
Approximate String Similarity Join using
Hashing Techniques under Edit Distance

Constraints
Peisen Yuana, Haoyun Wanga, Jianghua Chea, Shougang Rena, Huanliang Xua, Dechang Pib

a College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
peiseny@gmail.com

b College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing
210016, China

Abstract— The string similarity join, which is employed
to find similar string pairs from string sets, has received
extensive attention in database and information retrieval
fields. To this problem, the filter-and-refine framework is
usually adopted by the existing research work firstly, and
then various filtering methods have been proposed. Recently,
tree based index techniques with the edit distance constraint
are effectively employed for evaluating the string similarity
join. However, they do not scale well with large distance
threshold. In this paper, we propose an efficient framework
for approximate string similarity join based on Min-Hashing
locality sensitive hashing and trie-based index techniques
under string edit distance constraints. We show that our
framework is flexible between trading the efficiency and
performance. An empirical study using the real datasets
demonstrates that our framework is more efficient and scales
better.

Index Terms— Approximate String Similarity Join, Locality
Sensitive Hashing, Min-Hashing, String Edit Distance, Trie
Join

I. INTRODUCTION

This article is a revised and expanded version of a paper
entitled Hashed-Join:Approximate String Similarity Join
with Hashing presented at the DASFAA 2014 [1]. We
have carefully revised the original conference version
according to the comments made by reviewers, and give
observations based on the string datasets using in our
experiment, theory analysis and conduct more experiment
etc.

String is one of the most important data types in
modern data processing systems [2]. It is ubiquitous in the
computer applications, such as in the Web pages, DNA
sequence data, XML documents, relational database tables
etc, which has attracted lots of attention of computer
science researchers.

One of the important researches on string is the simi-
larity join, i.e., finding all the similarity string pairs from

Manuscript received May XX, 2014; revised XX XX, 2014; accepted
XX XX, 2014. c⃝ 2014 IEEE.

This work was supported by the Fundamental Research Funds for the
Central University (No. KYZ201421), the Natural Science Foundation of
Jiangsu Province (No. Bk2012363) and the Three Agricultural Projects
of Jiangsu province of China (SXGC(2013)372).Corresponding should
be addressed to Peisen Yuan (peiseny@gmail.com).

the two string sets, which is a key operation in many real-
world applications, such as data integration for resolving
the entity [3], data cleaning [4], duplicate detection [5]
and so on. It has been applied in the industry field as well,
for example, Google employs similarity join for duplicate
web page detection [6] and Microsoft proposes primitive
similarity join operator SSJOIN [4]. The latter has been
used in Data Debugger project [7]. The similarity join
has been received extensive attention from the database
and information retrieval fields and there are extensive
literatures for addressing this problem [5], [8].

For measuring the string similarity, the string edit
distance is used by most previous studies. However,
the time and space complexity of evaluating string edit
distance between two strings s1 and s2 is O(|s1||s2|)
[9], where |s| denoted the length of the string. Even the
fastest algorithm has been reported still requires quadratic
complexity O(|s|2/log(|s|)) [10]. Therefore, most exist-
ing work mainly focus on the filter-and-refine framework.
According to this framework, strings are firstly filtered
by some filtering techniques in a heuristic way, and the
edit distance evaluation is applied on remaining candidate
string set subsequently.

In term of string similarity join with edit distance
constraint, recent researches [8], [11]–[13] explore the
tree index techniques. J. Wang et al. propose the Trie-
Join [8] for string similarity join using a trie tree, which
processes string similarity join efficiently and the space
cost of the trie indexing structure is much smaller than
existing work. Some pruning techniques are also proposed
to improve the performance of the string join with edit
distance constraint on short string datasets. However, the
performance of the Trie-Join degrades for long strings and
when the string edit distance threshold increases.

Based on the analysis of the Trie-Join technique, in
this paper, we take the locality sensitive hashing (LSH
for short) [14] and trie join techniques into account
and propose a framework Hashed-Join for approximate
string similarity join under edit distance constraint. Our
framework employs the hashing techniques and trie struc-
ture index, which improves the performance of Trie-Join
greatly with the increasing of the edit distance threshold.
The processing procedure of Hashed-Join is shown in

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2721

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.10.2721-2731

Fig.1, which can be divided into four steps.

q-Gram

Generator

Vectors

Builder
Indexing

q-Gram Binary Vector LSH Indexing Strings Trie Join in Buckets

Tries in

Buckets

Figure 1: Processing Procedure of Hashed-Join

In Fig.1, the q-grams of each string in the string set
are extracted in the first place. In the second step, the
binary vectors of the strings are built based on the their
corresponding q-grams set. In the third step, the Min-
Hashing based LSH technique is employed, which hashes
the similar strings into the same bucket, i.e., the string
sharing q-grams. We prove that the strings satisfying the
edit distance threshold are guaranteed to fall into the same
bucket with high probability theoretically. In the forth
step, a trie structure index is built in each collision bucket
and the trie join technique is applied. The similar string
pairs in each bucket are merged together and the final
result for the string sets is returned finally.

Since Hashed-Join is loosely coupled with the string
join processing techniques, it can be used with other index
techniques developed for string similarity join in the hash
bucket of LSH, such as Bed-tree index [11] et al.

To summarize, the main contributions of this paper are
briefly outlined as follows:
� The framework Hashed-Join using LSH and trie join

techniques for the approximate string similarity join
problem is proposed.

� The characteristics of string similarity join on real
datasets is analyzed.

� Complexities of Hashed-Join are analyzed theoreti-
cally.

� The join quality of Hashed-Join are analyzed with
the parameters of Min-Hashing LSH and string edit
distance threshold.

� Extensive experiments on real datasets are conducted
to demonstrate the effectiveness and efficiency of
Hashed-Join.

The remainder of the paper is organized as follows.
The preliminaries are presented in Section II. The Trie-
Join technique for string similarity join and several ob-
servations of string similarity join on the real datasets are
introduced in Section III . Based on the observations, the
string similarity join method Hashed-Join is proposed in
Section IV. In Section V, experimental evaluation on the
real datasets is presented. We summarize the related work
in Section VI and conclude the paper in Section VII.

II. PRELIMINARIES

A. Problem Statement

Given two strings s1 and s2, a proposition formula F is
defined, which is in the form of sim(s1, s2) ≥ θ, where
sim(s1, s2) is the similarity metric for strings s1 and s2,
or dist(s1, s2) ≤ τ , where dist(s1, s2) is the distance
metric for strings s1 and s2. The task of string similarity
join is retrieving the similar string pairs between two

string sets that satisfying the proposition formula F . The
formal definition of the problem is presented as follows.

Definition 1: String Similarity Join
Given two string sets S1, S2 and proposition formula
F , the similarity join between S1 and S2 is denoted as
S1 ◃▹F S2. The result of the join is denoted as S1 ◃▹F S2

= {< s1, s2 > |s1 ∈ S1 and s2 ∈ S2,F(< s1, s2 >
) is true}, where < s1, s2 > is the similar pair that
satisfying the proposition formula F .

Example 1: Given two string sets S1 = {“microsoft”,
“applies”, “informix”, “tree”} and S2 = {“apple”, “in-
fromix”, “google”, “trie”, “mcrosoft”}, and the propo-
sition formula F is defined as the string edit distance
defined in Section II-C, disted(s1, s2) ≤ 1. The similarity
join result on the two string sets is S1 ◃▹F S2 =
{<“microsoft”, “mcrosoft”>, <“trie”, “tree”>}.

B. q-gram
Given a string s and an integer q, its q-grams can

be obtained by a sliding window on s with length q,
contiguously splitting the string into a group of substrings.
For a given string s, its q-grams may occur multiple times,
we treat the duplicate q-grams as new ones by inserting
an integer representing the occurrence order [5]. In this
way, a string s can generate l = |s| − q + 1 q-grams.

Example 2: Consider the string s = “mathematics”, let
q = 2, the set of 2-grams of s, Φ2(s) = { “ma”, “at”, “th”,
“he”, “em”, “ma2”, “at2”, “ti”, “ic”, “cs”}. The q-gram
such as “ma”reoccurs later is appended with the order of
the occurrence number to differentiate it. The length of
Φ2(s), i.e., |Φ2(s)| is 10.

Given a string set S, for each string s ∈ S, we
extract its q-grams and denoted as Φq(s). Let U be the
universal of the q-grams of S, i.e., U =

∪|S|
i=1 Φq(si) =

{g1, · · · , g|U|}, where i = 1, · · · , |S|. Then for a string s,
it can be represented by a binary vector v⃗sb with the vector
length |U|, where v⃗sb [j] = 1, if gj ∈ Φq(s); otherwise
v⃗sb [j] = 0, for j = 1, · · · , |U|. In this paper, the string is
taken as the binary vector of its q-gram and they are used
interchangeably if not confused.

C. Similarity Metrics
There are many similarity metrics that can be used for

measuring string similarity, such as string edit distance,
Jaccard similarity, Hamming distance and cosine simi-
larity etc. In this paper, string edit distance and Jaccard
similarity [15] are used and they are introduced in the
following section.

1) Jaccard Similarity: The Jaccard similarity is also
known as Jaccard coefficient [15]. Given two sets A and
B, their Jaccard similarity is defined as

simjacc(A,B) =
|A ∩B|
|A ∪B|

(1)

In many applications, the Jaccard distance is usually used
as the distance measure for set similarity, which is defined
as Eq.2.

distjacc(A,B) = 1− simjacc(A,B). (2)

2722 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

2) String Edit Distance: The string edit distance is also
called as the Levenshtein distance [16], which is a metric
used for measuring the differences between two strings.
The evaluation of string edit distance is based on three
primitive operations: insertion, deletion and substitution,
which are denoted as opi, opd and ops. The definition is
defined as follows.

Definition 2: String Edit Distance
Given two strings s1 and s2, the edit distance between

s1 and s2 is defined as the minimum number of the three
primitive operations needed to transform s1 to s2, which
is denoted as disted(s1, s2) = min

∑
(ci ∗opi+cd ∗opd+

cs ∗ops), where ci, cd and cs are the cost of the operation
respectively.

In this paper, the cost of each operation is set to 1.
For instance, given two strings s1 = “goodl”and s2 =
“google”. s1 can be transformed to s2 by substituting d for
g and inserting e. Thus the edit distance between s1 and
s2 disted(s1, s2) = 2. The string edit distance satisfies the
symmetry property, i.e., disted(s1, s2) = disted(s2, s1).

D. Min-Hashing

The Min-Hashing is used for approximately set similar-
ity evaluation [17]. It has the property that the probability
of two sets have the same value of Min-Hashing is equal
to their Jaccard similarity, and the formal definition used
in this paper is given as follows.

Given a random hash function h : S → I , where S
is the domain of the string set, and I is an integer set.
For a string s ∈ S , which is represented with the binary
vector v⃗, the Min-Hashing function is defined as mh(v⃗) =
arg min{h(v⃗i) | v⃗ ∈ V⃗b, V⃗b is binary vectors for all
the strings, v⃗i is the i-th index of v⃗ if v⃗[i] = 1, for
0 ≤ i ≤ |v⃗| − 1}.

According to the property of Min-Hashing, for two
strings s1 and s2 and their q-gram sets Φq(s1) and
Φq(s2), the binary vectors of them are represented by
v⃗s1b and v⃗s2b respectively. Their Jaccard similarity can be
approximately computed by Eq.3.

simjacc(Φq(s1),Φq(s2)) = Pr[mh(v⃗
s1
b) = mh(v⃗

s2
b)].

(3)
To reduce the probability of false positive retrieval, a

random hash family H : D → I is usually used. Given a
hash family H, n Min-Hashing signatures are computed
for each string. Thus the binary vector v⃗sb of the string s
is transformed into g(v⃗sb) and represented as Eq.4.

g(v⃗sb) =< mh1
(v⃗sb),mh2

(v⃗sb), · · · ,mhn
(v⃗sb) >,mhi

∈ H,
(4)

for i = 1, · · · , n.

E. Locality Sensitive Hashing

The concept of locality sensitive hashing (LSH) is in-
troduced in [14] and widely used for approximate nearest
neighbor search of high dimensional data etc. The basic
definition of LSH can be formalized as follow.

Definition 3: Let O be the domain of the objects,
o1, o2 ∈ O, and d1 < d2 be two distances according to
the distance metric dist(o1, o2). A function family H is
said to be (d1, d2, p1, p2)-sensitive, if each h ∈ H satisfies
the following two conditions:

• If dist(o1, o2) ≤ d1, then PrH[h(o1) = h(o2)] ≥
p1;

• If dist(o1, o2) ≥ d2, then PrH[h(o1) = h(o2)] ≤
p2, where p1 > p2 ∈ [0, 1].

The LSH index is a data structure using a family of
LSH functions H, which is constructed in the following
two steps [18]:

1 Given an integer r, define a function family G
= {g : O → Ir}, and for g ∈ G, g(o) = <
h1(o), ..., hr(o) >, where hi ∈ H for 1 ≤ i ≤ r.

2 For an integer b, randomly choose g1, ..., gb from G.
Construct a hash table for each gi, for 1 ≤ i ≤ b.

In order to construct a Min-Hashing based LSH index,
the signature matrix is divided into b bands with r Min-
Hashing signatures in each band, i.e., n = b ∗ r. The
signatures of a string in each band are concatenated and
hashed into M collision buckets, where M is an integer. If
Jaccrad distance is used as the distance metric defined in
Eq.2, then Min-Hashing LSH is (d1, d2, 1−(1−pr1)

b, 1−
(1− pr2)

b)-sensitive [19].
The parameter r control the filtering effectiveness and

b controls the approximation factor. i.e., the bigger the
parameter r is, the more non-similar strings are filtered;
the bigger of b, the better approximation to the real result.
Suppose the Jaccard similarity of two objects is θ, the
probability that they can be retrieved with Min-hashing
LSH is equal to Eq.5.

p = 1− (1− θr)b. (5)

In order to achieve a false negative rate δ, it demands
b bands, where b satisfies Eq.6 [20].

b =
1

θr
log

1

δ
. (6)

III. TRIE JOIN AND OBSERVATIONS

A. Trie Join

A trie is a tree structure and used for indexing the
strings. The path of the trie tree from the root to the
leaf represents a sequence of string, and the nodes in
the trie tree indicate the substring which is associated
with. All the descendants of a trie node have a common
prefix of the string associated with the node, and the trie
root is associated with an empty string. String values are
normally associated with leaf nodes.

Fig.2 demonstrates a trie tree of the running example
strings in Table I. The numbers in bold near the nodes
in Fig.2 indicate the corresponding node ID, and the
node ID of the root is set to 0. For example, node 11
in Fig.2 denotes substring “goo”, which is the prefix of
“google”and “good”.

Given a string s, node n in the trie tree is called an
active node of s if disted(s, n) ≤ τ [8]. The active node

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2723

© 2014 ACADEMY PUBLISHER

TABLE I.: Strings of the Running Example

String ID Sample Strings

s1 apple
s2 applies
s3 good
s4 google
s5 tree
s6 trie

set of s is denoted as A(s) and n ∈ A(s) if n is an active
node of s. In Fig.2, the node set enclosed by the {} is the
active node set of the corresponding node nearby with the
string edit distance threshold τ = 1. For example, the trie
node 10 represents the substring “go”and the active node
set of which is {9, 10, 11}. The active nodes 9, 10, 11
represent the substrings “g”,“go”and “goo”respectively.
Their string edit distance with “go”is not bigger than 1.

g

d

o

o

l

e

root

a

p

p

l

i

t

r

e

e

i

e

e

e

s

1

0
{0,1,9,16}

2

3

4

5 6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

{0,1,2,9,16} {0,1,9,10,16} {0,1,9,16,17}

{1,2,3} {9,10,11} {16,17,18,20}

{2,3,4}

{3,4,5,6}

{10,11,12,13}
{17,18,19,20,21} {17,18,20,21}

{18,19,20,21}{18,19,21}

{4,5,6,7}

{5,6,7,8}

{7,8}

{11,12,13}

{14,15}

{11,12,13,14}
g 21

{4,5,6,7}
{13,14,15}

Bold Number: node ID

{}:active node set

Figure 2: An Example of Trie Tree with τ = 1 on the
Running String Set

To evaluate the active node set for each node in the trie,
the active node of the root node is computed firstly. Then
for each internal node in the trie, its active node set can
be evaluated using its parent’s one. This is guaranteed by
the Lemma 1 proposed in [8].

Lemma 1: Given a trie node n, let p be the parent of
node n, for each node a′ ∈ A(n), there exists a node
p′ ∈ A(p), such that p′ is an ancestor of a′.

For example, in Fig.2, for evaluating the active node set
of node 11, i.e., A(11), the descendants of nodes in the
active node set of its parent node A(10) = {9, 10, 11} are
needed to be verified whether they are the active nodes
of node 11.

After obtaining the active node set for each node in
the trie, the similar pairs can be evaluated with the active
node sets. For each leaf node nl in the trie, the active
node a′ ∈ A(nl) is verified whether a′ is a leaf. If a′ is a
leaf node, then < nl, a

′ > is similar pair. For example, in
Fig.2, node 19 is a leaf node, in the active node set A(19),
there is a node 21, which is a leaf node. Therefore, <19,
21> is a similar pair for the edit distance threshold τ =
1.

B. Problems of Trie Join

According to the evaluation procedure of the Trie-Join
[8], we observe that dividing the string set into groups
can reduce the computation overhead, especially with the

increasing of the edit distance threshold τ . This can be
illustrated by Fig.3. According to Trie-Join, the trie nodes
in the trie tree with the length τ in the first branch will
be the active nodes of the other branches with the length
no large than τ , and the nodes in other branches will be
the active nodes of other branches as well. However, lots
of the nodes in the active node set do not contribute to
the finally result, thus it wastes much computation.

root

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

ττ

Figure 3: Illustration of Trie-Join with Edit Distance

Take Fig.2 as an example, the active nodes of the trie
branches in Fig.2 are shown in Fig.4. The the total active
node number of Fig.2 is 82, nevertheless, the total active
node number of the three branches is

∑
(29, 24, 25) = 78,

which is less than the former. When τ is 2 , the active
nodes of the three branches is

∑
(45, 38, 37) = 120, which

is much less than the total number of the trie tree 142 in
Fig.2.

The above example indicates that dividing the string
set into groups can reduce the size of the active node set.
The key point of this method is that by dividing the string
set larger than the edit distance threshold into different
groups, the unnecessary computation can be avoided. We
now introduce an our solution which hashes the strings
within the edit distance threshold into the same groups
with high probability.

g

d

o

o

l

e

a

p

p

l

i

t

r

e

e

i

e

e

e

s

1

0{0,1}

2

3

4

5 6

7

8

1

2

3

4

5

6

7

1

2

3

4

5

{0,1,2} {0,1,2}

{1,2,3} {1,2,3} {1,3,5,2}

{2,3,4}

{3,4,5,6}

{2,3,5,6}

{4,5,6,7}

{5,6,7,8}

{7,8}

{3,4,5}

{6,7}

g 6

{4,5,6,7}

0{0,1} 0

{2,3,4,5}

{3,4,5,6}

{5,6,7}

{0,1}

{0,1,2}

{2,3,4,5,6}

{3,4,6} {3,4,5,6}

(a) (b) (c)

Figure 4: Active Node of the Trie Tree Branches with
Edit Distance τ = 1

C. Observations

Given a string s, the size of q-grams of s is |Φq(s)|
= |s| − q + 1, which is far less than the cardinality of
the q-gram universal |U|, i.e. |Φq(s)| ≪ |U|. Thus the
feature space of a string is rather sparse against U and the
dimension of the binary vector is rather high. Therefore,
comparing the Jaccard similarity using the binary vector
directly is not efficient.

2724 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

Observation 1: Strings binary vector is sparse with
high-dimensionality.

Another observation is that there are only a few similar-
ity pair instances in the real string dataset. Table II reveals
our observation on three real datasets. The 2nd to the 4th
columns of the table show the ratio of the similarity pairs
in the datasets under the edit distance threshold τ . The
ratio is evaluated by Similarity Pair Ratio defined as

Ratiosp =
|similarity pairs|
|S|(|S| − 1)/2

, (7)

where S is the string dataset and |S|(|S| − 1)/2 is the
total number of ordered string pairs, i.e., si, sj ∈ S, string
pair < si, sj > and i < j.

From Table II, observation can be seen that the similar
string pair ratio Ratiosp within the edit distance threshold
from 1 to 3 on real dataset is extremely sparse. Even
through the edit distance threshold enlarged, there are
only few similar pairs. Thus we conclude our observation
in a formal way.

Observation 2: In reality settings, the similar string
pairs are extremely sparse under the string edit distance
constraint.

From the above observations, we can see that the
retrieving of the string similarity pairs in the real dataset
is like finding the needle in a haystack. How to effectively
find the needle in a haystack? The Min-Hashing can
give an effective way for retrieving the objects with high
similarity in high-dimensional space [21].

TABLE II.: Similarity Pairs Ratio with Edit Distance on
Real Datasets

Dataset τ = 1 τ = 2 τ = 3

DBLP Author 5.82E-7 2.60E-6 1.24E-5
DBLP TA 1 1.28E-9 2.25E-9 3.88E-9
DNA Seq 2 5.89E-6 1.79E-5 2.58E-5
1 Title and Author.
2 DNA Sequences.

Base on the above observations, we propose the
Hashed-Join framework. Firstly, the Min-Hashing based
LSH technique is applied, which hashes the similar strings
into the same bucket approximately. Then the Trie-Join
technique is employed for evaluating the similar string
pairs within each bucket.

Due to the well scalability of LSH, our framework can
easily be extended to run in a parallel way on cluster with
large string sets, such as MapReduce framework [22],
[23].

IV. HASHed-JOIN

In this section, the approach of Hashed-Join is presented.
First, the algorithm of q-gram binary vector building is
proposed. Then Hashed-Join is introduced.

A. String Binary Vector Building

According to the processing procedure in Fig.1, the q-
grams of each string are extracted firstly, then the binary
vector for each string is constructed. The algorithm is
summarized in Algorithm 1.

Algorithm 1: String Binary Vectors Building
Input: String Set S; Integer q.
Output: Compressed Binary Vectors.

1 Vector V⃗ = ∅;
2 foreach s ∈ S do
3 Φq(s) = qgramGen(s);

4 U = ∪|S|
i=1Φq(si);

5 foreach Φq(s) do
6 Vector v⃗ = new Vector();
7 foreach g ∈ U do
8 if g ∈ Φq(s) then
9 v⃗.add(1);

10 else
11 v⃗.add(0);

12 v⃗c = V ectorCompressor(v⃗);
13 V⃗ = ∪v⃗c;

14 return V⃗ ;

The input of Algorithm 1 is the string set S and the
parameters q. It outputs the compressed binary vectors as
the result.

In Algorithm 1, the q-grams of each string in the string
set are extracted firstly (lines 2-3). After generating the
q-grams, the binary vector for string s is generated based
on the q-gram universal U of the string set and the q-gram
set Φq(s) of string s (lines 4-11).

Due to the high dimensionality of the binary vectors,
for reducing the storage overhead, the each binary vector
is divided into several groups with length L, where L ≤
64 and L ≤ |U|, for the reason that the binary can
be compressed into integers. In each group, the binary
vector is transformed into an integer (line 12). Finally, the
compressed binary vectors are returned by the algorithm
(line 14).

B. Hashed-Join Algorithm

After generating the binary vectors for the string sets,
the main algorithm of Hashed-Join is proposed in the
following section.

The Hashed-Join algorithm is outlined in Algorithm 2.
The input of the algorithm includes compressed binary
vectors, string set list SL and edit distance threshold τ .
The output of the algorithm is the similar string pairs.
In this paper, we only take self-join into account, i.e.,
S1 ◃▹F S. The join between two different string sets,
S1 ◃▹F S2, can be can be easily extended according to
Trie-Join [8].

In this paper, Hashed-Join uses Min-Hashing based
LSH index for dividing the string set into groups, which

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2725

© 2014 ACADEMY PUBLISHER

Algorithm 2: Hashed-Join Algorithm

Input: Compressed String Binary Vectors V⃗ ; String
Set List SL; Edit Distance Threshold τ .

Output: Similar String Pairs within Threshold τ .
1 MinHashClass minHash = new MinHashClass();
2 V⃗ ′ = decompress(V⃗); /* Decompress the binary

vectors*/;
3 LSHIndex = minHash(V⃗ ′, SL); /*Generate the

Min-Hashing LSH index for the string set*/;
4 foreach band b ∈ LSHIndex do
5 bandNo = getBandNo(b);
6 foreach bucket buc ∈ b do
7 bucketNo = getBucketNo(bandNo);
8 S′ = getString(bandNo⊕ bucketNo, SL);

/*Get the subset S′ of the string set S from
the collision bucket */;

9 if (|S′| == 1) then
10 sp = null; /*similarity pair */;

11 else
12 trie = buildTrieTree(S′); /*Build a trie

tree index for S′*/;
13 sp = trie.GenerateSimiPair(trie, τ);

/* call Trie-Join Algorithm [8]*/;

14 SP = MergeSimilarPairs(sp);
/*Similarity Pair Set */;

15 return SP ;

h1,...r

series of min-

hashing functions

1001101

1011001

1101010

String

database

Apple,applies

good,google

Tree,trie

appleappleappleappleappleappleapple

Hash tables

t

i

r

e

e

e

...

y

...

Similar strings collide together

Trie tree

Figure 5: Hashed-Join based on LSH and Trie join

ensures the similar strings to fall into the same group
with high probability. Fig.5 illustrates this procedure.
In fig.5, the strings of the string database is hashed
by r Min-Hashing functions, and the columns represent
strings. Then the r Min-hashing values of a string are
concatenated to form a key, i.e., for string s, key(s) =
mh1(s) ⊕ · · · ⊕ mhr (s), where ⊕ join the r hash keys
into one key. The concatenated key is hashed into one of
the M buckets for string s. Thus, the similarity strings
are hashed into the same bucket, and the non-similar
ones are filtered. In order to reduce the false negative
rate, the above procedure will repeat b times, however,
the min-hashing function is different for each iteration.

Algorithm 3: minHash Indexing Algorithm

Input: Binary Vectors V⃗ ; String Set List SL.
Output: LSH index based on Min-Hashing.

1 generate the b ∗ r hash functions;
2 foreach string s in SL do
3 sv =getV ector(V, SL); /*get the string vector */;
4 for i = 1; i ≤ b; i++ do
5 key =0 ;
6 for j = 1; j ≤ r; j ++ do
7 keyi = mh(sv);
8 key = key ⊕ keyi ;

9 bandNum =HASHfun(key);
10 store the string s in the bandNum-th bucket;

11 return LSHIndex;

The procedure is illustrated in Algorithm 3. A trie tree
is constructed for the strings in the each bucket, and
the similarity string pairs can be obtained with Tire-join
algorithm in each bucket. The final result of the similar
string pairs can be get by merge the similar pairs in each
bucket. More details are presented as follows.

The input of Algorithm 2 are compressed string binary
vectors V⃗ , which is built with Algorithm 1,string set list
SL and the edit distance threshold τ . The procedure of
Algorithm 2 can be divided into four steps. In the first
step, the Min-Hashing based LSH index is constructed for
the string set with the decompressing the binary vectors
(line 3), the index procedure is presented in Algorithm 3.

In the second step, strings in the same bucket are
obtained with the band number and the bucket number
of the LSH index (lines 4-7). If there is only one string
in the bucket, then this bucket can be skipped for it cannot
make up pairs (lines 8-10). One key problem in this step
is that the strings within the string edit distance threshold
τ can be fall into the same bucket in at least one band
with high probability by choosing the proper parameter
of b and r.

A trie structure is built for the strings in each bucket
in the third step (line 12). In this step, the similar string
pairs within the threshold τ are evaluated on the strings
falling into the bucket by the Trie-Traversal algorithms
proposed in [8] (line 13).

In the forth step, the similarity pairs in the buckets of
each band are merged together and returned (lines 14, 15).

C. Complexity analysis

First, compute Min-Hashing LSH takes O(|U|brn), and
the time complexity of Trie-Traverse is O(τ |AT |), where
|AT | is the sum of the numbers of the active-node sets of
all the trie nodes in the trie T , and the space complexity
is O(|T | + Cmax), where |T | is the size of trie T , and
Cmax is the maximal value of the sum of the active nodes
of leave node [8].

In the Hashed-Join index, the trie tree is built within
each bucket, thus the time complexity of Hashed-Join

2726 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

is O(Mbr(|AH
T |τ) + |U|brn), and space complexity is

O(Mbr(|T |H + CH
max)), where |T |H is the tire tree in

LSH, M is the buckets number, and AH
T is the maximal

sum of the numbers of the active-node sets of all the trie
nodes in the trie T in Hashed-Join, and the CH

max is the the
maximal value of the sum of the active nodes of ancestors
of leave node in all the buckets in Hashed-Join index. Due
to |T |H ≪ T , thus O(Mbr(|T |H + CH

max)) < O(|T | +
Cmax) and O(Mbr(|AH

T |τ) + |U|brn) < O(τ |AT |).

V. EXPERIMENTS

We conduct extensive experiments on real datasets to
evaluate the quality, efficiency and scalability of Hashed-
Join. The setup of the experiment, including the datasets,
experimental environment and the default parameters con-
figuration are first described, then the experiment results
are reported.

A. Experiment Setup

All of the algorithms are implemented in Java SDK1.6
and run on a computer which is configured with Intel duo
core E6550 2.33GHz CPU and 4G main memory running
Ubuntu 10.04.

The Trie-Traversal algorithm [8] and All-Pair-Ed [24]
are used as the baseline for the performance comparison.
The optimal algorithm of All-Pair-Ed is implemented. In
our implementation, the first q ∗ τ + 1 q-grams of each
string are selected as the prefix after being sorted by their
Inverse Document Frequency (short for IDF) value [25].
Filtering and pruning techniques proposed in [8] are not
take into consideration in our implementation. The default
of q is set to 2, which is recommended in [26]. The default
parameters of Min-Hashing b is configured with 1 and r
with 3, and the default bucket number M is set to 20.

Three real datasets are employed for the experimental
evaluation, which are described in the following.

DBLP 1 is the bibliography records of computer fields,
which includes more than 1.4 million publications and
widely used in computer science fields as the benchmark,
such as string similarity search [8]. Each record includes
the title, the authors, and other information of the paper.
We extract the dataset into two: one is consisted of the
paper titles, denoted as DBLP Title; the other includes
the title and the author names of the paper, denoted as
DBLP TA.

TABLE III.: Statistics of the String Datasets

Dataset |S| Max Len Min Len Avg Len

DBLP Title 1158648 516 1 57.05
DBLP TA 1385925 1335 1 90.24
UniProt 508038 1992 2 341.06
DNA Seq 3190 60 60 60.0

UniProt 2 is a protein sequence database, which is
widely used for sequence alignments, retrieval et al.

1http://www.informatik.uni-trier.de/ ley/db/
2http://www.uniprot.org/

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3

T
im

e
(s

)*
1
0

3

τ

Trie-Join
b=1,r=3
b=1,r=2

All-Pair-ED

(a) DNA Dataset

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1 2 3

T
im

e
(s

)*
1
0

3

τ

Trie-Join
b=1,r=3
b=1,r=2

All-Pair-ED

(b) DBLP Title Author Dataset

 0

 10

 20

 30

 40

 50

 1 2 3

T
im

e
(s

)*
1
0

3

τ

Trie-Join
b=1,r=3
b=1,r=2

All-Pair-ED

(c) UniProt Dataset

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 1 2 3

T
im

e
(s

)*
1
0

3

τ

Trie-Join
b=1,r=3
b=1,r=2

All-Pair-ED

(d) DBLP Title Dataset

Figure 7: Performance Comparison on Datasets

DNA Sequences 3 has been developed to evaluate a
hybrid learning algorithm (KBANN) that uses examples
to inductively refine pre-existing knowledge. In total,
3190 DNA sequences are taken from Genbank 64.1, with
average length 60.

The length distribution of the strings and the statistical
information of the string datasets are shown in Fig.6(a)
and Table III respectively.

For the larger dataset, such as DBLP Title, DBLP TA
and UniProt datasets, datasets are sampled for experiment
evaluation. The length distribution and the statistical in-
formation of the sampled dataset is shown in Fig.6(b) and
Table IV respectively. Without pointing out specifically,
the experiments are conducted on the sampled datasets.

TABLE IV.: Statistics of the Sampled Datasets

Dataset |S| Max Len Min Len Avg Len

DBLP Title 5885 163 3 58.14
DBLP TA 7040 284 8 81.89
UniProt 2578 1882 5 367.70
DNA Seq 3190 60 60 60.00

B. Efficiency

In this section, experiments for evaluating the efficiency
of the Hashed-Join is conducted.

First the similarity join performance is conducted on
the big string dataset DBLP Title. In this experiment, the
size of string dataset is 579282 and the parameters of
LSH is set to the default values. The string edit distance
threshold τ varies from 1 to 2. The time cost of Hashed-
Join on this dataset is 5100, 24073 seconds for τ is 1 and
2 respectively.

The efficiency are also compared Trie-Join and All-
Pair-Ed [24] on the sampled datasets. Fig.7 illustrates the
string join performance comparison with Trie-Join and
All-Pair-Ed with different Min-Hashing parameters for the
string edit distance threshold τ varying from 1 to 3.

3http://archive.ics.uci.edu/ml/datasets.html

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2727

© 2014 ACADEMY PUBLISHER

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

N
u
m

b
e
r

o
f

S
ri

n
g
s

String Length

UniProt
DBLP Title

DBLP Title + Author

(a) Length Distribution of Datasets

 1

 10

 100

 1000

 1 10 100 1000 10000

N
u
m

b
e
r

o
f

S
ri

n
g
s

String Length

UniProt
DBLP Title

DBLP Title + Author

(b) Length Distribution of Sampled Datasets

Figure 6: Length Distribution

 0

 50

 100

 150

 200

 250

 300

 1 2 3

T
im

e
(s

)

τ

M=20
M=50

M=100
M=250
M=400

(a) DNA Dataset

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 1 2 3

T
im

e
(s

)

τ

M=20
M=50

M=100
M=250
M=400

(b) DBLP Title Author Dataset

 5

 10

 15

 20

 25

 30

 35

 1 2 3

T
im

e
(s

)*
1
0

3

τ

M=20
M=50

M=100
M=250
M=400

(c) UniProt Dataset

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 1 2 3

T
im

e
(s

)

τ

M=20
M=50

M=100
M=250
M=400

(d) DBLP Title Dataset

Figure 8: Performance with Different Buckets on Datasets

The performance comparison in Fig.7 shows that, with
the increasing of the threshold τ , the time cost of Trie-
Join increases much faster than Hashed-Join. When τ is
3, Hashed-Join just takes about 50% ∼ 70% time of Trie-
Join. This also confirms our observation in Section 3.
With the increase of the hash function number in each
band, the performance increases a little, because with
the increasing of r, the probability of the strings hashed
into the same bucket decreases. From the comparison
result, we can see that both Trie-Join and Hashed-Join
outperform the All-Pair-Ed on the datasets except the
UniProt dataset. This is because that Trie-Join excels at
short strings and the length of the UniProt dataset is 367,
which is much longer. The average length of the string
set is illustrated in Table IV.

From the above performance comparison experiment,
conclusions can be drawn that:(1) Hashed-Join gains
much performance improvement against Trie-Join with
the increasing of the edit distance threshold; (2) As
the Min-Hashing parameter r increases, the efficiency of
the Hashed-Join also increases, however, the join quality
will decrease, because the bigger of r, the less of the
candidates in the collision bucket; (3) All-Pair-Ed is more
effective than Trie-Join and Hashed-Join for long string
set, which is illustrated by Fig.7(c).

We also evaluate the performance of Hashed-Join with
different bucket number M with M varying from 20 to
400. Fig.8 illustrates the performance of Hashed-Join with

different bucket number. When the of the bucket number
increase, the performance of Hashed-Join increases a
little, especially when the string edit distance threshold
τ becomes larger.

C. Quality

The similarity join quality results of Hashed-Join on the
4 datasets are reported in this section. Within each bucket,
Hashed-Join employs the trie join technique, therefore, the
precision of Hashed-Join can not be computed directly.
Therefore, we only take the recall measure into consid-
eration, which is define as Eq.8.

recall =
|retrieved

∩
relevant|

|relevant|
, (8)

where the relevant refer to the string pairs in the
datasets that satisfying the string edit distance thresh-
old, i.e., relevant = {< si, sj > |si, sj ∈ S, i <
j, disted(si, sj) ≤ τ}; and the retrieved represents the
retrieved result using the Hashed-Join algorithm.

TABLE V.: Number of Similar String Pairs with Edit
Distance τ

Dataset τ = 1 τ = 2 τ = 3

DBLP Title 1 3 7
DBLP TA 3 6 9
UniProt 1 252 402
DNA Seq 30 92 134

Table V summarizes the similar string pairs with dif-
ferent string edit distance τ varying from 1 to 3 on the
4 datasets, i.e., the number of the relevant result in the
datasets. The recall ratio of Hashed-Join is demonstrated
in Fig.9. On account of one band is enough for the join
quality, the band number b is set to 1 for trading the
performance.

Fig.9 reveals the results of join quality with recall
ratio metric. These results demonstrate that (1) with the
increasing of the edit distance threshold τ , the recall ratio
may reduce slightly. The reason is that strings within
the edit distance threshold may be fallen into different
buckets; (2) with the increase of the parameter r of Min-
Hashing, the recall ratio may decrease, the Fig.9(d) shows
this obviously. The result can be seen from Eq.5. The
reason of recall ratio dropping is that with the increase

2728 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

 0.8

 0.9

 1

 1.1

 1.2

 1 2 3

R
e
c
a
ll

 R
a
ti

o

τ

b=1,r=3
b=1,r=2

(a) DNA Dataset

 0.8

 0.9

 1

 1.1

 1.2

 1 2 3

R
e
c
a
ll

 R
a
ti

o

τ

b=1,r=3
b=1,r=2

(b) DBLP Title and Author
Dataset

 0.8

 0.9

 1

 1.1

 1 2 3

R
e
c
a
ll

 R
a
ti

o

τ

b=1,r=3
b=1,r=2

(c) UniProt Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3

R
e
c
a
ll

 R
a
ti

o

τ

b=1,r=3
b=1,r=2

(d) DBLP Title Dataset

Figure 9: Join Quality with Hash Function Number r on
Datasets

of the parameters r, the false negative may increase, thus
the similar string pair may be filtered with the LSH.

However, the join quality in Fig.9(d) looks different
with others when r = 3. The reason is that in DBLP Title
dataset, there is only 1 similar string pair in the dataset
when threshold τ is 1, which is illustrate in Table V.
In addition, when r = 3, it may be missed with high
probability, as a result, the recall ration is 0 if the similar
pair missed. When the string edit distance threshold τ is
equal to 2 and 3, there are 3 and 7 similar string pairs
respectively in the dataset, and the recall can be increased
in the experimental result. In consequence, the recall ratio
looks different with Fig.9(c).

We also conduct the experiment to evaluate the join
quality of Hashed-Join with different band number, which
control the approximation factor of the result, and the
result is demonstrated in Fig.10. The experiment results
revel that increasing the band number will improve the
join quality, and this conclusion is evidently shown in
Fig.10(a) to Fig.10(d), especially for the DBLP Title
dataset in Fig.10(d). However, when the band number
b is 2, the quality improves slightly from Fig.10(a) to
Fig.10(c), but this almost doubles up the time cost.
Therefore, the band number b = 1 is enough for trading
the quality and efficiency.

Of course, the quality increases by reducing the pa-
rameter r. Nevertheless, reducing the parameter r can
increase the probability of non-similar strings as well,
i.e., increasing the false positive. When the string edit
distance threshold τ increases, by reducing the parameter
r and increasing b, the result quality can be tuned.

D. Scalability

In this section, the scalability of Hashed-Join with
respect to the size of the string datesets and the string edit
distance threshold is evaluated. The default parameters of
Min-Hashing LSH b, r and bucket number M are set to
1, 3 and 100 respectively. To evaluate the scalability, 5
groups of datasets are sampled from DBLP dataset with

 0.8

 0.9

 1

 1.1

 1 2 3

R
e
c
a
ll

 R
a
ti

o

τ

b=1,r=2
b=1,r=3
b=2,r=2
b=2,r=3

(a) DNA Dataset

 0.8

 0.9

 1

 1.1

 1 2 3

R
e
c
a
ll

 R
a
ti

o

τ

b=1,r=2
b=1,r=3
b=2,r=2
b=2,r=3

(b) DBLP Title and Author
Dataset

 0.8

 0.9

 1

 1.1

 1 2 3

R
e
c
a
ll

 R
a
ti

o

τ

b=1,r=2
b=1,r=3
b=2,r=2
b=2,r=3

(c) UniProt Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3

R
e
c
a
ll

 R
a
ti

o

τ

b=1,r=2
b=1,r=3
b=2,r=2
b=2,r=3

(d) DBLP Title Dataset

Figure 10: Join Quality with Band Number b on Datasets

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3

T
im

e
(s

)*
1
0

2

τ

TA1
TA2
TA3
TA4
TA5

(a) Scalability Evaluation of
Hashed-Join

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5

T
im

e
(s

)*
1
0

2

τ

Trie-Join
Hashed-Join

(b) Scalability Comparison

Figure 11: Scalability Evaluation

title and author, which are denoted as TAi, i = 1, ..., 5,
and the number of the strings varies from 2321 to 24314
respectively. Table VI outlines the statistical information
of the 5 sampled datasets.

TABLE VI.: Statics of the Sampling Datasets for Scala-
bility Experiment

Dataset |S| Max Len Min Len Avg Len

TA1 2321 238 10 66.233
TA2 4666 284 8 79.924
TA3 7035 284 8 81.892
TA4 14287 320 7 84.911
TA5 24314 432 7 84.076

In term of the scalability with the data size, Fig.11(a)
demonstrates the scalability of Hashed-Join on the
datasets with different string numbers, the experimental
result show that, with the increasing of the size of the
dataset, Hashed-Join scales well. Fig.11(b) shows the
scalability comparison with Trie-Join when τ varies from
1 to 5 on dataset TA2. It can be seen that with the
increasing of τ , the time cost of Trie-Join increases much
faster than Hashed-Join. Fig.11(b) indicates that Hashed-
Join scales much better than Trie-Join, especially when
the string edit distance threshold becomes larger. For
example, when τ = 5, Hashed-Join takes less than 20%
time cost of Trie-Join.

VI. RELATED WORK

String similarity join has been studied extensively in
database fields [4], [8], [26], [27]. It is important in many

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2729

© 2014 ACADEMY PUBLISHER

applications, such as data duplication detection [5], data
cleaning [4], data integration [28].

S. Chaudhuri et al. [4] introduce the similarity join for
data cleaning and implement it as a primitive operator
SSJoin in the relation database and the k-prefix filter
based on the pigeon hole principle is proposed. Ed-
Join [27] explores the mismatching q-gram for the edit
distance constraint: content mismatching and location
mismatching. A. Arasu et al. [29] introduce a signature-
based framework. Their signature is based the partition-
ing and enumeration. Based on the relationship between
Hamming distance and Jaccard similarity, they propose
PARTNUM for the candidate filtering. All-Pair-Ed [24]
is based on the prefix filtering and follows an inverted
list nested join style for the string similarity join. For
each string, the first q ∗ τ +1 q-grams are selected as the
prefix, strings share q-gram with the prefix are verified
by string edit distance evaluation. S.-H. Kim [30] studied
the string matching under a restricted alphabet set.

Based the limitation of prefix filtering methods,
[31]propose a cost model for selecting prefix. Top-k string
similarity search with edit-distance constraints is proposed
[32], which improves the pruning effective by using
pivotal entries. String similarity joins with synonyms is
proposed [33], which is based on the term expansion
framework.

Landmark-Join [34] adopt the similar processing path
as ours, based on hash join technique, which using q-
bucket partitioning and local upper bound calculation for
speed up similarity evaluation.

Recently, tree index based are proposed for string simi-
larity join [8], [11], [12]. Z. Zhang et al. [11] propose the
Bed-tree with the edit distance constraint for string search.
They employ three kinds of string orders: dictionary order,
gram counting order and gram counting and location
order for indexing the strings that satisfying the lower
bounding for similarity string query. H. Lu [35] proposed
a filter-and-refine framework based on hash-algorithm
for probabilistic spatio-temporal joins, they use a R-tree
variant for pruning candidates.

The trie structure is employed for searching the similar
strings under string edit distance constraint [36]. The Trie-
Join [8] introduces the trie structure for prefix pruning,
which benefits the string similarity join with edit distance
constraint on short strings. PreJoin [12] improve Trie-Join
by reducing pruning step.

Parallel evaluation of massive string join on cluster are
also studied using MapReduce [37]–[39].

VII. CONCLUSION AND FUTURE WORK

In this paper, an approximate string similarity join
framework Hashed-Join, using the Min-Hashing based
LSH and the Trie-Join techniques, is studied.

Hashed-Join employs the LSH techniques to filter the
similar strings firstly, within each bucket, the Trie-Join
technique is applied for evaluating the similar string pairs
that satisfying the edit distance constraint approximately.
The relationship between the parameters of Min-Hashing

LSH and the string edit distance is established, which
ensures that the similar string with distance threshold
can be retrieved with high probability theoretically. An
empirical study on real datasets indicates that Hashed-Join
can effectively processing string join with high quality and
better performance. As a future work, parallel evaluating
on cluster with massive strings will be considered.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for
their valuable comments and suggestions to improve the
presentation of this paper.

REFERENCES

[1] P. Yuan, C. Sha, and S. Yi, “Hashed-join: Approximate
string similarity join with hashing,” in Database Systems
for Advanced Applications. Springer, 2014, pp. 217–229.

[2] M. Hadjieleftheriou and D. Srivastava, “Weighted Set-
Based String Similarity,” Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, pp. 1–
12, 2010.

[3] W. Wang, C. Xiao, X. Lin, and C. Zhang, “Efficient ap-
proximate entity extraction with edit distance constraints,”
in SIGMOD, 2009, pp. 759–770.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik, “A Primitive
Operator for Similarity Joins in Data Cleaning,” in ICDE,
2006, pp. 5–5.

[5] C. Xiao, W. Wang, X. Lin, and J. Yu, “Efficient similarity
joins for near duplicate detection,” in WWW, 2008, pp.
131–140.

[6] M. Henzinger, “Finding near-duplicate web pages: a large-
scale evaluation of algorithms,” in SIGIR, 2006, pp. 284–
291.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik, “Data debugger:
An operator-centric approach for data quality solutions,”
IEEE Data Eng. Bull, vol. 29, no. 2, pp. 60–66, 2006.

[8] J. Wang, J. Feng, and G. Li, “Trie-Join:Efficient Trie-based
String Similarity Joins with Edit Distance Constraints,”
VLDB, vol. 1, no. 1, pp. 933–944, 2010.

[9] R. Wagner and M. Fischer, “The string-to-string correction
problem,” JACM, vol. 21, no. 1, pp. 168–173, 1974.

[10] W. Masek and M. Paterson, “A faster algorithm computing
string edit distances,” Journal of Computer and System
Sciences, vol. 20, no. 1, pp. 18–31, 1980.

[11] Z. Zhang, M. Hadjieleftheriou, B. Ooi, and D. Srivastava,
“Bed-tree: an all-purpose index structure for string simi-
larity search based on edit distance,” in SIGMOD, 2010,
pp. 915–926.

[12] K. Gouda and M. Rashad, “Prejoin: An efficient trie-based
string similarity join algorithm,” in INFOS. IEEE, 2012,
pp. DE–37.

[13] J. Qin, X. Zhou, W. Wang, and C. Xiao, “Trie-based
similarity search and join,” in Proceedings of the Joint
EDBT/ICDT 2013 Workshops. ACM, 2013, pp. 392–396.

[14] P. Indyk and R. Motwani, “Approximate nearest neighbors:
towards removing the curse of dimensionality,” in STOC,
1998, pp. 604–613.

[15] C. Urbani, “A statistical table for the degree of coexistence
between two species,” Oecologia, vol. 44, no. 3, pp. 287–
289, 1979.

[16] V. Levenshtein, “Binary codes capable of correcting dele-
tions, insertions, and reversals,” in Soviet Physics Doklady,
vol. 10, no. 8, 1966, pp. 707–710.

[17] A. Broder, “On the resemblance and containment of doc-
uments,” in Proceedings of Compression and Complexity
of Sequences, 1997, pp. 21–29.

2730 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

[18] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li,
“Multi-probe LSH: Efficient indexing for high-dimensional
similarity search,” in VLDB, 2007, pp. 950–961.

[19] A. Rajaraman and J. D. Ullman, Mining of Massive
Datasets, 2013. [Online]. Available: http://infolab.stanford.
edu/∼ullman/mmds.html

[20] M. Narayanan and R. Karp, “Gapped local similarity
search with provable guarantees,” Algorithms in Bioinfor-
matics, pp. 74–86, 2004.

[21] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher,
“Min-Wise Independent Permutations,” Journal of Com-
puter and System Sciences, vol. 60, no. 3, pp. 630–659,
2000.

[22] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[23] P. Yuan, C. Sha, X. Wang, B. Yang, A. Zhou, and S. Yang,
“XML Structural Similarity Search Using MapReduce,”
WAIM, pp. 169–181, 2010.

[24] R. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs
similarity search,” in WWW, 2007, pp. 131–140.

[25] R. Baeza-Yates and B. Ribeiro-Neto, Modern information
retrieval. Addison Wesley, 1999.

[26] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava, “Approximate string
joins in a database (almost) for free,” in VLDB, 2001, pp.
491–500.

[27] C. Xiao, W. Wang, and X. Lin, “Ed-Join: an efficient al-
gorithm for similarity joins with edit distance constraints,”
VLDB, vol. 1, no. 1, pp. 933–944, 2008.

[28] W. Cohen, “Integration of heterogeneous databases without
common domains using queries based on textual similar-
ity,” in SIGMOD, 1998, pp. 201–212.

[29] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-
similarity joins,” in VLDB, 2006, pp. 929–931.

[30] S.-H. Kim, C.-S. Ock, and H.-G. Cho, “An efficient
composite-alphabet transform for string matching under
a restricted alphabet set,” Journal of Computers, vol. 8,
no. 7, pp. 1804–1809, 2013.

[31] J. Wang, G. Li, and J. Feng, “Can we beat the prefix
filtering?: an adaptive framework for similarity join and
search,” in SIGMOD, 2012, pp. 85–96.

[32] D. Deng, G. Li, J. Feng, and W.-S. Li, “Top-k string
similarity search with edit-distance constraints.” ICDE,
2013, pp. 925–936.

[33] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang, “String
similarity measures and joins with synonyms,” SIGMOD,
pp. 373–384, 2013.

[34] K. Narita, S. Nakadai, and T. Araki, “Landmark-join:
Hash-join based string similarity joins with edit distance
constraints,” in Data Warehousing and Knowledge Discov-
ery, ser. Lecture Notes in Computer Science, A. Cuzzocrea
and U. Dayal, Eds. Springer Berlin Heidelberg, 2012, vol.
7448, pp. 180–191.

[35] H. Lu, B. Yang, and C. S. Jensen, “Spatio-temporal joins
on symbolic indoor tracking data,” in ICDE. IEEE, 2011,
pp. 816–827.

[36] S. Chaudhuri and R. Kaushik, “Extending autocompletion
to tolerate errors,” in SIGMOD, 2009, pp. 707–718.

[37] R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-
similarity joins using mapreduce,” in SIGMOD. ACM,
2010, pp. 495–506.

[38] D. Deng, G. Li, S. Hao, J. Wang, J. Feng, and W.-S. Li,
“Massjoin: A mapreduce-based method for scalable string
similarity joins,” in ICDE. IEEE, 2014.

[39] A. Metwally and C. Faloutsos, “V-smart-join: A scalable
mapreduce framework for all-pair similarity joins of mul-
tisets and vectors,” Proceedings of the VLDB Endowment,
vol. 5, no. 8, pp. 704–715, 2012.

Peisen Yuan received his Ph.D. degree in Computer Software
and Theory from Fudan University, Shanghai, China in 2011. He
is currently lecture at the College of Information Science and
Technology, Nanjing Agricultural University, Nanjing, China.
His current research interests include Web data management,
big data techniques and agricultural information etc.

Shougang Ren received his B.S. degree in welding technology
from Nanjing University of Aeronautics and Astronautics, China
in June 1999 and his M.S. degree and his Ph.D. degree in mecha-
tronic engineering from Nanjing University of Aeronautics and
Astronautics, China in June 2005. His current research interest
includes artificial intelligence and software engineering.

Dechang Pi received the B.S., M.S., and Ph.D. degrees from the
Nanjing University of Aeronautics and Astronautics, Nanjing,
China, in 1994, 1997, and 2002, respectively. He is currently a
Professor and the Associate Dean with the College of Computer
Science and Technology. His current research interests include
data mining and big data analysis.

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2731

© 2014 ACADEMY PUBLISHER

