
An Approach for Identifying Detecting Objects of
Null Dereference

Yukun Dong

College of Computer and Communication Engineering, China University of Petroleum, Qingdao, China
Email: dongyk@upc.edu.cn

Abstract—On account of the complexity of programs, it is
difficult to identify all detecting objects of null dereference,
which is one of the preconditions of null dereference
detection. This paper introduces an approach for identifying
all detecting objects of null dereference of C programs. First,
based on the relationship of dereference expressions with
nodes of abstract syntax tree (AST), we identify referenced
pointers; then based on the abstract storage described by
region-based three value logic (RSTVL) and function
summary, we identify detecting objects of null dereference.
In order to validate the adequacy of our approach, five real-
world projects are utilized for experimental analysis, and
the results show that our approach could identify all
detecting objects of null dereference.

Index Terms—null pointer dereference, defect detection,
addressable expression, function summary

I. INTRODUCTION

With increasing of software scale and complexity,
software security becomes increasingly apparent.
Particularly, null dereference has become one of the main
causes of software security vulnerabilities, and it is one of
the most common and difficult defects to eliminate.

At present, null pointer testing methods can be divided
into dynamic methods [1, 2] and static methods [3-7].
Static methods check pointers dereference on the
precondition of without running programs, which can be
divided two categories: null dereference detection [3-5]
and dereference validation [6, 7]. Generally, null
dereference detection will first implement dataflow
analysis or points-to analysis, then check if the pointer
being referenced is null based on the analysis result;
dereference validation is demand-driven, identify the
pointer being referenced first, then analyses along the
control flow backwards from the program point of a
pointer dereference, checks if the pointer being referenced
may be null.

Both static null pointer testing methods need to identify
pointers being referenced, and identify detecting objects of
null dereference based on associations between
expressions. It is difficult to identify all detecting objects
of null dereference, because pointer, struct and array exist
in C programs, which cause alias, hierarchical, logic
relationships exist among variables, and pointer parameter,
especially complex type parameter.

If some detecting objects of null dereference
unidentified, will lead to false positive of null dereference

defects. The difficulties of identification lie in two aspects:
First, some pointer expressions have complex grammatical
structure; second, complex relationships among
expressions, including alias, hierarchy, parameters with
arguments, etc.

To solve these problems, we first establish mapping
relationship between addressable expressions [8] with
nodes of AST, and then apply RSTVL [9] to describe
memory state of any memory object and all kinds of
associations. Based on the analysis result, we identify
detecting objects of null dereference by the following two
steps. At the first step, we identify pointer expressions
from AST based on the mapping between addressable
expressions and nodes of AST, so we identify referenced
pointers; at the second step, we identify detecting objects
of null dereference for each pointer being referenced
based on the result of data flow analysis and function
summary [10].

This paper makes the following contributions:
• We introduce an approach for identifying

pointer expressions from AST based on the
relationship of addressable and nodes of AST.

• We show how to identify various detecting
objects of null dereference based on RSTVL
and function summary.

The remainder of this paper is organized as follows.
Section II presents background on defect detection and
motivation examples. Section III introduces addressable
expression and RSTVL. Section IV and Section V
introduce identifying detecting objects of null dereference.
We present experimental results in Section VI, related
work in Section VII and conclusion is in Section VIII.

II. BACKGROUND AND MOTIVATION

During a program execution, the temporal safety
property indicates a series of operations that must be
executed in a specified manner.

Definition 1: Defect pattern. Syntax or semantics
feature presented by defect that occurred frequently in
programs.

Defect pattern describe a kinds of property of program,
satisfy it will lead defects. For example, null dereference
as a defect pattern appears to be a null pointer is
referenced.

Definition 2: Defect feature. For a defect pattern, it can
detect whether some properties violate syntax or

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2771

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.11.2771-2777

semantics rules of program, these properties related
variables are defect features of defect pattern.

Defect feature can be understood whether defect
detection related to some addressable expressions, and
these addressable expressions are called detecting objects.

Definition 3: Detecting object of null dereference. A
pointer with definite points-to attribute and related to null
dereference defect detection.

We have implemented a defect detecting tool
DTSGCC, which is a defect testing system for C written
in Java. DTSGCC analyzes programs in five stages as
shows in Figure 1. The last step of analysis stage is defect
detecting, all detecting objects of null dereference can be
identified in this step.

Figure 1. Analysis stages of DTSGCC

We use two examples in Figure 2 to illustrate some
obstacles of identifying defecting objects of dereference.
For the example of Figure 2(a), pointer expression *pst[i]-
>m at line 7 actually implies three pointers being
referenced: pst, pst[i], pst[i]->m, all of which need to be
identified, or may lead to false negative null dereference
defect. But pst[i] and pst[i]->m are not top-level variable,
they can not be identified by analysing variable
declaration, it’s not easy to identify them.

For the example of Figure 2(b), p is referenced at line 4,
there is an alias between p and ps->a, since ps is a formal
parameter, we can’t deduce the real point information of
ps->a in function f2 and wheather ps->a is null pointer. It
can only be determined based on the calling context at call
site. Because ps->a is not top-level parameter, the
mapping between of parameters with arguments is
unknown because the hierarchy and alias relationship
between expressions. In fact, f3 calls f2 at line 9, and s.a
maps ps->a, if we check whether p is referenced safely at
line 4, we should check whether s.a is a safe pointer at line
9, and treat s.a as a detecting object of null dereference.

Figure 2. Motivating examples

III. REGION-BASED SYMBOLIC THREE-VALUED LOGIC

A. Ddressable Expression
Definition 4: Memory Object. The expression that

corresponds to allocated memory when running programs,
which can be top-level variable v, a member of a complex
memory object, a dynamically allocated memory.

For all types of expressions defined by C99, we
describe a C memory object expression var by the
following grammar:

var::=v | var.f | var[n] | malloc(exp). Where v is top-
level variable, exp is parameter.

Definition 5: Addressable Expression. The expression
which has l-value and can be assigned.

For all types of expressions defined by C99, we
describe a C addressable expression aexp by the following
grammar:

aexp::= var | aexp.f | aexp->f | aexp[exp] | (aexp) | *aexp
| id(exp)

*aexp can be defined as: *aexp::=*aexp’ | *(++aexp’) |
*(--aexp’) | *(aexp’++) | *(aexp’ --) | *(aexp’ op exp’), the
type of aexp’ is pointer, op= + | -, the type of exp’ is
integer.

For id(exp), where id is a method and return type is
pointer, exp means parameters.

A memory object is an addressable expression, and
there exist three relationships among addressable
expressions as relationships between l-value and r-value.
• Hierarchy, relationship among l-values. It exists in

addressable expression of compound type with its
members.

• Points-to relationship, relationship of l-value and r-
value. It exists in a pointer with the target that the
pointer point to.

• Linear and logical relationship, relationship among
r-values. The r-ralue of a memory unit has linear or
logical relationship with the r-value of another
memory unit.

Based on hierarchy and points-to relationships, we give
the concept of parent addressable expression.

Definition 6: Parent Addressable Expression. Complex
addressable expression is the parent of its members;
Pointer is the parent of the addressable expressions that it
points to.

typedef struct{
 int *m;
}st;
void f1(st **pst){
 int i = 0;
 for(; i <9; i++){
 int j = *pst[i]->m;
 }
}

(a)

typedef struct{ int *a; }st;
int f2(st *ps){
 int *p = ps->a;
 *p = 2;
}
void f3(){
 st s;

 s.a = NULL;
 f2(&s);
}

(b)

2772 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

For seven kinds of addressable expressions, aexp is the
parent of aexp.f, aexp->f, aexp[exp], *aexp; aexp->f is
equivalent to (*aexp).f, whose parent is *aexp.

When a function is called in different calling contexts,
the points-to information of its pointer arguments maybe
different. In order to map the points-to information at call
site to the called function, we introduce extended variables
to represent the points-to information of pointer
parameters and global variables.

Let e as the variable that need to be extended, the
extended rules are as follows:
• if e is a pointer, and the maximum level of

dereference from e is n, then we create n extend
variables, include *e, **e,…and so on;

• if e is a variable with compound type and has n
member, then we create n extend variables, include
e.f1, e.f2,…and so on.

For example, parameter ps of function f2 in Figure 2(b),
the maximum level of dereference from ps is 1, so
extended variable *ps is introduced. *ps is an extended
variable and its type is struct and has a child a, so we
generate an extended variable (*ps).a. And (*ps).a is
pointer and the maximum level of dereference from it is 1,
so we generate extended variable *(*ps).a.

B. Rstvl
Definition 7: Region-based Symbolic Three-Valued

Logic. RSTVL is a model of quadruple <Var, Region,
SExp, Domain>, where Var is memory object, Region is
abstract memory, SExp is symbolic expression, and
Domain is the domain of value.

Quadruple RSTVL describes scalar memory object,
and complex memory object can be decomposed into
combination of scalar elements. Complex type memory
object can be described by triple <Var, Region, x>, where
x is determined by the type of Var, if the type of Var is
array, x is {<i, Region>}, i∈N, i is the index of array Var;
if the type of Var is struct, x is {< f, Region>}, f is the
member of struct Var.

For different types of memory objects, different types
of regions are applied. PrimitiveRegion describes
primitive type memory object, PointerRegion describes
pointer, ArrayRegion describes array, and StructRegion
describes struct.

Each region has the only number, the numbering form
of PrimitiveRegion is bm_i (i∈N), the numbering form
of PointerRegion is pm_i, the numbering form of
ArrayRegion is am_i, and the numbering form of
StructRegion is sm_i. For the region dynamically
allocated memory, its number is mxm_i_n(x means the
type of the region, the value is ‘b’, ‘p’, ‘a’ or ‘s’), n is
bytes of memory size. The number of null address is
“null”, and the number of wild address is “wild”. If the
initial letter of the number of a region is ‘u’ or ‘g’, this
region describes a parameter or global variable.

We call the region that maps v, var.f, var[n] is safe
region, dynamically allocated region is dynamic region,
the region that maps parameter or global variable is
unknown region, these three kinds regions collectively

call operable region; the region identified null or wild is
an inoperable region. Dynamic region and unknown
region will become safe region after not null judgement,
dynamic region and unknown region will become
inoperable region after is null judgement.

We divide domain [11] into two types: numeric and
pointer, and apply PointTos to describe points-set in
pointer domain PointerDomain, the elements of PointTos
is the number of a region.

Domains of RSTVL and operators to them constitute
complete lattice , , , , ,L< ≤ >⊥ . ⊥ is empty set; of
numeric domain is [,]−∞ +∞ ; of pointer domain is the
union of null, wild and all numbers of operable region;
is merge operation of sets; is intersection operation of
sets. Static data flow analysis based on RSTVL can be
transferred to operation on lattice.

RSTVL describes all three associations among
addressable expressions; and is suitable for flow-sensitive,
field-sensitive, context-sensitive and path-insensitive
static analysis. Given a program point, a region abstraction
based on RSTVL consists of the following:
• At each program point l, a set of regions lR that

models the locations that may access at l, a set lS
expresses symbols that may be used at l.

• At each program point l, exists an abstract store:
(, ,)l l l l

v r fρ ρ ρ ρ= , where :l l
v V Rρ → maps memory

objects to their regions; :l l l
r R Rρ → expresses the

points-to relationship among regions;
: ()l l l

f R F Rρ × → maps members of a complex
addressable expression to their regions.

To analyse an addressable expression, we need to get
potentially associated regions first, and an addressable
expression may associates several regions. At a program
point l, if the abstract store is ρ , we use lR ea b to express
region set that addressable expression e associated. Then
strategies can be given for achieving region set that all
kinds of addressable expressions associated.

• ()l l
vR v vρ=a b ;

•
[]

. (,)
l

l l
f

r R e

R e f r fρ
∈

=a b ∪ ;

•
[]

[] (,)
l

l l
f

r R e

R e i r iρ
∈

=a b ∪ ;

•
[]

* ()
l

l l
r

r R e

R e rρ
∈

=a b ∪ ;

•
[]

* ()
l

l l
r

r R e

R e rρ
∈

=a b ∪ ;

• ()l lR e R e=a b a b ;

•
[] ' ()

(',)
l l

r

l l
f

r R e r r

R e f r f
ρ

ρ
∈ ∈

⎧ ⎫⎪ ⎪− > = ⎨ ⎬
⎪ ⎪⎩ ⎭

a b ∪ ∪ .

We have applied RSTVL to data flow analysis in
DTSGCC [9]; the analysis is flow-sensitive, field-
sensitive, and context-sensitive based on symbolic

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2773

© 2014 ACADEMY PUBLISHER

function summary, it can analyzes the over-
approximation of every memory objects in every program
point.

IV. IDENTIFYING DETECTING OBJECTS OF
INTRAPROCEDURAL NULL DEREFERENCE

A. Identifying Referenced Pointers
Based on the grammar defined by BNF, we generate

AST for the C file under test. At the generating scope
table stage, we identify addressable expressions from
AST, and bind each addressable expression to the related
node of AST [8].

There are three kinds of nodes that are closely related
to addressable expressions, which are UnaryExpression,
PostfixExpression and PrimaryExpression; and their
grammars are described by BNF as follows:

UnaryExpression::= PostfixExpression | “++”
UnaryExpression | “--” UnaryExpression | <SIZEOF>
(UnaryExpression | “(“TypeName”) ”) | UnaryOperator
CastExpression, UnaryOperator::= “&” | “*” | “+” | “-” | “~” |
“! ”);

PostfixExpression ::= PrimaryExpression (“. ”
<IDENTIFIER> | “[“Expression”] ” |
“(“(ArgumentExpressionList)? ”) ” | “->” <IDENTIFIER> |
“++” | “--”)*;

PrimaryExpression ::= <IDENTIFIER> |“(“Expression”)”|
Constant.

According to grammatical features, pointer expression
ep as a kind of addressable expression can be divided in to
three types: *ep, ep->f and ep[exp], so we can identify all
dereference expressions from searing AST, and identified
all referenced pointers. We apply XPath to search AST,
and the query statement of *ep is:

.//AssignmentExpression//UnaryExpression[/UnaryO
perator[@Operators='*']]/UnaryExpression.

The query statement of ep->f and ep[exp] is:
.//AssignmentExpression//UnaryExpression/PostfixEx

pression[./PrimaryExpression][contains(@Operators,'[')or
contains(@Operators, '->')].

For the example of Figure2(a) , *pst[i]->m is a *ep type
pointer expression, so we can identify it from the related
UnaryExpression node of AST, and deduce the pointer
being referenced is pst[i]->m; pst[i]->m is a ep->f type
pointer expression, so we can identify it from the related
PostfixExpression node of AST, and deduce the pointer
being referenced is pst[i]; pst[i] is a ep[exp] type pointer
expression, so we can identify it from the related
PostfixExpression node of AST, and deduce the pointer
being referenced is pst. Above all, we identify three
referenced pointers from *pst[i]->m: pst[i]->m, pst[i], pst.

B. Points-to Attribute
We can decide whether a pointer being referenced is

null dereference or not based on its points-to attribute.
Points-to attribute is described as a lattice: ALPTR = (VPTR,
Fjoin, Fmeet), and its Hesse table is shown in Figure 3. VPTR
depicts the value set of points-to attribute, which can
describe security of a pointer being referenced effectively,
and can be conveniently applied to null dereference
detection. EMPTY expresses initial value of attribute

lattice, NULL expresses a pointer points to null address,
NOTNULL expressed a pointer points to a safe memory
address, NON (NULL_OR_NOTNULL) expresses a
pointer may be points to null address. When a pointer is
referenced, null dereference will inevitably occur if
points-to attribute of the pointer is NULL, may occur if
points-to attribute of the pointer is NON.

Figure 3. Hasse table of ALPTR

Fjoin: VPTR×VPTR→VPTR is the greatest lower bound
function of ALPTR.

Fmeet: VPTR×VPTR→VPTR is the least upper bound
function of ALPTR.

In order to comprehensive express points-to
information, UNKNOWN is introduced to express
uncertainty of points-to of a pointer; it is applied to
initialize points-to attribute of pointer parameters and
global variables. Operations about UNKNOWN with
other attribute value X as follows:

Fjoin (X, UNKNOWN) = X
Fmeet (NOTNULL, UNKNOWN) = UNKNOWN
Fmeet (NULL, UNKNOWN) = NON
Fmeet (NON, UNKNOWN) = NON
Fmeet (EMPTY, UNKNOWN) = UNKNOWN
Fmeet (UNKNOWN, UNKNOWN) = UNKNOWN

At program point l, let l
nameT ra b express the type of the

region numbered rname, pd express the domain of pointer
ep, the abstraction function l

ρα of points-to attribute is
defined as follows:

EMPTY
NULL ={null}
NOTNULL , is safe

() UNKNOWN (, is safe or
 unknown) and (,
 is unknown

NON

l

l l

l

pd
pd

pt pd T pt
pd pt pd T pt

pt pd
T pt
others

ρα

= ∅⎧
⎪
⎪
⎪ ∀ ∈
⎪

= ∀ ∈⎨
∃ ∈

a b
a b

a b)

⎪

⎪
⎪
⎪
⎪
⎪⎩

V. IDENTIFYING DETECTING OBJECTS OF
INTERPROCEDURAL NULL DEREFERENCE

A. Function Summary
Each function call might affect its concrete call site

context in four aspects:
• the callee function might cause side effects to actual-

parameters and global variables;
• the caller’s dataflow and control flow might be

transformed by callee’s return value;

2774 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

• potential interrupt instructions, such as exit, assert,
exception, etc;

• pre-condition, the call site context must obey the
callee’s invocation constraints to avoid defects.

In this paper, our function summary only focuses on
pre-condition of null dereference NPDPreSummary. For
the example in Figure 2(b), pointer parameter ps is
referenced at line 3, and the points-to attribute of ps is
UNKNOWN, so we must add ps can not be null as a pre-
condition of function f4.

B. Generating Pre-condition of Null Dereference
If () UNKNOWNl

pV eρα ==a b and the PointerDomain of
ep is pd; then for each region number rName in pd and the
region named rName is an unknown region, if the momory
object mapping to the region is exp, then we set the parent
addressable expression of exp can not be null as pre-
condition. Let l

n nameR ra b express the region numbered rname
at program point l; Let rE ra b express the memory object
that related to r. The generating pre-condition of null
dereference is detailed in algorithm 1.

Algorithm 1 Generating pre-condition of null
dereference

Input: pointer being referenced ep, NPDPreSummary
Output: NPDPreSummary
Declare: getParent(para): get father addressable

expression of para.
for each pt∈ l

pV ea b&& lT pta b is unknown region
 let var = l

r nE R pta a bb ;
 let fvar = getParent(var);
 add fvar to NPDPreSummary;
end for
return NPDPreSummary;

C. Instantiating Pre-condition of Null Dereference
For each function call, we get its function summary

first, and instantiate the function summary based on the
calling context at the call site.

Function call expression is a kinds of addressable
expression, the grammar of it is id(exp). id(exp) maps to
PrimaryExpression, it can be identified by searching AST,
the query statement is:

.//PrimaryExpression[@Method='true']
If the called function has function summary, and the

pre-condition constraint some pointers can not be null,
then we instantiate it.

To instantiate the pre-condition of null dereference, the
key is for each constrained pointer ecp in pre-condition, get
related addressable expression set epList at the call site;
and based on the abstract store state at the call site
described by RSTVL, get the points-to attribute for each
pointer of epList. If the points-to attribute of a pointer in
epList is UNKNOWN, then we add this pointer into pre-
condition of null dereference applying algorithm 1,
otherwise , the pointer is a detecting object of null
dereference.

In all of above steps, the key is getting the addressable
expression set for each constrained pointer in pre-

condition of null dereference, which is a problem that
maps a parameter to arguments; the details is shown in
algorithm 2.

Algorithm 2 Mapping a Parameter to Arguments.
Input: para, Rn
Output: VarsList<Variable>
Declare:
getParents(para): get parent addressable expressions

of para sorted according to parent-child relationship.
getArgument(var, n): get the corresponding arguments

of top-level parameter var at the calling point n.
getParent(var): get parent addressable expression of

var.
getType(e): get the addressable expression type of

e,where 0: v, 1: e.f, 2: e->f, 3: e[exp], 4: (e), 5: *e, 6:
m(exp).

getMemName(s, var): for addressable expression s and
the type of s is struct, get the member name of its child
addressable expression var.

let args<Variable> = ∅ ;
let parents<Variable> = getParents(para);
get first variable v0 in parents;

args = { getArgument(v0, n) };
for each p∈parents && p ≠ v0

let vp = getParent(p);
let vars<Variable> = ∅ ;
for each v∈args

for each r∈ nR vi a b
if getExpType(var) == 1 then

let m = getMemName(vp, p);
vars ∪= { ,l

fR r ma b };
else if getExpType(var) == 5 then

vars ∪= { n
rV ri a b};

end if
end for

end for
args = vars;
end for
return args;

For the function f2 in Figure2 (b), parameter ps is
referenced at line 3; dereference p at line 4 is actually
access the region that pointed by (*ps).a. the points-to
attribute of ps and (*ps).a are UNKNOWN, so the pre-
condition of null dereference of f2 is: {ps[NOTNULL],
(*ps).a [NOTNULL]}.

Function f3 calls f2 at line 9, ps is a top-level parameter
and constrained can not be null in pre-condition of null
dereference, based on the numerical order, we can deduce
ps maps to &s at call site, it’s a safe dereference. (*ps).a is
also constrained can not be null in pre-condition, its parent
addressable expression set is {ps, *ps, (*ps).a}. Based on
the abstract store state at the call site described by RSTVL
at line 9, we can deduce that ps maps {&s}, *ps maps {s},

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2775

© 2014 ACADEMY PUBLISHER

(*ps).a maps {s.a}. So detecting objects of null
dereference is &s, s.a, and the points-to attribute of s.a is
NULL, so a null dereference defect will be reported at line
9.

VI. EXPERIMENTAL ANALYSIS

We choose five C projects to validate the effectiveness
of our approach.

A. Identifying Defecting Objects of Null Dereference
Pointers being referenced of five C projects identified

by our approach are shown in TABLE I. Pointers being
referenced can be divided as: local pointer and points-to
attribute is known (LKP), local pointer and points-to
attribute is unknown (LUP), external pointer and points-to
attribute is known (EKP), external pointer and points-to
attribute is unknown (EUP), function pointer (FP).

TABLE I
STATISTICS OF REFERENCED POINTERS

Benchmark KLOC
Referenced pointer

LKP LUP EKP EUP FP Total
antiword-0.37 24.2 770 142 50 1716 73 2751
uucp-1.07 52.6 1849 1112 401 2397 379 6138
sphinxbase-0.3 22.5 691 203 602 2011 82 3589
optipng-0.6 27 415 239 178 1258 53 2143
barcode-0.98 3.4 176 52 249 378 18 873
Total 130 3901 1748 1480 7760 605 15494

It is shown in TABLE I that pointer dereference occur
frequently in C functions, about 120/KLOC, and more
than 60% pointers being referenced can not be
determined their points-to attribute in respective function,
if function pointers are considered, more than 65%
pointers being referenced need interprocedural identified.

For lib functions, we construct their function summary
artificially. And detecting objects of null dereference
identified by function summary can be divided two kinds:
identified based on custom function (CFP), identified
based on lib function precondition pointer (LFP). For
pointers being referenced that can not be determined
points-to attribute in TABLE I, we identify their relative
detecting objects of null dereference by interprocedural
identifying approach, the result is shown in TABLE II.

TABLE II
STATISTICS OF DETECTING OBJECTS OF NULL DEREFERENCE

Benchmark
Detecting objects of null dereference

LKP EKP FP CFP LFP Total
antiword-0.37 770 50 73 372 105 1370
uucp-1.07 1849 401 379 1382 1314 5325
sphinxbase-0.3 691 602 82 170 222 1767
optipng-0.6 415 178 53 579 358 1583
barcode-0.98 176 249 18 56 259 758
Total 3901 1480 605 2559 2258 10803

For the example in Figure 1(b), ps is a EUP type
referenced pointer, p is a LUP type referenced pointer, s.a
is a CFP type detecting object of null dereference.

Applying our approach, more detecting objects of null
dereference can be identified, and more null dereference
defects can be detected. There is a null dereference in
Figure 4, Barcode_128_make_array calls lib function

strlen at line 321, the pre-condition of null dereference in
function summary of strlen constrain its parameter can be
null, and the points-to attribute of bc->ascii is
UNKNOWN at line 321, so we add (*bc).ascii(equals to
bc->ascii) can not be null pointer into pre-condition of
null dereference of Barcode_128_make_array.
Barcode_128_encode calls Barcode_128_make_array at
line 439, we can deduce that parameter (*bc).ascii maps
argument bc->ascii, and the points-to attribute of bc-
>ascii at line 439 is NON, so we make as bc->ascii a
detecting object of null dereference, and report bc->ascii
is a null dereference defect at line 439. Klocwork9 [12]
and Saturn [13] can not detect these defects.

Figure 4. A detecting object of null dereference identified by our
approach

VII. RELATED WORK

There is some research in the area of expression
recognition that related to our work. Maksim O et al. [14]
present core expression as canonical representation, they
also identify expression from AST, but can not guarantee
to identify all addressable expressions; so their method
can not guarantee identify all referenced pointers.
PenAnalysis [15] applies expression tree to representation
expression, which is more complex than our method. S.
Blazy et al.

In order to analysis expressions comprehensively,
relations among expressions must be considered,
otherwise the result will be inaccurate. Alias set and
points-to set only focus on alias relationship, can not
express hierarchy of compound variables; applying them
can’t analyze complex pointers effectively. As a region
model, RSTVL is similar to Brian Hackett’s memory
model [16], and appropriated for shape analysis.

Specific to null dereference testing, it is an important
work to identify detecting objects of null dereference.
Although null dereference testing has been extensively
studied, only few of past researches mention how to fully
identify detecting objects. PSE [3] defines a simple
pointer language, and regulated source code patterns for
the null dereference property; but it can’t guarantee
identifying multilevel pointers effectively, especially
interprocedural multilevel pointers. B. Cheng, etc apply
access path for interprocedural pointer analysis [17], their
access path is similar to our parent addressable expression,
and they also use function summary.

File:barcode\code128.c
The called functions at line 314:

static int *Barcode_128_make_array(struct Barcode_Item *bc, *)
321: len = 2 * strlen(bc->ascii) + 5;

The calle function at line 414:

int Barcode_128_encode(struct Barcode_Item *bc)
433: text = bc->ascii;

434: if (!text) {
……;

}
439: codes = Barcode_128_make_array(bc, &len); //NPD

2776 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

VIII. CONCLUSIONS

In this paper, we introduce an approach for identifying
detecting objects of null dereference. RSTVL describes
abstract storage of each program point and relationships
of addressable expressions, uses region number set to
express pointer point to. Based on the correspondence
between addressable expressions and nodes of AST, we
identify all pointers being referenced from AST based on
the grammar of pointer expression. If the points-to
attribute of a pointer being referenced is can be
determined, then we add the related pointer can not be
null into the pre-condition of null dereference in function
summary, and identified related detecting objects of null
dereference at call site based on the abstract storage
described by RSTVL.

REFERENCES

[1] Michael D, Graham Z, Samuel Z, “Breadcrumbs: efficient
context sensitivity for dynamic bug detection analyses, ” In
Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, 2010,
pp. 13-24.

[2] J. Huang, M. Bond. “Efficient context sensitivity for
dynamic analyses via calling context uptrees and
customized memory management,” In Proceedings of the
2013 ACM SIGPLAN international conference on Object
oriented programming systems languages & applications.
2013, pp. 53-72.

[3] R. Manevich, M. Sridharan, S. Adams, “PSE: Explainint
program failure via psotmortem static analysis, ” In
Proceedings of the 12th ACM SIGSOFT twelfth
International Symposium on Foundations of Software
Engineering, 2004, pp. 63-72.

[4] X. Ma, J. Wang, D. Wang. “Computing must and may alias
to detect null pointer dereference, ” Leveraging
Applications of Formal Methods, Verification and
Validation, 17(17): 252-261, 2008.

[5] M. Buss. Summary-based pointer analysis framework for
modular bug finding [D]. Columbia: Columbia University,
2008

[6] Y. Xie, A. Aiken. “Saturn: A scalable framework for error
detection using Boolean satisfiability,” ACM Transactions
on Programming Languages and Systems, 29(3): 1-43,
2007.

[7] M. Ravichandhran, K. Raghavan. Null dereference
verification via over-approximated weakest pre-conditions
analysis. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and
Applications, 1033-1052. ACM, 2011.

[8] Y. Dong, Y. Xing, D. Jin, Y. Gong. “An approach to fully
recognizing addressable expression,” In The 13th
International Conference on Quality Software, 2013, pp.
149-152.

[9] Y. Dong, D. Jin, Y. Gong, Y. Xing. “Static analysis of C
programs via region-based memory model,” Journal of
Software, 25(2): 357-372, 2014 (in Chinese with English
abstract).

[10] Y. Dong, D. Jin, Y. Gong. “Symbolic procedure summary
using region-based symbolic three-valued logic,” Journal
of Computers, 9(3): 774-780, 2014.

[11] Y. Wang, Y. Gong, Q. Xiao, Z. Yang. “A Method of
Variable Range Analysis Based on Abstract Interpretation
and Its Applications,” Acta Electronica Sinica, 39(2): 296-
303, 2011 (in Chinese with English abstract).

[12] M. Webster. “Leveraging static analysis for a
multidimensional view of software quality and security:
Klocwork's solution,” White paper, IDC. 2005.

[13] I. Dillig, T. Dillig, A. Aiken. “Sound, complete and
scalable path-sensitive analysis,” ACM SIGPLAN Notices,
43(6): 270-280, 2008.

[14] M. Orlovich and R. Rugina. “Core expressions: An
intermediate representation for expressions in C,” In
Submitted to Compiler Construction’06. Available at
http://www.cs.cornell.edu/~rugina.

[15] M. Strout, J. Mellor-Crummey, P. Hovland.
“Representation-independent program analysis,” In
Proceedings of the The sixth ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, 2005, pp. 64-74.

[16] B. Hackett, R. Rugina. “Region-Based Shape Analysis
with Tracked Locations,” In Proceedings of the 32nd ACM
SIGPLAN- SIGACT symposium on Principles of
programming languages, 2005, pp. 310-323.

[17] B. Cheng, W. Hwu. “Modular interprocedural pointer
analysis using access paths: design, implementation, and
evaluation,” Acm Sigplan Notices, 35(5): 57-69, 2000.

Yukun Dong, received his PhD in
computer science from School of
Beijing University of Posts and
Telecommunications, Beijing, China, in
2014. He currently serves as a lecturer
in College of Computer and
Communication Engineering, China
University of Petroleum, Qingdao,
China. His research interests include
software testing and program static

analysis.

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2777

© 2014 ACADEMY PUBLISHER

