Research : IFIP Advances in Information

(b) achieving a high I_evel of congruence that .sustains and Communication Technolagg011, pp. 259—268.
throughout their evolution. Though from a technical per-[16] T. Browning, “Applying the design structure matrix to
spective the forked projects get more and more indepen- system decomposition and integration problems: a review
dent by time, they may enjoy a sustainable level of cross $nd neV\t/' dlreCtlonlsl’AférEnglnseezrg\ogl Managgzmggg IEEE

: : P : : : ransactions onvol. 48, no. 3, » PP. —-306.
project collaboratlohn. Keeping in Ilne Wlth prl[or e\rl]ldencellﬂ] M. E. Sosa. S. D. Eppinger. and C. M. Rowles, “The
[9], we can argue that congruence is an implicit character- * nyisajignment of product architecture and organizational
istic of successful forked OSS projects, and combining it structure in complex product development,” Manage-
with inter project collaboration would portray the reason ment Sciencevol. 50, no. 12, 2004, pp. 1674-1689.
behind the success of such projects. This claim howevdi8] |- Her%z,t\rll. Gongaltez-Bafr?r?ona, th ROb][elfSt; and fltl- Ger

. H : man, n the prediction o € evolution ofr libre sortware

needs f_urther empmca! evidence. As an alte_rnatlve to the projects” iNICSM, oct. 2007, pp. 405 —414.
qualitative argumentation approach taken in our studys;o1 FreeBSD “http://www.freebsd.org/,” 2013.
one could frame our research questions as hypothesgs)] NetBSD, “http:/www.netbsd.org/about/,” 2013.
and perform statistical analysis to evaluate them. Thi§21] OpenBSD, “http://www.openbsd.org/,” 2013.
constitutes our future work. [22] J. Wu, R. Holt, and A. Hassan, “Empirical evidence foc so
dynamics in software evolution,” iBoftware Maintenance,
2007. ICSM 2007. IEEE International Conference oant.
2007, pp. 244 —254.
[1] A. Mockus, R. Fielding, and J. Herbsleb, “Two case [23] |. Herraiz, “A statistical examination of the evolutiand

studies of open source software development: Apache and properties of libre software,” irSoftware Maintenance,

REFERENCES

mozilla,” Journal of TOSEMvol. 11, no. 3, pp. 309-346, 2009. ICSM 2009. |IEEE International Conference sept.
2002. 2009, pp. 439 —442.

[2] G. Valetto, S. Chulani, and C. Williams, “Balancing the [24] J. C. JE, L. V. LG, and A. Wolf, “Cost-effective analysis
value and risk of socio-technical congruencéforkshop of in-place software processes,” IBEE Transactions on
on Sociotechnical Congruenc2008. Software Engineeringvol. 24, no. 8, 1998, pp. 650—663.

[3] I. Kwan, A. Schrter, and D. Damian, “Does socio-techhica [25] D. Atkins, T. Ball, T. Graves, and A. Mockus, “Using
congruence have an effect on software build success? a version control data to evaluate the impact of software

study of coordination in a software project,”l8EE Trans. tools,” in Proceedings 21st International Conference on
Software Eng.vol. 37, no. 3, 2011, pp. 307-324. Software Engineeringvol. 24, no. 8, 1999, pp. 324-333.
[4] M. E. Conway, “How do committees inventPatamation [26] I. Kwan, M. Cataldo, and D. Damian, “Conway’s law
vol. 14, no. 4, pp. 28-31, 1968. revisited: The evidence for a task-based perspecti#EE
[5] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Software vol. 29, no. 1, pp. 90-93, 2012.

Carley, “Identification of coordination requirements: Im- [27] M. Goeminne and T. Mens, “A framework for analysing
plications for the design of collaboration and awareness and visualising open source software ecosystemsPra
tools,” in ACM CSCW 2006, pp. 353-362. ceeding IWPSE-EVOL '1®010, pp. 42-47.

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2909

(28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

D. M. German, “Using software trails to reconstruct the of Technology, Bangladesh in September, 2002 and his M.Sc
evolution of software,” inJOURNAL OF SOFTWARE degree in Information Technology from Tampere University o
MAINTENANCE AND EVOLUTION: RESEARCH AND Technology, Finland in April, 2010. He is currently working
PRACTICE vol. 16, 2004, pp. 367-384. towards his Ph.D. degree and working as a researcher in the
Y. Wang, D. Guo, and H. Shi, “Measuring the evolution same university. His current research interest includegysof

of open source software systems with their communities,"Open Source Software ecosystem, ecosystem enablingearchit
in ACM SIGSOFT Software Engineering Notesl. 32, ture, project evolution, experimental software developtnand

no. 6, 2007. big data mining and knowledge extraction.

W. Zhang, Y. Yang, and Q. Wang, “Network analysis of

oss evolution: An empirical study on argouml project,” in

IWPSE-EVOL112011. DO Imed H da ioined Uni . f Gothenb .
jsoup: Java HTML Parser, “http://jsoup.org/,” 2013. Srl tmeb %Tg()lé ? IO'QE t rr]1|ver3|ton .Ott er|13 u;g In f
U. S. C. Analysis and Metrics, “http://www.scitoolero/,” eptember - belore hat, he was ASsociale Frotessor o

2013 software engineering at Tampere University of Technology
: (TUT), Finland. At TUT, he was heading the international
masters programme at the Department of Pervasive Computing
"He got his Ph.D. in software engineering from TUT in 2005. Dr.
Hammouda’s research interests include open source seftwar
2010, pp. 1-11 software architecture, software development methods @wid,t

} T ’ and variability management. He was a founding member and

gﬂérig?gﬂns’opér\]/e;giuggeiwgéeaqg rgﬁ Lr?psliztzérgrgrl_eader of TUTOpen - TUT research group on open source
9 p " g software. He has been the principal investigator of several
chaeology: The case of nethack,” Proceedings of the

; . research projects on various open initiatives. Dr. Hamrasud
30th Annual IEEE/NASA Software Engineering WorkshOppuincation record includes over fifty journal and conferen
2006, pp. 47-58. papers
A. pP.-J. A. for Microsoft Documents, '
“http://poi.apache.org/,” 2013.

J. Herbsleb and R. Grinter, “Architectures, coordioat
and distance: Conway'’s law and beyond, Journal IEEE
Software vol. 16, no. 5, 1999, pp. 63-70.

M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open
source communities,” inFIP International Federation
for Information Processing, Volume 203, Open Source
Systems2006, pp. 21-32.

J. Gonzalez-Barahona, L. Lopez, and G. Robles, “Com-
munity structure of modules in the apache project,” in
Workshop on Open Source Software Engineeri@p4.

C. Baldwin and K. Clark, “Design rules: The power of
modularity,” in MIT Press 2000.

F. P. Brooks, “The mythical man-month,” iAnniversary
Edition: Addison-Wesley Publishing Compai@95.

G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Weg-
man, and C. Williams, “Using software repositories to
investigate socio-technical congruence in development
projects,” inICSE Workshops MSR007, pp. 25-25.

H. Dayani-Fard, Y. Yu, J. Mylopoulos, and A. Periklis,
“Improving the build architecture of legacy c/c++ software
systems,” in8th FASE 2005.

R. Kazman and S. Carrire, “Playing detective: Recon-
structing software architecture from available evidehice,
Technical Report CMU/SEI-97-TR-010, Carnegie Mellon
University, 1997.

J. Gamalielsson and B. Lundell, “Sustainability of ope
source software communities beyond a fork: How and why
has the libreoffice project evolvedJournal of Systems
and Softwargvol. 89, pp. 128-145, 2014.

B. Ray and M. Kim, “A case study of cross-system porting
in forked projects,” inProceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Soft-
ware Engineering ACM, 2012, p. 53.

D. German, M. D. Penta, Y.-G. G. éhéneuc, and G. An-
toniol, “Code siblings: Technical and legal implicatiorfs o
copying code between applications,” MiSR'09 IEEE,
2009, pp. 81-90.

M. Syeed, |. Hammouda, and T. Systa, “The evolution
of open source software projects: a systematic literature
review,” Journal of Softwarevol. 8, no. 11, pp. 2815—
2829, 2013.

D. Darcy, S. Daniel, and K. Stewart, “Exploring com-
plexity in open source software: Evolutionary patterns
antecedents, and outcomes,” roceedings of the 43rd

Hawaii International Conference on System Sciences

M.M. Mahbubul Syeed received his B.Sc degree in Computer
Science and Information Technology from Islamic Universit

©2014 ACADEMY PUBLISHER

