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Abstract— Recently, deep neural network (DNN) based a-
coustic modeling has been successfully applied to large
vocabulary continuous speech recognition (LVCSR) tasks.
A relative word error reduction around 20% can be
achieved compared to a state-of-the-art discriminatively
trained Gaussian Mixture Model (GMM). However, due to
the huge number of parameters in the DNN, real-time de-
coding is a bottleneck for the DNN based speech recognition
systems. In this paper, we adopt several techniques for the
speed optimization of the DNN-based system. Specifically,
we use singular value decomposition (SVD) to reduce the
model parameters, use the SSE instruction sets for the
parallel calculation in the data space, and quantize the
model parameters reasonably to convert the floating-point
arithmetic into fixed-point arithmetic. Besides, taking the
characteristics of speech signal into account, we use a frame-
skipping method when evaluating the posterior probabilities.
Finally, compared to the un-optimized baseline system, with
negligible recognition performance loss, the decoding real-
time factor of the optimized one is significantly reduced,
from 6.1 to 0.31. And this response speed can basically meet
the requirement of our real applications.

Index Terms— Large Vocabulary Continuous Speech Recog-
nition, Acoustic Modeling, Deep Neural Network, SSE In-
structions.

I. INTRODUCTION

RECENTLY, the Deep Neural Network-Hidden
Markov Model (DNN-HMM) based acoustic mod-

eling has achieved great success on Large Vocabulary
Continuous Speech Recognition (LVCSR) tasks [1], [2].
A relative word error reduction around 20% can be
achieved compared to a state-of-the-art discriminatively
trained Gaussian Mixture Models (GMM) [3], [4]. Under
the DNN-HMM framework, unlike the traditional GMM-
HMM framework where GMM is used to model the
probability distribution of acoustic features associated
with states of an HMM, DNN is used to produce posterior
probabilities over HMM states directly. In fact, DNN is a
special Artificial Neural Network with many hidden lay-
ers, which offer several potential advantages over GMM
[5]:
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1) Its estimation of the posterior probabilities of HMM
states does not require detailed assumptions about
the data distribution.

2) It allow an easy way of combining diverse features,
including both discrete and continuous features.

3) It use far more data to constrain each parameter
because the output of each training case is sensitive
to a large fraction of the weights.

Although DNN has been shown superior modeling
capability over GMM, the outstanding performance ac-
companies with huge computation cost due to that DNN
has much more parameters than the traditional GMM [6].
Usually, a typical DNN used in ASR has many hidden
layers (5 to 9), each equipped with about 2000 ∼ 3000
neurons, and a much larger output layer designed to model
senones (tri-phone states) directly [7], which results that
DNN has 2 to 10 times more than the GMM counter-
part. Thanks to the development of Graphics Processing
Unit (GPU), the training of DNN has been speeded up
significantly [8]–[10]. Nevertheless, due to a variety of
factors, GPU is not always available on all types of
hardware, which limits the application of DNN in a lot
of scenarios. Especially at the decoding stage, where a
faster response is demanded under real applications for
ASR systems [11].

In this paper, we investigate the optimization of improv-
ing the decoding speed under the DNN-HMM based ASR
systems. In order to better identify those factors which
affect the system’s decoding speed, we divide the decoder
into three modules: 1) The feature extraction module;
2) The DNN-based posterior probabilities evaluation mod-
ule; 3) The Viterbi search module. The function of the
feature extraction module is to get a compact representa-
tion of the original time-domain signal. The calculation
in this module is very fast so we skip it; The posterior
probabilities evaluation module uses DNN to evaluate the
posterior probabilities over HMM states and involves lots
of matrix-vector production. According to the analysis of
our experiments, the time consumption in this module
attributes to 70% of the total decoding time. Therefore,
the optimization of the DNN-based posterior probabilities
calculation is the core of this paper. The Viterbi searching
module tries to find the optimal path in the searching
space. Due to the large vocabulary used in most the-state-
of-the-art ASR systems, the searching space is also very

2706 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.10.2706-2712



large. And this module occupies 20% ∼ 30% of time in
total, there is also some room for improvement.

Based on the analysis above, the main contents of
this paper are divided into two parts: the acceleration of
the DNN-based posterior probability calculation; and the
acceleration of the searching process with the combination
of the inherent characteristics of the speech recognition
task. The starting point of all of the acceleration tech-
niques is to improve the decoding speed of the ASR sys-
tem without much recognition performance degradation
[6].

The rest of this paper is organized as follows. In
section II, we review the framework of the DNN-HMM
based ASR system. In section III, we describe the acceler-
ation techniques for the DNN-based posterior probability
evaluation. Section IV presents the optimization method
during Viterbi searching. Experiments and analysis are
given in section V. Finally, we draw the conclusions in
section VI.

II. THE FRAMEWORK OF THE DNN-HMM BASED
ASR SYSTEM

The DNN-HMM [3] [12] is a special ANN-HMM
hybrid system in which the DNN is in place of the
the shallow ANN and is used to model the posterior
probabilities of the HMM states directly. By combining
the discriminative modeling power of DNN with the
sequential modeling capability of HMM, DNN-HMM
outperforms the traditional GMM-HMM significantly.

The basic architecture of the DNN-HMM based ASR
system can be illustrated as in Figure 1: The original
speech signals are converted into acoustic features by
a feature extraction module. The DNN accepts an input
pattern x, which typically consists of 7-13 frames of those
acoustic features, and passes it through many layers of
nonlinear transformation [13]

yli = σ((wl
i,∗)

T yl−1 + bli) (1)

where wl and bl are the weight matrix and bias at layer
l, wl

i,∗ is the i-th row of w and bli is the i-th elements of
b, yli denote and the activation of the i-th neuron at layer
l. When the l-th layer is an intermediate layer, σ(x) =
1/(1 + exp(−x)) is the sigmoid function. and when it
is the output layer, then σ(x) is the softmax function.
The outputs of DNN are the estimates of state posterior
probabilities p(s|x), which is converted into a scaled state
emission probability as

p(x|s) = p(s|x)
p(s)

p(x) (2)

where s ∈ {1, 2, . . . , S} is the state id of HMM, S is the
total number of states, p(s) is the prior probability of state
s, and p(x) is independent of the model. These emission
probabilities are used in the Viterbi searching process to
find the optimum path in the searching space [?], [14].

From the above description, the mathematic operations
of the DNN-based state posterior probabilities evaluation
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Figure 1. The framework of DNN-HMM based ASR system

are lots of matrix-vector production and nonlinear trans-
formation. For the optimization of the DNN processing
speed, one way is to reduce the DNN parameters so as
to reduce the mathematic operations, the other way is to
speed up the mathematic computation.

III. ACCELERATION OF THE DNN-BASED POSTERIOR
PROBABILITIES EVALUATION

As described in section II, the mathematic operations
of the DNN-based state posterior probabilities evaluation
are lots of matrix-vector production and nonlinear trans-
formation. To accelerate the DNN processing speed, one
way is to reduce the parameter number of DNN so as to
reduce the number of the mathematic operations. Another
way is to speed up the mathematic computation itself.

A. Singular Value Decomposition Based Restructuring

The number of parameters of DNN in state-of-the-art
ASR systems is often above 40M, which is 2 to 10 times
more than the traditional GMM counterparts. Although
experiments demonstrate that the recognition accuracy
of DNN typically increases with the number of hidden
units and layers [12], inspection of the well trained DNN
has shown that a large portion of all connections have
very small weights. As an specific example, we draw
the accumulative distribution of our experimental DNN’s
weight magnitudes in Figure 2. As we can see, except
the first layer, the magnitude of 70% of the weights is
below 0.5 on each layer. And for the last two layers, the
proportion of the magnitude of weights below 0.2 is over
90%. Motivated by this, [15] try to reduce the model
size by removing those connections with small weight
magnitude. However, since the location of the remained
weights are not continuous, so some extra memories
are needed to record their positions. More importantly,
under this strategy, we can’t take the advantage of using
SSE instructions. Yu et al. [16] decompose the original
weight matrix into two matrices with smaller size, and
the total parameters can be significantly reduced. Similar
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Figure 2. The accumulative distribution of the magnitude of weights
on different layers

to [16], we use Singular Value Decomposition (SVD) to
approximate the weight matrices.

For any m× n matrix A, it can be decomposed as

Am×n = Um×nΣn×nV
T
n×n (3)

where Σ is a diagonal matrix whose elements are A’s
singular values in a decreasing order. The columns of U
and V are the left-singular vectors and right-singular vec-
tors of A corresponding to singular values Σ, respectively.
Typically, especially for a sparse matrix, the singular
values decrease heavily. Around 10% of singular values
contribute to 80% of total values. This means that the
top most singular values and the corresponding vectors
characterize the most important content of the matrix. If
only the top k biggest singular values of A are kept, then
A can be approximated as

Am×n ≈ Um×kΣk×kV
T
n×k = Ũm×kṼ

T
n×k (4)

Ũm×k = Um×kΣk×k
1
2 , Ṽ T

n×k = Σk×k
1
2V T

n×k

The number of parameters is changed from m × n to
(m+ n)× k after approximation.

In implementation, we choose the value of k so that
a majority of the weight matrices’s singular values are
kept, and restructure the DNN with those approximated
matrices.

B. Using SSE Instructions

The basic idea of Streaming SIMD Extensions (SSE)
instruction sets is to perform multiple operations in par-
allel on contiguous data [17]. With a 128 bits register,
the CPU can manipulate 16 bytes worth of data with a
single instruction. The basic data types and storage format
in the register are illustrated in TABLE I. Fundamental
operations on these datatypes use assembly instructions.
Fortunately, for C/C++ programmers, the intrinsics [18]
provides simple wrapper functions for using the SSE
instructions. Take the additional arithmetic of floating-
point for example, we can fulfill 4 additions in a single
instruction by simply calling the function mm add ps().
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Figure 3. The Histogram Distribution of Weights

For using SSE instructions efficiently, there are two
points should be paid special attention to. Firstly, the
SSE instructions operate faster when the address of the
first byte of data in memory is a multiple of 16, so the
memory should be allocated by forcing 16-byte alignmen-
t; Secondly, since the SSE instructions operate on a block
of 16 bytes, the edge effects should be dealt carefully if
the number of elements in a data vector is not a multiple
of 16.

C. Fixed-pointed Arithmetic

To illustrate the rationality of applying fixed-point
arithmetic to DNN, we plot the histogram distribution of
weights and biases in Figure 3 and Figure 4 respectively.
As we can see, the dynamic range of weights is very
small, most of the weights lie in the range of [-2,2], and
the dynamic range is [-8,2] for the biases. Besides, the
activations of each layer are probabilities in the [0,1]
interval. Based on this observation, we can use fixed-
point arithmetic to replace the floating-point operation.
Specifically, we apply a linear quantization to all of them,
the weights are quantized to 8-bit char, the activations
are converted into 8-bit unsigned char and the biases are
encoded as 32-bit int. Then with the SSE instructions
applied to these fixed-pointed data, we can operate 16
elements within a single function call. As can be seen
from our experimental results, the quantization error is
minimal and can be ignored.

IV. ACCELERATION OF THE DECODING PROCESS

Though the time of the DNN-based posterior proba-
bility evaluation can be significantly reduced with the
techniques describe above as shown by our experiments,
those optimizations are independent of the LVCSR task.
In this section, we will accelerate the decoding process by
taking advantage of the inherent acoustic characteristics
of the speech signals.

As it is well known, the speech signal can be treated
as piece-wise stationary, and there is a tight correlation
between adjacent acoustic frames. Considering this, a
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TABLE I.
THE DATA TYPE AND STORAGE FORMAT USED IN SSE INSTRUCTIONS

Data Type Storage Format
128i · · · 16chars · · ·
128i short short short short short short short short
128i int int int int
128 float float float float

128d double double
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Figure 4. The Histogram Distribution of Biases

variable frame rate approach has been successfully ap-
plied to GMM-HMM systems in [19]. As for the case
of DNN-HMM, a much wider window of time is used
as inputs to make a frame classification decision, and the
correlation of the adjacent acoustic frames is even bigger
than that in the GMM-HMM framework. V. and H. [20]
proposed a stronger multi-frame acoustic model for the
prediction of states posterior probabilities. Here we just
use a simplified version of this approach. Traditionally,
the stacked frames are passed to the DNN to generate the
predictions for the HMM states synchronously with the
Viterbi decoder as shown in Figure 5. Under the multi-
frame rate strategy as shown in Figure 6, the predictions
are evaluated every 20ms, but the decoder still runs at
10ms rate. The posterior probabilities of those frames
without predictions are just copied from previous one.
Specifically, the predictions for frame t + 1 can be just
copied from frame t. This means that we can predict the
posterior probabilities every k+1 frames while skipping
k frames without propagating the acoustic features in the
DNN. In this sense, we call this as a frame-skipping
method.

V. EXPERIMENTS

This section presents the experimental results of the
acceleration techniques for our DNN-based ASR systems
on a call center speech recognition task.

A. Experimental Setup

The DNN is trained on a data set of 800 hour conversa-
tion telephone speech, which contains an input layer, five

Figure 5. frame synchronous predition [20]

Figure 6. frame asynchronous predition [20]

hidden layers and an output layer. The input layer has
616 inputs consisting of 11 consecutive, overlapping 25
ms frames of speech, sampled every 10 ms. Each frame
consists of 13-dimension Perceptual Linear Predictive
(PLP) and 1-dimension pitch, appended with ∆, ∆∆
and ∆∆∆ coefficients to form a 56 dimension vector.
Each intermediate layer consists of 2048 nodes and uses
a sigmoid as non-linearity. The final layer has 6245
outputs corresponding to the context dependent acoustic
states (Senones) of HMMs, and uses a softmax function
to generate the posterior probabilities for these states.

The test set consists of 96 utterances of telephone
dialog, has 14505 Chinese characters and lasts for 2885
seconds. The dictionary contains about 50K words and
the recognition is performed using a Weighted Finite-
State Transducer (WFST) decoder [21] [22]. All of our
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experiments are performed on a single CPU on an Intel
Xeon Dual Core E5-2620 machine with Windows Server
2008 OS. The implementation is coded in C++ and
compiled with Visual studio 2008. The real-time (RT)
factor and character error rate (CER) are used as the
evaluation metrics for our ASR system.

B. Experimental results

1) Acceleration of calculation on DNN: We first e-
valuate the acceleration techniques for the DNN-based
posterior probability calculation. The real-time factor of
the baseline is 6.1 and is shown in the second row in
TABLE III.

• SVD-Based Restructuring. The key factor for the
SVD-based model restructuring is to determine how
many singular values are kept to approximate the
weight matrix. We simply keep k singular values
which account of a fixed proportion of the total
singular values of the weight matrix in each layer.
We plot the average error of the outputs of each
layer on the test set with different singular value
proportion in Figure 7 (The error means the dif-
ference of the outputs on each layer between the
original DNN and the restructured DNN). As we can
see, the average error is very low even only keep
70% of the singular values, especially at the output
layer. The number of parameters of the restructured
DNN is 15.3M (22.7M, 32M) when the proportion
of the kept singular values is 70% (80%, 90%).
To get an optimum choice of k, we evaluate the
recognition performance and the corresponding real-
time factor of posterior probabilities calculation and
list the results in TABLE II. From which we can
see, when only keeping 70% of the singular values
we can get the best overall performance, the number
of parameters of the restructured DNN is halved as
compared to the baseline DNN, and the RT factor
of posterior computation is reduced from 6.1 to 3.64
with the CER slightly degraded only by 0.7%.

• Using SSE Instructions. With the SSE instructions
applied to the floating-point operations of the re-
structured DNN based on SVD, the RT factor of

TABLE II.

baseline 70% SVs 80% SVs 90% SVs
CER 28.7% 29.4% 29.0% 28.8%
RT 6.1 3.64 4.71 6.23

TABLE III.
EXPERIMENTAL RESULTS OF DNN-BASED POSTERIOR PROBABILITY

EVALUATION

Real Time Incremental speed-up
Baseline 6.1 –

SVD 3.64 67.6%
SVD+SSE 1.18 208%

SVD+SSE+FP 0.37 219%

the posterior probabilities evaluation is reduced from
3.64 to 1.18 as shown by the third and the 4-th rows
in TABLE III. As discussed in section III-B, with
the SSE instructions we can implement four floating
arithmetic with one instruction. Experimental results
demonstrate that using the SSE instruction can real-
ize approximate linear speeding up.

• Fixed-pointed Arithmetic. We perform a linear quan-
tization to the parameters and the activations of
the restructured DNN as described in section III-C.
With SSE3 and SSE4 instructions we can perform
parallel multiply and add operations on these 8-bit
signed/unsigned char weights/activations, this results
in a 2.19 incremental speedup of the computation
over the floating-point arithmetic as shown at the
last line in TABLE III. It is noteworthy that the
error caused by quantization is negligible. In fact, the
recognition CER of the quantized DNN is 29.5%,
as opposed to 29.4% for the floating-point one,
the degradation is only 0.1%. But the RT factor is
reduced significantly from 1.18 to 0.37.

For comparison, we summarize the experimental results
of the speed of the DNN-based posterior probabilities
evaluation in TABLE III. From which we can see, the RT
factor of the posterior probabilities calculation module is
reduced significantly, from 6.1 to 0.37. And this result
demonstrates that the accelerating techniques are very
effective.

2) Acceleration of the decoding process: In this sec-
tion, we present the experiments of the frame-skipping
approach. As for our DNN-based ASR sytem, the RT
factor is 6.3 without using these techniques as mentioned
in the above section. For efficiency reason, all of the
results in this section are based on the techniques tested
in the above section, which means that the RT factor
of the posterior probabilities evaluation module is 0.37.
The RT factor is 0.54 and the CER is 29.5% of the
non-skipping ASR system as shown in TABLE IV. As
discussed above, the time accounted for the posterior
probabilities evaluation attributes a large proportion of the
entire decoding time, then the speed-up by frame-skipping
is obvious. The key factor is to balance the relationship
between decoding speed and recognition performance.
Therefore, we try different skipping strategies: skipping
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TABLE IV.
THE DATA TYPE AND STORAGE FORMAT USED IN SSE INSTRUCTIONS

no skip k = 1 k = 2 k = 3
CER 29.5% 29.8% 30.4% 32.1%
RT 0.54 0.35 0.28 0.26

k = 1, 2, 3 frames. The results are shown also in TABLE
IV. As we can see, when skipping only 1 frame, the
CER increased to 29.8% from 29.5% with a slightly
performance degradation, but the RT factor is reduced
significantly, from 0.54 to 0.35, a 35.2% relative speed-
up. When we continue to increase the skipping interval,
the recognition performance degrades relatively fast, as
shown by the 4-th and 5-th columns in TABLE IV. So in
our final system, we only skip one frame when evaluating
the posterior probabilities for decoding.

These experimental results show that the acoustic char-
acteristics of the speech signal in the time domain can be
utilized to reduce the posterior probabilities calculations
during the decoding process. By skipping an interval of
frame, we can effectively accelerate the decoding speed
yet with negligible recognition performance loss.

VI. CONCLUSIONS

This paper focused on a series of techniques for the
speed-up of the deep neural network based speech recog-
nition system. We separate the decoding process into
two individual modules and accelerate them respectively.
For the posterior probabilities evaluation module, we
restructure the original DNN via applying a SVD to
the weights matrices in each layer, and then quantize
the parameters of the restructured DNN and its acti-
vations to convert the floating-point arithmetic into the
fixed-pointed arithmetic. Finally, the SSE instructions
are used to accelerate these fixed-point arithmetic. With
these methods, the RT factor for the posterior probability
evaluation module is reduced from 6.1 to 0.37. For the
search module (decoding module), we take advantage of
the time-domain co-relationship of the adjacent acoustic
features, and use a frame-skipping strategy to speed the
decoding process further. After all of these optimizations,
the total RT factor of the DNN-based ASR system is 0.35
as opposed to 6.3 of the baseline system.
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