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Abstract—On account of the complexity of programs, it is 
difficult to identify all detecting objects of null dereference, 
which is one of the preconditions of null dereference 
detection. This paper introduces an approach for identifying 
all detecting objects of null dereference of C programs. First, 
based on the relationship of dereference expressions with 
nodes of abstract syntax tree (AST), we identify referenced 
pointers; then based on the abstract storage described by 
region-based three value logic (RSTVL) and function 
summary, we identify detecting objects of null dereference. 
In order to validate the adequacy of our approach, five real-
world projects are utilized for experimental analysis, and 
the results show that our approach could identify all 
detecting objects of null dereference. 
 
Index Terms—null pointer dereference, defect detection, 
addressable expression, function summary 
 

I.  INTRODUCTION 

With increasing of software scale and complexity, 
software security becomes increasingly apparent. 
Particularly, null dereference has become one of the main 
causes of software security vulnerabilities, and it is one of 
the most common and difficult defects to eliminate. 

At present, null pointer testing methods can be divided 
into dynamic methods [1, 2] and static methods [3-7]. 
Static methods check pointers dereference on the 
precondition of without running programs, which can be 
divided two categories: null dereference detection [3-5] 
and dereference validation [6, 7]. Generally, null 
dereference detection will first implement dataflow 
analysis or points-to analysis, then check if the pointer 
being referenced is null based on the analysis result; 
dereference validation is demand-driven, identify the 
pointer being referenced first, then analyses along the 
control flow backwards from the program point of a 
pointer dereference, checks if the pointer being referenced 
may be null. 

Both static null pointer testing methods need to identify 
pointers being referenced, and identify detecting objects of 
null dereference based on associations between 
expressions. It is difficult to identify all detecting objects 
of null dereference, because pointer, struct and array exist 
in C programs, which cause alias, hierarchical, logic 
relationships exist among variables, and pointer parameter, 
especially complex type parameter.  

If some detecting objects of null dereference 
unidentified, will lead to false positive of null dereference 

defects. The difficulties of identification lie in two aspects: 
First, some pointer expressions have complex grammatical 
structure; second, complex relationships among 
expressions, including alias, hierarchy, parameters with 
arguments, etc. 

To solve these problems, we first establish mapping 
relationship between addressable expressions [8] with 
nodes of AST, and then apply RSTVL [9] to describe 
memory state of any memory object and all kinds of 
associations. Based on the analysis result, we identify 
detecting objects of null dereference by the following two 
steps. At the first step, we identify pointer expressions 
from AST based on the mapping between addressable 
expressions and nodes of AST, so we identify referenced 
pointers; at the second step, we identify detecting objects 
of null dereference for each pointer being referenced 
based on the result of data flow analysis and function 
summary [10].  

This paper makes the following contributions: 
• We introduce an approach for identifying 

pointer expressions from AST based on the 
relationship of addressable and nodes of AST. 

• We show how to identify various detecting 
objects of null dereference based on RSTVL 
and function summary. 

The remainder of this paper is organized as follows. 
Section II presents background on defect detection and 
motivation examples. Section III introduces addressable 
expression and RSTVL. Section IV and Section V 
introduce identifying detecting objects of null dereference. 
We present experimental results in Section VI, related 
work in Section VII and conclusion is in Section VIII. 

II.  BACKGROUND AND MOTIVATION 

During a program execution, the temporal safety 
property indicates a series of operations that must be 
executed in a specified manner. 

Definition 1: Defect pattern. Syntax or semantics 
feature presented by defect that occurred frequently in 
programs. 

Defect pattern describe a kinds of property of program, 
satisfy it will lead defects. For example, null dereference 
as a defect pattern appears to be a null pointer is 
referenced. 

Definition 2: Defect feature. For a defect pattern, it can 
detect whether some properties violate syntax or 
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semantics rules of program, these properties related 
variables are defect features of defect pattern. 

Defect feature can be understood whether defect 
detection related to some addressable expressions, and 
these addressable expressions are called detecting objects.  

Definition 3: Detecting object of null dereference. A 
pointer with definite points-to attribute and related to null 
dereference defect detection. 

We have implemented a defect detecting tool 
DTSGCC, which is a defect testing system for C written 
in Java. DTSGCC analyzes programs in five stages as 
shows in Figure 1. The last step of analysis stage is defect 
detecting, all detecting objects of null dereference can be 
identified in this step.  

 
Figure 1.  Analysis stages of DTSGCC 

We use two examples in Figure 2 to illustrate some 
obstacles of identifying defecting objects of dereference. 
For the example of Figure 2(a), pointer expression *pst[i]-
>m at line 7 actually implies three pointers being 
referenced: pst, pst[i], pst[i]->m, all of which need to be 
identified, or may lead to false negative null dereference 
defect. But pst[i] and pst[i]->m are not top-level variable,  
they can not be identified by analysing variable 
declaration, it’s not easy to identify them.  

For the example of Figure 2(b), p is referenced at line 4, 
there is an alias between p and ps->a, since ps is a formal 
parameter, we can’t deduce the real point information of 
ps->a in function f2 and wheather ps->a is null pointer. It 
can only be determined based on the calling context at call 
site. Because ps->a is not top-level parameter, the 
mapping between of parameters with arguments is 
unknown because the hierarchy and alias relationship 
between expressions. In fact, f3 calls f2 at line 9, and s.a 
maps ps->a, if we check whether p is referenced safely at 
line 4, we should check whether s.a is a safe pointer at line 
9, and treat s.a as a detecting object of null dereference.  

 
Figure 2.  Motivating examples 

III.  REGION-BASED SYMBOLIC THREE-VALUED LOGIC 

A.  Ddressable Expression 
Definition 4: Memory Object. The expression that 

corresponds to allocated memory when running programs, 
which can be top-level variable v, a member of a complex 
memory object, a dynamically allocated memory. 

For all types of expressions defined by C99, we 
describe a C memory object expression var by the 
following grammar:  

var::=v | var.f | var[n] | malloc(exp). Where v is top-
level variable, exp is parameter. 

Definition 5: Addressable Expression. The expression 
which has l-value and can be assigned.  

For all types of expressions defined by C99, we 
describe a C addressable expression aexp by the following 
grammar: 

aexp::= var | aexp.f | aexp->f | aexp[exp] | (aexp) | *aexp 
| id(exp) 

*aexp can be defined as: *aexp::=*aexp’ | *(++aexp’) | 
*(--aexp’) | *(aexp’++) | *(aexp’ --) | *(aexp’ op exp’), the 
type of aexp’ is pointer, op= + | -, the type of exp’ is 
integer. 

For id(exp), where id is a method and return type is 
pointer, exp means parameters. 

A memory object is an addressable expression, and 
there exist three relationships among addressable 
expressions as relationships between l-value and r-value. 
• Hierarchy, relationship among l-values. It exists in 

addressable expression of compound type with its 
members. 

• Points-to relationship, relationship of l-value and r-
value. It exists in a pointer with the target that the 
pointer point to. 

• Linear and logical relationship, relationship among 
r-values. The r-ralue of a memory unit has linear or 
logical relationship with the r-value of another 
memory unit. 

Based on hierarchy and points-to relationships, we give 
the concept of parent addressable expression. 

Definition 6: Parent Addressable Expression. Complex 
addressable expression is the parent of its members; 
Pointer is the parent of the addressable expressions that it 
points to.  

typedef struct{  
    int *m;  
}st; 
void f1(st **pst){ 
    int i = 0; 
    for(; i <9; i++){ 
       int j = *pst[i]->m; 
    } 
} 

 
(a) 

typedef struct{ int *a; }st; 
int f2(st *ps){ 
    int *p = ps->a; 
    *p = 2; 
} 
void f3(){ 
    st s; 

    s.a = NULL; 
    f2(&s);   
}  

(b) 
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For seven kinds of addressable expressions, aexp is the 
parent of aexp.f, aexp->f, aexp[exp], *aexp; aexp->f is 
equivalent to (*aexp).f, whose parent is *aexp. 

When a function is called in different calling contexts, 
the points-to information of its pointer arguments maybe 
different. In order to map the points-to information at call 
site to the called function, we introduce extended variables 
to represent the points-to information of pointer 
parameters and global variables.  

Let e as the variable that need to be extended, the 
extended rules are as follows:  
• if e is a pointer, and the maximum level of 

dereference from e is n, then we create n extend 
variables, include *e, **e,…and so on;  

• if e is a variable with compound type and has n 
member, then we create n extend variables, include 
e.f1, e.f2,…and so on. 

For example, parameter ps of function f2 in Figure 2(b), 
the maximum level of dereference from ps is 1, so 
extended variable *ps is introduced. *ps is an extended 
variable and its type is struct and has a child a, so we 
generate an extended variable (*ps).a. And (*ps).a is 
pointer and the maximum level of dereference from it is 1, 
so we generate extended variable *(*ps).a. 

B.  Rstvl 
Definition 7: Region-based Symbolic Three-Valued 

Logic. RSTVL is a model of quadruple <Var, Region, 
SExp, Domain>, where Var is memory object, Region is 
abstract memory, SExp is symbolic expression, and 
Domain is the domain of value. 

Quadruple RSTVL describes scalar memory object, 
and complex memory object can be decomposed into 
combination of scalar elements. Complex type memory 
object can be described by triple <Var, Region, x>, where 
x is determined by the type of Var, if the type of Var is 
array, x is {<i, Region>}, i∈N, i is the index of array Var; 
if the type of Var is struct, x is {< f, Region>}, f is the 
member of struct Var. 

For different types of memory objects, different types 
of regions are applied. PrimitiveRegion describes 
primitive type memory object, PointerRegion describes 
pointer, ArrayRegion describes array, and StructRegion 
describes struct.  

Each region has the only number, the numbering form 
of PrimitiveRegion is bm_i (i∈N), the numbering form 
of PointerRegion is pm_i, the numbering form of 
ArrayRegion is am_i, and the numbering form of 
StructRegion is sm_i. For the region dynamically 
allocated memory, its number is mxm_i_n(x means the 
type of the region, the value is ‘b’, ‘p’, ‘a’ or ‘s’), n is 
bytes of memory size. The number of null address is 
“null”, and the number of wild address is “wild”. If the 
initial letter of the number of a region is ‘u’ or ‘g’, this 
region describes a parameter or global variable. 

We call the region that maps v, var.f, var[n] is safe 
region, dynamically allocated region is dynamic region, 
the region that maps parameter or global variable is 
unknown region, these three kinds regions collectively 

call operable region; the region identified null or wild is 
an inoperable region. Dynamic region and unknown 
region will become safe region after not null judgement, 
dynamic region and unknown region will become 
inoperable region after is null judgement. 

We divide domain [11] into two types: numeric and 
pointer, and apply PointTos to describe points-set in 
pointer domain PointerDomain, the elements of PointTos 
is the number of a region. 

Domains of RSTVL and operators to them constitute 
complete lattice , , , , ,L< ≤ >⊥ . ⊥  is empty set;  of 
numeric domain is [ , ]−∞ +∞ ;  of pointer domain is the 
union of null, wild and all numbers of operable region;  
is merge operation of sets;  is intersection operation of 
sets. Static data flow analysis based on RSTVL can be 
transferred to operation on lattice. 

RSTVL describes all three associations among 
addressable expressions; and is suitable for flow-sensitive, 
field-sensitive, context-sensitive and path-insensitive 
static analysis. Given a program point, a region abstraction 
based on RSTVL consists of the following: 
• At each program point l, a set of regions lR  that 

models the locations that may access at l, a set lS  
expresses symbols that may be used at l. 

• At each program point l, exists an abstract store:
( , , )l l l l

v r fρ ρ ρ ρ= , where :l l
v V Rρ →  maps memory 

objects to their regions; :l l l
r R Rρ →  expresses the 

points-to relationship among regions; 
: ( )l l l

f R F Rρ × →  maps members of a complex 
addressable expression to their regions. 

To analyse an addressable expression, we need to get 
potentially associated regions first, and an addressable 
expression may associates several regions. At a program 
point l, if the abstract store is ρ , we use lR ea b  to express 
region set that addressable expression e associated. Then 
strategies can be given for achieving region set that all 
kinds of addressable expressions associated. 

• ( )l l
vR v vρ=a b ; 

• 
[ ]

. ( , )
l

l l
f

r R e

R e f r fρ
∈

=a b ∪ ; 

• 
[ ]

[ ] ( , )
l

l l
f

r R e

R e i r iρ
∈

=a b ∪ ; 

• 
[ ]

* ( )
l

l l
r

r R e

R e rρ
∈

=a b ∪ ; 

• 
[ ]

* ( )
l

l l
r

r R e

R e rρ
∈

=a b ∪ ; 

• ( )l lR e R e=a b a b ; 

• 
[ ] ' ( )

( ', )
l l

r

l l
f

r R e r r

R e f r f
ρ

ρ
∈ ∈

⎧ ⎫⎪ ⎪− > = ⎨ ⎬
⎪ ⎪⎩ ⎭

a b ∪ ∪ . 

We have applied RSTVL to data flow analysis in 
DTSGCC [9]; the analysis is flow-sensitive, field-
sensitive, and context-sensitive based on symbolic 
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function summary, it can analyzes the over-
approximation of every memory objects in every program 
point. 

IV.  IDENTIFYING DETECTING OBJECTS OF 
INTRAPROCEDURAL NULL DEREFERENCE 

A.  Identifying Referenced Pointers 
Based on the grammar defined by BNF, we generate 

AST for the C file under test. At the generating scope 
table stage, we identify addressable expressions from 
AST, and bind each addressable expression to the related 
node of AST [8].  

There are three kinds of nodes that are closely related 
to addressable expressions, which are UnaryExpression, 
PostfixExpression and PrimaryExpression; and their 
grammars are described by BNF as follows: 

UnaryExpression::= PostfixExpression | “++” 
UnaryExpression | “--” UnaryExpression | <SIZEOF> 
( UnaryExpression | “(“TypeName”) ”) | UnaryOperator 
CastExpression, UnaryOperator::= “&” | “*” | “+” | “-” | “~” | 
“! ”); 

PostfixExpression ::= PrimaryExpression (“. ” 
<IDENTIFIER> | “[“Expression”] ” | 
“(“( ArgumentExpressionList )? ”) ” | “->” <IDENTIFIER> | 
“++” | “--”)*; 

PrimaryExpression ::= <IDENTIFIER> |“( “Expression”)”| 
Constant.  

According to grammatical features, pointer expression 
ep as a kind of addressable expression  can be divided in to 
three types: *ep, ep->f and ep[exp], so we can identify all 
dereference expressions from searing AST, and identified 
all referenced pointers. We apply XPath to search AST, 
and the query statement of *ep is: 

.//AssignmentExpression//UnaryExpression[/UnaryO
perator[@Operators='*']]/UnaryExpression. 

The query statement of ep->f and ep[exp] is: 
.//AssignmentExpression//UnaryExpression/PostfixEx

pression[./PrimaryExpression][contains(@Operators,'[')or 
contains(@Operators, '->')]. 

For the example of Figure2(a) , *pst[i]->m is a *ep type 
pointer expression, so we can identify it from the related  
UnaryExpression node of AST, and deduce the pointer 
being referenced is pst[i]->m; pst[i]->m is a ep->f type 
pointer expression, so we can identify it from the related  
PostfixExpression node of AST, and deduce the pointer 
being referenced is pst[i]; pst[i] is a ep[exp] type pointer 
expression, so we can identify it from the related  
PostfixExpression node of AST, and deduce the pointer 
being referenced is pst. Above all, we identify three 
referenced pointers from *pst[i]->m: pst[i]->m, pst[i], pst. 

B.  Points-to Attribute 
We can decide whether a pointer being referenced is 

null dereference or not based on its points-to attribute. 
Points-to attribute is described as a lattice: ALPTR = (VPTR, 
Fjoin, Fmeet), and its Hesse table is shown in Figure 3. VPTR 
depicts the value set of points-to attribute, which can 
describe security of a pointer being referenced effectively, 
and can be conveniently applied to null dereference 
detection. EMPTY expresses initial value of attribute 

lattice, NULL expresses a pointer points to null address, 
NOTNULL expressed a pointer points to a safe memory 
address, NON (NULL_OR_NOTNULL) expresses a 
pointer may be points to null address. When a pointer is 
referenced, null dereference will inevitably occur if 
points-to attribute of the pointer is NULL, may occur if 
points-to attribute of the pointer is NON. 

 
Figure 3.  Hasse table of ALPTR 

Fjoin: VPTR×VPTR→VPTR is the greatest lower bound 
function of  ALPTR.  

Fmeet: VPTR×VPTR→VPTR is the least upper bound 
function of  ALPTR. 

In order to comprehensive express points-to 
information, UNKNOWN is introduced to express 
uncertainty of points-to of a pointer; it is applied to 
initialize points-to attribute of pointer parameters and 
global variables. Operations about UNKNOWN with 
other attribute value X as follows: 

Fjoin (X, UNKNOWN) = X 
Fmeet (NOTNULL, UNKNOWN) = UNKNOWN 
Fmeet (NULL, UNKNOWN) = NON 
Fmeet (NON, UNKNOWN) = NON 
Fmeet (EMPTY, UNKNOWN) = UNKNOWN 
Fmeet (UNKNOWN, UNKNOWN) = UNKNOWN 

At program point l, let l
nameT ra b  express the type of the 

region numbered rname, pd express the domain of pointer 
ep, the abstraction function l

ρα  of points-to attribute is 
defined as follows: 

 

EMPTY
NULL             ={null}
NOTNULL    , is safe

( ) UNKNOWN ( , is safe or
                       unknown) and ( ,
                    is unknown

NON

l

l l

l

pd
pd

pt pd T pt
pd pt pd T pt

pt pd
T pt
others

ρα

= ∅⎧
⎪
⎪
⎪ ∀ ∈
⎪

= ∀ ∈⎨
∃ ∈

a b
a b

a b )

⎪

⎪
⎪
⎪
⎪
⎪⎩

 

V.  IDENTIFYING DETECTING OBJECTS OF 
INTERPROCEDURAL NULL DEREFERENCE 

A.  Function Summary 
Each function call might affect its concrete call site 

context in four aspects: 
•  the callee function might cause side effects to actual-

parameters and global variables; 
•  the caller’s dataflow and control flow might be 

transformed by callee’s return value; 
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•  potential interrupt instructions, such as exit, assert, 
exception, etc; 

•  pre-condition, the call site context must obey the 
callee’s invocation constraints to avoid defects. 

In this paper, our function summary only focuses on 
pre-condition of null dereference NPDPreSummary. For 
the example in Figure 2(b), pointer parameter ps is 
referenced at line 3, and the points-to attribute of ps is 
UNKNOWN, so we must add ps can not be null as a pre-
condition of function f4.  

B.  Generating Pre-condition of Null Dereference 
If ( ) UNKNOWNl

pV eρα ==a b  and the PointerDomain of 
ep is pd; then for each region number rName in pd and the 
region named rName is an unknown region, if the momory 
object mapping to the region is exp, then we set the parent 
addressable expression of exp can not be null as pre-
condition. Let l

n nameR ra b  express the region numbered rname 
at program point l; Let rE ra b  express the memory object 
that related to r. The generating pre-condition of null 
dereference is detailed in algorithm 1. 

Algorithm 1 Generating pre-condition of null 
dereference 

Input: pointer being referenced ep, NPDPreSummary 
Output: NPDPreSummary 
Declare: getParent(para): get father addressable 

expression of para. 
for each pt∈ l

pV ea b&& lT pta b  is unknown region 
     let var = l

r nE R pta a bb ; 
     let fvar = getParent(var); 
     add fvar to NPDPreSummary; 
end for 
return NPDPreSummary; 

C.  Instantiating Pre-condition of Null Dereference 
For each function call, we get its function summary 

first, and instantiate the function summary based on the 
calling context at the call site. 

Function call expression is a kinds of addressable 
expression, the grammar of it is id(exp). id(exp) maps to 
PrimaryExpression, it can be identified by searching AST, 
the query statement is: 

.//PrimaryExpression[@Method='true'] 
If the called function has function summary, and the 

pre-condition constraint some pointers can not be null, 
then we instantiate it. 

To instantiate the pre-condition of null dereference, the 
key is for each constrained pointer ecp in pre-condition, get 
related addressable expression set epList at the call site; 
and based on the abstract store state at the call site 
described by RSTVL, get the points-to attribute for each 
pointer of epList. If the points-to attribute of a pointer in 
epList is UNKNOWN, then we add this pointer into pre-
condition of null dereference applying algorithm 1, 
otherwise , the pointer is a detecting object of null 
dereference. 

In all of above steps, the key is getting the addressable 
expression set for each constrained pointer in pre-

condition of null dereference, which is a problem that 
maps a parameter to arguments; the details is shown in 
algorithm 2. 

Algorithm 2 Mapping a Parameter to Arguments. 
Input: para, Rn 
Output: VarsList<Variable> 
Declare:  
getParents(para): get parent addressable expressions 

of para sorted according to parent-child relationship. 
getArgument(var, n): get the corresponding arguments 

of top-level parameter var at the calling point n. 
getParent(var): get parent addressable expression of 

var. 
getType(e): get the addressable expression type of 

e,where 0: v, 1: e.f, 2: e->f, 3: e[exp], 4: (e), 5: *e, 6: 
m(exp). 

getMemName(s, var): for addressable expression s and 
the type of s is struct, get the member name of its child 
addressable expression var.      

let args<Variable> = ∅ ; 
let parents<Variable> = getParents(para); 
get first variable v0 in parents; 

args = { getArgument(v0, n) }; 
for each p∈parents && p ≠  v0 

let vp = getParent(p); 
let vars<Variable> = ∅ ; 
for each v∈args 

for each r∈ nR vi a b  
if getExpType(var) == 1 then 

let m = getMemName(vp, p); 
vars ∪= { ,l

fR r ma b }; 
else if getExpType(var) == 5 then 

vars ∪= { n
rV ri a b}; 

end if 
end for 

end for 
args = vars; 
end for 
return args; 

For the function f2 in Figure2 (b), parameter ps is 
referenced at line 3; dereference p at line 4 is actually 
access the region that pointed by (*ps).a. the points-to 
attribute of ps and (*ps).a are UNKNOWN, so the pre-
condition of null dereference of f2 is: {ps[NOTNULL], 
(*ps).a [NOTNULL]}. 

Function f3 calls f2 at line 9, ps is a top-level parameter 
and constrained can not be null in pre-condition of null 
dereference, based on the numerical order, we can deduce 
ps maps to &s at call site, it’s a safe dereference. (*ps).a is 
also constrained can not be null in pre-condition, its parent 
addressable expression set is {ps, *ps, (*ps).a}. Based on 
the abstract store state at the call site described by RSTVL 
at line 9, we can deduce that ps maps {&s}, *ps maps {s}, 
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(*ps).a maps {s.a}. So detecting objects of null 
dereference is &s, s.a, and the points-to attribute of s.a is 
NULL, so a null dereference defect will be reported at line 
9.    

VI.  EXPERIMENTAL ANALYSIS 

We choose five C projects to validate the effectiveness 
of our approach. 

A.  Identifying Defecting Objects of Null Dereference 
Pointers being referenced of five C projects identified 

by our approach are shown in TABLE I. Pointers being 
referenced can be divided as: local pointer and points-to 
attribute is known (LKP), local pointer and points-to 
attribute is unknown (LUP), external pointer and points-to 
attribute is known (EKP), external pointer and points-to 
attribute is unknown (EUP), function pointer (FP). 

TABLE I 
STATISTICS OF REFERENCED POINTERS 

Benchmark KLOC 
Referenced pointer 

LKP LUP EKP EUP FP Total
antiword-0.37 24.2 770 142 50 1716 73 2751
uucp-1.07 52.6 1849 1112 401 2397 379 6138
sphinxbase-0.3 22.5 691 203 602 2011 82 3589
optipng-0.6 27 415 239 178 1258 53 2143
barcode-0.98 3.4 176 52 249 378 18 873
Total 130 3901 1748 1480 7760 605 15494

It is shown in TABLE I that pointer dereference occur 
frequently in C functions, about 120/KLOC, and more 
than 60% pointers being referenced can not be 
determined their points-to attribute in respective function, 
if function pointers are considered, more than 65% 
pointers being referenced need interprocedural identified. 

For lib functions, we construct their function summary 
artificially. And detecting objects of null dereference 
identified by function summary can be divided two kinds: 
identified based on custom function (CFP), identified 
based on lib function precondition pointer (LFP). For 
pointers being referenced that can not be determined 
points-to attribute in TABLE I, we identify their relative 
detecting objects of null dereference by interprocedural 
identifying approach, the result is shown in TABLE II.  

TABLE II 
STATISTICS OF DETECTING OBJECTS OF NULL DEREFERENCE 

Benchmark 
Detecting objects of null dereference 

LKP EKP FP CFP LFP Total
antiword-0.37 770 50 73 372 105 1370
uucp-1.07 1849 401 379 1382 1314 5325
sphinxbase-0.3 691 602 82 170 222 1767
optipng-0.6 415 178 53 579 358 1583
barcode-0.98 176 249 18 56 259 758 
Total 3901 1480 605 2559 2258 10803

For the example in Figure 1(b), ps is a EUP type 
referenced pointer, p is a LUP type referenced pointer, s.a 
is a CFP type detecting object of null dereference.  

Applying our approach, more detecting objects of null 
dereference can be identified, and more null dereference 
defects can be detected. There is a null dereference in 
Figure 4, Barcode_128_make_array calls lib function 

strlen at line 321, the pre-condition of null dereference in 
function summary of strlen constrain its parameter can be 
null, and the points-to attribute of bc->ascii is 
UNKNOWN at line 321, so we add (*bc).ascii(equals to 
bc->ascii) can not be null pointer into pre-condition of 
null dereference of Barcode_128_make_array. 
Barcode_128_encode calls Barcode_128_make_array at 
line 439, we can deduce that parameter (*bc).ascii maps 
argument bc->ascii, and the points-to attribute of bc-
>ascii at line 439 is NON, so we make as bc->ascii a 
detecting object of null dereference, and report bc->ascii 
is a null dereference defect at line 439. Klocwork9 [12] 
and Saturn [13] can not detect these defects. 

Figure 4.  A detecting object of null dereference identified by our 
approach 

VII.  RELATED WORK 

There is some research in the area of expression 
recognition that related to our work. Maksim O et al. [14] 
present core expression as canonical representation, they 
also identify expression from AST, but can not guarantee 
to identify all addressable expressions; so their method 
can not guarantee identify all referenced pointers. 
PenAnalysis [15] applies expression tree to representation 
expression, which is more complex than our method. S. 
Blazy et al. 

In order to analysis expressions comprehensively, 
relations among expressions must be considered, 
otherwise the result will be inaccurate. Alias set and 
points-to set only focus on alias relationship, can not 
express hierarchy of compound variables; applying them 
can’t analyze complex pointers effectively. As a region 
model, RSTVL is similar to Brian Hackett’s memory 
model [16], and appropriated for shape analysis. 

Specific to null dereference testing, it is an important 
work to identify detecting objects of null dereference. 
Although null dereference testing has been extensively 
studied, only few of past researches mention how to fully 
identify detecting objects. PSE [3] defines a simple 
pointer language, and regulated source code patterns for 
the null dereference property; but it can’t guarantee 
identifying multilevel pointers effectively, especially 
interprocedural multilevel pointers. B. Cheng, etc apply 
access path for interprocedural pointer analysis [17], their 
access path is similar to our parent addressable expression, 
and they also use function summary. 

File:barcode\code128.c 
The called functions  at line 314: 

static int *Barcode_128_make_array(struct Barcode_Item *bc, *) 
321: len = 2 * strlen(bc->ascii) + 5; 

 
The calle function at line 414: 

int Barcode_128_encode(struct Barcode_Item *bc) 
433: text = bc->ascii; 

434: if (!text) { 
……; 

} 
439: codes = Barcode_128_make_array(bc, &len);  //NPD 
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VIII.  CONCLUSIONS 

In this paper, we introduce an approach for identifying 
detecting objects of null dereference. RSTVL describes 
abstract storage of each program point and relationships 
of addressable expressions, uses region number set to 
express pointer point to. Based on the correspondence 
between addressable expressions and nodes of AST, we 
identify all pointers being referenced from AST based on 
the grammar of pointer expression. If the points-to 
attribute of a pointer being referenced is can be 
determined, then we add the related pointer can not be 
null into the pre-condition of null dereference in function 
summary, and identified related detecting objects of null 
dereference at call site based on the abstract storage 
described by RSTVL. 

REFERENCES 

[1] Michael D, Graham Z, Samuel Z, “Breadcrumbs: efficient 
context sensitivity for dynamic bug detection analyses, ” In 
Proceedings of the 2010 ACM SIGPLAN conference on 
Programming language design and implementation, 2010, 
pp. 13-24. 

[2] J. Huang, M. Bond. “Efficient context sensitivity for 
dynamic analyses via calling context uptrees and 
customized memory management,” In Proceedings of the 
2013 ACM SIGPLAN international conference on Object 
oriented programming systems languages & applications. 
2013, pp. 53-72. 

[3] R. Manevich, M. Sridharan, S. Adams, “PSE: Explainint 
program failure via psotmortem static analysis, ” In 
Proceedings of the 12th ACM SIGSOFT twelfth 
International Symposium on Foundations of Software 
Engineering, 2004, pp. 63-72. 

[4] X. Ma, J. Wang, D. Wang. “Computing must and may alias 
to detect null pointer dereference, ” Leveraging 
Applications of Formal Methods, Verification and 
Validation, 17(17): 252-261, 2008. 

[5] M. Buss. Summary-based pointer analysis framework for 
modular bug finding [D]. Columbia: Columbia University, 
2008 

[6] Y. Xie, A. Aiken. “Saturn: A scalable framework for error 
detection using Boolean satisfiability,” ACM Transactions 
on Programming Languages and Systems, 29(3): 1-43, 
2007. 

[7] M. Ravichandhran, K. Raghavan. Null dereference 
verification via over-approximated weakest pre-conditions 
analysis. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and 
Applications, 1033-1052. ACM, 2011. 

[8] Y. Dong, Y. Xing, D. Jin, Y. Gong. “An approach to fully 
recognizing addressable expression,” In The 13th 
International Conference on Quality Software, 2013, pp. 
149-152. 

[9] Y. Dong, D. Jin, Y. Gong, Y. Xing. “Static analysis of C 
programs via region-based memory model,” Journal of 
Software, 25(2): 357-372, 2014 (in Chinese with English 
abstract). 

[10] Y. Dong, D. Jin, Y. Gong. “Symbolic procedure summary 
using region-based symbolic three-valued logic,” Journal 
of Computers, 9(3): 774-780, 2014. 

[11] Y. Wang, Y. Gong, Q. Xiao, Z. Yang. “A Method of 
Variable Range Analysis Based on Abstract Interpretation 
and Its Applications,” Acta Electronica Sinica, 39(2): 296-
303, 2011 (in Chinese with English abstract). 

[12] M. Webster. “Leveraging static analysis for a 
multidimensional view of software quality and security: 
Klocwork's solution,” White paper, IDC. 2005. 

[13] I. Dillig, T. Dillig, A. Aiken. “Sound, complete and 
scalable path-sensitive analysis,” ACM SIGPLAN Notices, 
43(6): 270-280, 2008. 

[14] M. Orlovich and R. Rugina. “Core expressions: An 
intermediate representation for expressions in C,” In 
Submitted to Compiler Construction’06. Available at 
http://www.cs.cornell.edu/~rugina. 

[15] M. Strout, J. Mellor-Crummey, P. Hovland. 
“Representation-independent program analysis,” In 
Proceedings of the The sixth ACM SIGPLAN-SIGSOFT 
Workshop on Program Analysis for Software Tools and 
Engineering, 2005, pp. 64-74. 

[16] B. Hackett, R. Rugina. “Region-Based Shape Analysis 
with Tracked Locations,” In Proceedings of the 32nd ACM 
SIGPLAN- SIGACT symposium on Principles of 
programming languages, 2005,  pp. 310-323. 

[17] B. Cheng, W. Hwu. “Modular interprocedural pointer 
analysis using access paths: design, implementation, and 
evaluation,” Acm Sigplan Notices, 35(5): 57-69, 2000. 
 

Yukun Dong, received his PhD in 
computer science from School of 
Beijing University of Posts and 
Telecommunications, Beijing, China, in 
2014. He currently serves as a lecturer 
in College of Computer and 
Communication Engineering, China 
University of Petroleum, Qingdao, 
China. His research interests include 
software testing and program static 

analysis. 
 
 

 

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2777

© 2014 ACADEMY PUBLISHER


