
Research on Real-time Performance Testing
Methods for Robot Operating System

Ming Huang

Software Technology Institute, Dalian Jiao Tong University, Dalian, China

Shujie Guo
Mechanical Engineering Institute, Dalian Jiao Tong University, Dalian, China

Email: shujieguo@126.net

Xu Liang
Software Technology Institute, Dalian Jiao Tong University, Dalian, China

Email: liangxu00@263.net

Xudong Song
Computer Science Department, Database System Research Group Lab

Worcester Polytechnic Institute, MA, USA,

Abstract—To test real-time performance of RGMP-ROS, a
robot operating system, this paper takes an in-depth study
of the basic functions of real-time operating system kernel.
By analyzing the main factors that affect the real-time
performance of an operating system, we propose a set of
real-time performance testing methods based on mixed load.
This paper introduces the concept of the calibration
procedure program. Takes the average execution time of the
program as the standard time unit to normalize the test
results of each test indicator, so as to shield the effect of the
hardware test environment on the test results to a certain
extent. While testing task preemption time and interrupt
response time, we use background tasks that can trigger
banning preemption or disabling interrupts to simulate the
load, which makes the test results more real and reliable.

Index Terms—Operating System, Real-time performance
testing, Mixed load

I. INTRODUCTION

A real-time system is one in which the correctness of
the computations not only depends on the logical
correctness of the computation but also on the time at
which the result is produced. If the timing constraints of
the system are not met, system failure is said to have
occurred [1]. The operating system is an important part of
real-time systems, the real-time performance of operating
systems is the key factor that affects the real-time
performance of the real-time system. Investigation of
Evans Data company shows that, for real-time operating
system, developers are most concerned about is the real-
time performance[2]. Given the importance of the

operating system real-time performance, more and more
researchers began to focus on the real-time operating
system performance testing, made a lot of testing
methods. RP Kar and K. Porter proposed a benchmark
test suite for evaluating the performance of operating
systems [3]. This suite evaluates the real-time
performance of the operating system through measuring
the task switching time, task preemption time, interrupt
latency time, semaphore shuffling time, deadlock release
time and message delay time. Nelson Weiderman
proposed an evaluation kit [4] for testing real-time
performance of hard real-time system. The kit takes into
account the different characteristics of periodic tasks and
aperiodic tasks to design targeted testing methods.
Express Logic presents a benchmark suite of Thread-
Metric [5] for real-time operating system performance
assessment. The kit assessed the operating system real-
time performance by recording execution times of an
operation during a certain period of time. LC Briand put
forward a real-time system stress testing method based on
genetic algorithm [6]. Lu Jun designed a set of real-time
performance testing program based on in-depth analysis
of RTLinux system[7]. Liu Yunsheng proposed two
methods taking absolute time and applied them to real-
time performance test of the operating system [8]. Lijuan
presented a real-time performance test method of the
airborne embedded real-time system [9]. Shen Baoguo
put forward a real-time performance testing program for
VxWorks[10]. Chu Wenkui proposed a performance test
method by cooperating with hardware and software for
the Linux operating system [11]. Zhao Liye put forward a
set of indicators to assess performance of real-time
systems and analyze the effect of various indicators on
real-time performance [12]. Against application
requirements for aerospace systems, Dong Jialiang put
forward a set of real-time performance evaluation system
[13]. Wu Xun analyzed factors affecting the real-time

Project supported by the National High Technology Research and
Development Program of China (No. 2012AA041402-4) and the
Education Department of Liaoning Province outstanding young
scholars growth plan(No. LJQ2013048);

Manuscript received March 6, 2014; revised May 7, 2014; accepted
June 5, 2014.

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2685

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.10.2685-2692

performance and select the interrupt response latency and
scheduling latency of period task as test indicators to
complete real-time operating system performance test
[14]. Jiang Jianhui put forward an improved embedded
operating system real-time performance measurement
method based workloads [15]. The introduction of
workload made the test results more accurate. Yang Heng
Proposed software programming and hardware-assisted
collaborative methods for testing real-time performance
of poloidal field power supply operation system[16].

RGMP-ROS is a self-developed real-time robot
operating system with better certainty, scalability and
configurability. It can be applied to a typical X86
processor, embedded processors and multicore processors.
To test the performance of RGMP-ROS operating system,
we make an in-depth study of the basic function of real-
time operating system kernel and analyze the factors
affecting the real-time performance of the operating
system. On the basis of studying the real-time
performance testing techniques described above, a real-
time operating system performance testing program based
on mixed load is proposed in this paper.

II. FACTORS THAT AFFECT REAL-TIME PERFORMANCE OF
THE OPERATING SYSTEM

A real-time operating system is generally consists of a
kernel, network system and file system, etc. And kernel is
the core component of the real-time operating system. It
provides time management, task management, interrupt
management, synchronization and communication
mechanisms, memory management and other functions.
The efficiency of these functions is key factor that
determining operating system real-time performance.

A. Time Management and Its Impact on Real-Time
Performance

Time management can provide support for real-time
response of the application system to ensure it is running
in real time and orderliness. In each operating system, a
timer is designed to generate periodic clock interrupt
signals and whenever a clock interrupt arrives, the
counter value is incremented by 1. The time interval
between two clock interrupts is the smallest timing unit of
the system clock, called the clock granularity. The
granularity size of the clock determines the time accuracy
of the operating system and the response speed to events.
It is one of the factors that affect the real-time
performance of the operating system.

B. Task Management and Its Impact on Real-Time
Performance

Task management is the core part of the kernel. It has
functionalities such as creating task, deleting task,
suspending task, restoring task, task scheduling and
setting task properties. Creating a task is to allocate and
initialize associated data structure. Deleting a task is to
release the task control block corresponding to the task.
Suspending a task is to make the task in a waiting state.
Restoring a task is to wake up a suspended task to make it
in a ready state. Task attribute setting is used to set task

preemption time, time slice and other attributes. Task
scheduling refers to the process of determining when
each task consumes system resources after giving a set of
real-time tasks and system resources. In several
functional modules of task management, task creation,
task deletion, task suspension and restoration, tasks
property setting and other functions are simply processed
and used in a relatively low frequency. They are not the
main factors affecting the operating system real-time
performance. In order to accurately manage system
resources to achieve requirements of real-time
performance and predictability, it is necessary for task
scheduling module to take task scheduling policy analysis
and schedulability analysis. Therefore, the process of
scheduling functions is more complex. It is necessary to
perform scheduling functions at scheduling points such as,
when an interrupt service routine is over, when a task is
in a waiting state due to waiting for resources, when a
task is in a ready state and when the task time slice is
used up. Therefore, using the frequency of scheduling
function is very high. So scheduling algorithm is one of
the core elements to determine real-time performance of
the operating system.

C. Interrupt Management and Its Impact on Real-Time
Performance

Interrupt management is an important part of real-time
operating system kernel, used for management and real-
time processing of all kinds of events. Interrupt is a
hardware mechanism for asynchronous event notification
for the CPU. Once the interrupt is recognized, the CPU
saves part or all of the context which is some or all of the
values of the registers and jumps to a special subroutine
called interrupt service routine (ISR). Interrupt service
routine processes the event and after processing is
complete, the program returns to the interrupted task or
the task which is with the highest priority and in a ready
state.

Interrupt latency is one of the key factors that
determine the operating system real-time performance.
The main reasons leading to interrupt latency include the
following three ones: (1) When system kernel is
executing certain critical region of code, interrupts must
be disabled to prevent certain common data structures
from being multiply accessed.(2) It is likely that the
system is handling interrupt with higher priority, which
leads to being unable to timely respond to the current
interruption.(3) It will spend a fair amount of time for a
series of work, from detecting a generated interrupt by
the system to the execution of the interrupt service
routine, reading interrupt vector from the interrupt
controller chip, saving the state of flag register, finding
the interrupt vector table and jumping to the interrupt
service routine. Because this part of work is often done
by hardware, it is also known as hardware response time.
To sum up, interrupt latency time consists of three parts
which are the maximum disabling interrupt time of the
kernel, interrupt nesting time and hardware response time.
Hardware response time is generally very short and
negligible. Interrupt nesting time is related to specific
application so nested layers and ISR execution time of

2686 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

each nested interrupts are uncertain and therefore there is
no way to measure interrupt nesting time. Thus, the
largest disabling interrupt time of kernel is one of core
elements affecting interrupt latency and thereby real-time
performance of the operating system.

D. Synchronization and Communication Mechanisms
and Their Impact on the Real-Time Performance

In multi-tasking real-time systems, data or information
transmitted is often required between tasks or between
tasks and interrupt service in order to achieve secure
access to shared resources, synchronous activities of
multiple collaborative tasks or simply exchange of
information and other functions. General real-time
kernels will provide a rich set of synchronization and
communication mechanisms, including semaphores,
events, mailboxes, message queues, pipes, global
variables, shared memory, RPC and etc. In most cases, a
shared resource can be used by only one task at one
moment and cannot be interrupted by other tasks during
occupation. Thus, the shared resource management is the
core problem of multi-tasking system. Semaphores are
most commonly used as a shared resource management
mechanism, so the semaphore management is a major
factor affecting the real-time performance of the
operating system on communication and synchronization
mechanism are concerned.

E. Memory Management and Its Impact on the Real-
Time Performance

Memory holds code and data that the CPU can directly
access and are an important part of real-time systems. In
order to ensure real-time and reliability of the operating
system, efficient and sophisticated memory management
ways are an important part of real-time operating system.
Real-time performance requirements determine that real-
time operating system must use quick and definite
memory management and cannot use virtual storage
technology. Therefore, memory management methods
used in the real-time operating system kernel are very
simple. And the memory management is one of the major
components of real-time operating system kernel, but not
the major factor affecting the operating system real-time
performance.

III. REAL-TIME PERFORMANCE TESTING PROGRAM OF
OPERATING SYSTEM BASED MIXED LOAD

A. Timing Method
The main method of real-time performance test is to

obtain the execution time of some system behavior.
Therefore, the primary task of performing real-time
operating system performance testing is to solve the
timing issue. Due to the various timing method itself will
spend part of the CPU time and in order to improve the
accuracy of the test results, calculating the cost of the
chosen timing method should be as low as possible based
on guaranteeing the effective timing accuracy.
Commonly used methods include hardware timing and
software timing.

Hardware timing method mainly uses two ways that
are the PCI bus analyzer and GPIO pin output timer. The
PCI bus analyzer is a PCI plate embedded into the
measured target system. It stubs before and after the test
code and writes data to the PCI bus address during
system execution. PCI bus analyzer stores data written to
the bus and makes the timestamp. After the test is
completed, the data is downloaded from the bus analyzer
to the development machine. By analysis of these data,
we can get the time spent on performing the measured
operation. The timing method of GPIO pin output is
similar to a timing method by the PCI bus analyzer. It is
also necessary to stub test code. An instruction is inserted
at the beginning and the end of the test code. The signal is
output to a GPIO pin. The test plates complete the timing
work by capturing these signals.

The software timing ways also include two ways that
are system calls and autonomous obtaining way. RTOS
typically offers system calls with higher precision. By
calling function gettimeofday () provided by RTLinux we
can achieve us-level timing. The clock_gettime ()
function can provide ns-level timing. Autonomous
obtaining way uses assemble instruction of rdtsc to read
the CPU time counter. It returns the elapsed CPU cycles
as of booting by EDX: EAX register. In the case of
determining CPU frequency, a more precise and absolute
time can be achieved by the return value.

Hardware Timing can obtain high timing accuracy in
the case of almost no consuming CPU time. However, it
requires additional hardware and the cost is higher.
Meanwhile, it can not be used in software testing for
closed-source code due to the need for source code stub.
Software timing method of autonomous obtaining has
strong versatility and the consumption of CPU time is
relatively small. However, development trend of the
current processors is multi-core, energy-saving and
intelligent. In this background, the accuracy of the rdtsc
instruction is greatly weakened for three reasons: (1) It
cannot be guaranteed that TSC of each core on the same
board is synchronized.(2) The clock frequency of the
CPU may change. For example, laptops reduces the clock
frequency in power-saving mode.(3) In order to reduce
performance missing caused by problems such as data-
dependency, to avoid certain types of delayed
consumption and to improve the execution efficiency of
the processor instruction, the out-of-order execution
scheme is used in the process. This scheme leads directly
to a result that the number of cycles measured using rdtsc
is inaccurate.

Based on the above analysis, we use a software timing
method based on system calls to complete timing work in
the real-time performance testing program of operating
system based on a mixed load.

B. Shielding Effects of Hardware Performance on Test
Results

Real-time performance of the operating system is often
evaluated by the length of time required to complete
certain services. However, the time spent on completion
of certain operations is subject to the hardware platform
performance on which the operating system is running, in

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2687

© 2014 ACADEMY PUBLISHER

addition to the efficiency of the operating system itself. In
order to shield the impact of hardware platform on the
test results, we prepare a calibration procedure in the
operating system real-time performance testing program
based on a mixed load. The average execution time of the
program is taken as a standard time unit (hereinafter
referred to as calibration reference T_Standar) to
standardize test results for each indicator. The hardware
which is close with the execution efficiency is the CPU
and memory. Thus, the calibration procedure should not
only reflect the CPU speed but also can roughly assess
reading and writing speed of memory. Meanwhile, the
execution time of the calibration program as a reference
and the execution time of calibrated objects should not
have too much difference. To simultaneously achieve
these objectives, the reference operation is repeatedly
executed 100 times in the calibration program and we
record the time to complete the reference operation, T1,
T2, ... T100. We take the average of T1-T100 as the
calibration reference T_Standar. The reference operations
perform multiplication by two 2×2 order double- type
matrixes. The processing flow of the calibration
procedure is shown in Figure 1.

Record Results

Res=Mean(Elapse[i]);

variable definition

tImespec tBegin,tEnd;
double[100] Elapse;
double[2][2] M_A,M_B,M_C;
double res;

reference operator

i=0-99
 clock-gettime(tBegin);
 M_C = M_A×M_B;
 clock-gettime(tEnd);
 Elapse[i] = tEnd-tBegin;

Variable initialization

i=0-15
 j=0-15
 M_A[i][j] = RoundD();
 M_B[i][j] = RoundD();
 M_C[i][j] = RoundD();

Figure 1. The processing flow of the calibration procedure

C. Test Indicators and Test Methods
According to the analysis in section II, the size of

clock granularity, the efficiency of the task scheduling
algorithm, speed of interrupt response, communication
and synchronization mechanisms and memory
management scheme and other factors, all of these are
factors influencing real-time performance of the
operating system, but these factors vary in the influence
on the real-time performance of the operating system.
RTOS uses relatively simple memory management in
order to achieve fast and clear memory management
objectives. At the point of memory management
technology, each RTOS is of no much difference, so
memory management is not taken as a test indicator in
the operating system real-time performance testing
program based mixed load. The smaller clock granularity
is the basis of the RTOS. The clock granularity of any
RTOS can meet real-time requirements. Although size of
clock granularity will have some impact on real-time
performance of the operating system, it is not the main
factor affecting operating system real-time performance.
Moreover, the impact on the operating system by clock
granularity can be reflected by testing task preemption
time and thus it is unnecessary to take it as an

independent test indicator. Communication and
synchronization mechanisms are one of the important
factors affecting the real-time performance of the
operating system. The semaphore is one of the most
commonly used means of communication and
synchronization and thus the semaphore shuffling time is
taken as one of test indicators. Task scheduling algorithm
and interrupt management capabilities are key factors
affecting operating system real-time performance.
Efficiency of scheduling algorithm is mainly reflected in
the task switching time and task preemption time.
Interrupt management capabilities can be evaluated
through the response time. Therefore, task switching time,
task preemption time and interrupt response time is taken
as the test indicators.

 Task switching time and its test methods

Task switching time refers to the period during which
the system switches from one task to another task with
the same priority. The task switching time reflects the
efficiency of task round robin schedule with the same
priority task. The task switching process includes three
steps that are context saving the current task, selecting
tasks to be performed and restoring the context of the
new task.

The test principle of task switching time is as follows:
create and run multiple threads with the same priority.
The execution of these threads is very simple, which just
record the current time and give up the right to use CPU
and thus its execution time is negligible. On the basis of
ignoring the time that the thread itself consumes, we can
get the approximate time of task switching by recording
running time points of various threads for some time. As
shown in Figure 2, t2-t1, t3-t2, etc. can be approximately
considered as task switching time.

Time
Task1

Task2

Task3

Task4

Task5

Service1

Service2

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t12t11 t13 t15t14 t16 t18t17 t19 t20
Figure 2. The test principle of task switching time

When using this method for testing, because the
operating system itself is also running some service
threads (service 1 and service 2 in Figure 3-3), it will
spend part of the CPU time, which will lead to such large
values as t6-t5, t11 -t10, t16-t15. At this point these large
values can be regarded as gross error values which are
removed by an improved Pauta criterion. The improved
Pauta criterion is as below: When the residual error of a
value σ3>v , the value is considered a gross error
which should be removed. Specific test methods are as
follows: Open a monitor thread with the highest priority
and 5 test threads with the next highest priority. Testing

2688 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

thread circularly performs the following actions: (1) Get
the current absolute time ti and save it into the switching
time array ListTime. (2)Give up occupation of the CPU.
Monitoring thread mainly completes the following
operations: (1) Sleep for a period of time (e.g. 30
seconds). The length of time period is set by the testers
based on their own test needs. (2) Kill all test threads.(3)
The absolute time recorded by each test thread in
ListTime is converted into approximate scheduled time
and stored in the ListRes array.(4) Using improved Pauta
criterion to exclude gross error data in ListRes.(5) The
maximum value in ListRes is fed back to the testers as the
test results. The test process is shown in Figure 3.

main
thread

Monitoring
thread

Testing
Thread 1

Testing
Thread n

Create
monitoring
thread

Sleep
（Test_Time）

Kill
testing
thresd

Create
testing
thread

Record current
time

Releases
control

Record current
time

Releases
control

Get approximate time
schedule

Excluding gross
error data

Display test
results

Figure 3. The test process of task switching time

 Task preemption time and its test methods

Task preemption time is a time interval from a high-
priority task ready to start running by depriving CPU
occupation right of low priority tasks, mainly including
the prohibition preemption time and task switching time,
as show in Figure 4. Prohibition preemption time refers
that high-priority task has not yet obtained the right to
occupy the CPU immediately due to some reason. The
reasons causing prohibition preemption is mainly in the
following two: (1) The next, preemption point has not yet
arrived. (2) The system is in a critical code lock phase.
Task preemption time was the main factor affecting the
high-priority real-time task response time. In Figure 3-4,
a high priority task B is in the ready state at time T1. At
this moment, the system is in a preemption disabled state
so an immediate task switch does not happen. The system
allows preemption beginning at time T2 and then
performs task switching so the task B starts executing by
depriving the CPU occupation right of task A.

Time

TaskB

TaskA

Task preemption
time

Priority

Prohibition preemption
time

task switching
time

T1 T2 T3
Figure 4. Task preemption time

In the task preemption time test, it is necessary to
create and launch four different threads which are
background thread, control thread, testing thread and
monitoring thread. Background threads consist of five
work threads with different priority and their priorities
are lower than the highest priority. They circularly
perform some operations which may trigger prohibition
preemption to simulate the system load until they are
terminated by monitoring thread. Control thread has
medium priority and circularly performs the following
operations: Apply for and wake up semaphore SWakeUp.
If successful, it will record the current absolute time and
save it into the array ListTime and wake up testing thread.
If the semaphore is not applied for successfully, sleep for
100 milliseconds. The state of the testing thread is
circularly detected. When the testing thread is detected in
a suspended state, it will be woken up. Testing thread
with the highest priority, performs three operations :(1)
Save the current absolute time in the array ListTime. (2)
Release and wake up semaphore SwakeUp. (3) Hang
themselves. Monitor thread has the second highest
priority and mainly completes the following
operations :(1) Sleep for a period of time (e.g. 30
seconds). The length of time period is set by the testers
based on their own test needs. (2) Force quitting other
threads. (3) The absolute time recorded by each test
thread in ListTime is converted into preemption time and
stored in the array ListRes. The conversion method is
ListRes[i] = ListTime [2*i+1] - ListTime [2*i]. (4) The
maximum value in ListRes is fed back to the testers as the
test results. The testing process of preemption time is
shown in Figure 5.

Main
thread

Monitoring
thread

Background
thread1

Background
thread n

Create
monitoring
thread

Sleep
（Test_Time）

Kell other
thread

Create
testing
thread

Load
operation

Get and
display result

Load
operation

Create
controlling

thread

Testing
thread

Controlling
thread

Create
background
thread

Record
current time

Release
semaphore S

suspend

Apply for
semaphore S

Record
current time

Wake-up test
thread

Figure 5. The test process of task preemption time

 Interrupt response time and its test methods

Interrupt response time refers to the time period from
interrupt occurrence to the beginning of the execution of
the first instruction of the users interrupt service routine,
including two parts that are terminal latency and
execution time of kernel interrupt service routine. The
maximum disabling interruption time of kernel is the
main factor affecting the interrupt response time. In order
to give full consideration to the effect of the maximum
disabling interruption time of the kernel on the test results

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2689

© 2014 ACADEMY PUBLISHER

in testing, we create and start three types of threads in
testing methods of interrupt response time: background
thread, testing thread and monitoring thread. Background
thread has a medium priority. They circularly carry out
all types of system calls which may trigger disabling
interrupts. Testing thread circularly does the following
operations: (1) Apply for semaphore S. (2) If the
application is successful, it will obtain the current
absolute time and include it in the array ListTime. (3) The
interrupt is simulated by calling the soft interrupt
instruction. User interrupt service routine mainly do the
following: Get the current absolute time and include it in
the array ListTime. Release semaphore S. Monitoring
thread has the second highest priority and mainly
completes the following operations: (1) Sleep for a period
of time (e.g. 30 seconds). The length of time period is set
by the tester based on their own test needs. (2) Force
quitting other threads. (3) The absolute time recorded by
each test thread in ListTime is converted into interrupt
response time and stored in the array ListRes. The
conversion method is ListRes[i] = ListTime[2*i+1]-
ListTime[2*i]. (4) The maximum value in ListRes is fed
back to the testers as the test results. The testing process
of interrupt response time is shown in Figure 6.

Main
thread

Monitoring
thread

Background
thread 1

Background
thread n

Create
monitoring
thread

Sleep
（Test_Time）

Kill other
threads

Create
background
thread

 system calls which
may trigger

disabling interrupt

Get and display
result

 system calls
which may trigger

disabling
interrupt

Create
testing
thread

Testing
thread

User interrupt
service routine

Record
current time

Release
semaphore S

TRAP（）

Apply for
semaphore S

Record
current time

Figure 6. The test process of interrupt response time

 Semaphore shuffling time and test methods

Semaphore shuffling time refers to the time period
from releasing signal by one task to another task waiting
for the semaphore be activated with it, as shown in Figure
7.

时间

TaskB

TaskA

Occupy by TaskA
semaphore

Occupy by TaskB

Apply
forsemaphore

Release the
semaphore

Semaphore
shuffling time

Figure 7. Semaphore shuffling time

Semaphore shuffling time and time overhead
associated with mutex is an important indicator of RTOS
real-time performance. In semaphore shuffling time
measurement, we use three threads which are thread A, B
and monitoring thread. The thread A which has the
second highest priority, circularly carries out the
following operations: (1) Get the current absolute time
and include it in the array ListTime. (2) Release the
semaphore S. (3) Apply for the semaphore P. Thread B
has the highest priority, circularly carrying out the
following operations: (1) Apply for semaphore S. (2) Get
the current absolute time and include it in the array
ListTime. (3) Release the semaphore P. Monitoring
thread has the second highest priority and mainly
completes the following operations: (1) Sleep for a period
of time (e.g. 30 seconds). The length of the time period is
set by the tester based on their own test needs.(2) Force
quitting other threads.(3) The absolute time recorded by
each test thread in ListTime is converted into semaphore
shuffling time and then stored in the array ListRes. The
conversion method is ListRes[i]=ListTime[2*i+1]-
ListTime[2*i]. (4) The maximum value in ListRes is fed
back to the testers as the test results. The testing process
is shown in Figure 8.

Main
thread

Monitoring
thread

Create
monitoring
thread

Sleep
（Test_Time）

Kill other
threads

Get and display
results

Create
testing
thread A

Testing
thread A

Testing
thread B

Record
current time

Release
semaphore P

Apply for
semaphore S

Record
current time

Create
testing
thread B

Release
semaphore S

Apply for
semaphore P

Figure 8. The test process of semaphore shuffling time

D Scoring Standard
In the real-time operating system performance testing

program based on mixed loads, each test index score is
the ratio of the key code running time and run-time of
calibration procedures fed back by the test cases
corresponding to the index. The greater the value of the
index indicates that consuming time of the index is more.
Therefore, for the same test indicator, the lower the score
the better the real-time performance of the operating
system is. In testing, we first run the calibration
procedure and record the average execution time of the
program, RT_S, as a calibration reference T_Standar. We
run test cases of each index described in section 3.3.1-
3.3.4 and record the times indicating the efficiency
executing key code by the index, which are task

2690 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

switching time T_TaskSW, task preemption time
T_TaskPM, interrupt response time T_InterruptRP and
semaphore shuffling time T_SemaphoreSF. We obtained
test scores of indicators which are task switching score
(T_TaskSW/RT_S), task preemption score (T_
TaskPM/RT_S), interrupt response score
(T_InterruptRP/RT_S) and semaphore shuffling score
(T_ SemaphoreSF/RT_S).

IV. TEST RESULTS

Real-time performance of the operating system is
determined by both the responsiveness and determinist.
Response performance refers to the response speed of the
system to external events are identified. Deterministic
refers to whether under what circumstances, the response
of the system is predictable. Namely performance
indicators are independent of the system load, the
influence of system factors such as the current state.

A. Response Performance Test Results
In order to investigate response performance of

RGMP-ROS operating system, we use real-time
performance testing program based on a mixed load to
conduct real-time performance testing on RGMP-ROS
and commonly used open-source real-time operating
system RTLinux.

The main hardware test environment is configured as
follows: Intel® Core™ i5-2540 processor; 4GB DDR3
memory.

The test results are shown in Table 1.
TABLE I.

THE TEST RESULTS
 RTLinux RGMP-ROS
Task switching score 3.21774 1.73517
Task preemption score 5.68273 3.40269
Interrupt response score 6.33027 2.97413
Semaphore shuffling score 8.20751 6.49854

As can be seen from Table 4-1, RGMP-ROS real-time
performance is better than that of RTLinux in task
switching, task preemption, interrupt response,
semaphores shuffling, etc.

B. Determinist Performance Test Results
To test the determinist performance of RGMP-ROS,

Investigated the influence of the number of tasks on the
task switching time, task preemption time, interrupt
response time and semaphore shuffling time. The test
results are shown in Figure 9

Figure 9. The test result of determinist performance

As can be seen from figure 4-1, although the test
scores increase with the increase of the number of tasks,
but the increasing amplitude is smaller; That is to say,
response performance has very little to do with the
number of tasks. Therefore, RGMP - ROS has better
certainty.

ACKNOWLEDGMENT

Thanks National High-Tech Research and
Development Program of China (863 Program) for its
funding of sub-project “Testing of the operating system
kernel module and software library” (No.
2012AA041402-4). We are grateful to other members of
the project team for their valuable help and suggestions.

REFERENCES
[1] Comp. realtime: Frequently Asked Questions (FAQs).

(Version 3.5) <http://www.faqs.org/faqs/ realtime-
computing/faq/>

[2] http://www.evansdata.com/n2/surveys/embedded/2003_1/e
mbedded_xmp1.shtml

[3] R. P. Kar, K. Porter. Rhealstone--A Real Time
Benchmarking Proposal [J]. Dr. Dobb's Journal, 1989,14
(2): 14-24

[4] Nelson Weiderman. Hartstone: synthetic benchmark
requirements for hard real-time applications. ACM
SIGAda Ada Letters 1990,10 (3): 126-136

[5] www.expresslogic.com]
[6] L. C. Briand, Y. Labiche, M. Shousha. Performance Stress

Testing of Real-Time Systems Using Genetic Algorithms.
GECCO '05, New York, NY, USA 2005: 1021-1028

[7] LU Jun, SHEN Jian, ZHANG Tao Real-time Operation
System RTLinux and Technique of Performance
Measurements. Journal of Military Communications
Technology Vol.28 2007：8-11

[8] Liu Yunsheng, Xu Chao. RTOS Real-time Performance
Test. COMPUTER ENGINEERING AND
APPLICATIONS 40 (11), 2004:93-95

[9] LI Juan, YE Hong, LI Yun-xi. Time Performance
Measurement of Airborne Embedded Real-time Operating
System Supporting Partition. Aeronautical Computing
Technique, 36 (6) 2006:80-82

[10] SHEN Guo-bao, LIU Song-qiang. Performance evaluation
of real time systems. Nuclear Electronics &Detection
Technology, 22 (5), 2002:416-419

[11] CHU Wen kui, ZHANG Feng ming, FAN Xiao guang.
Measurement of real-time performance of embedded Linux
systems. Systems Engineering and Electronics 29 (8),
2007:1385-1401

[12] ZHAO Li-ye, ZHANG Ji, YOU Xia. Analysis and
Evaluation of Real-time Operating System Performance.
Computer Engineering, 34 (8), 2008:283-285

[13] DONG Jia-liang, LI Yan-feng, YANG Qiu-song. Real-
time performance evaluation of embedded operating
system in aerospace. Computer Engineering and Design,
34 (1), 2013:114-120

[14] WU Xun, MA Yuan, DONG Qin-peng. Research on Real-
time Operating System Performance Measurement. Journal
of System Simulation. 25(2),2013:313-316]

[15] JIANG Jianhui, TANG Zhijie, A Novel Method to
Measure Real-Time Performance Parameters of Embedded
Operating Systems. OURNAL OF TONGJI UNIVERSITY
(NATURAL SCIENCE), 36 (9), 2008:1260-1266

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2691

© 2014 ACADEMY PUBLISHER

[16] Yang Heng, Qin Pinjian, Huang Liansheng. Real- time
Performance Test of Poloidal Field Power Supply
Operation System. Computer Measurement &
Control,18(12),2010:2730-2732

2692 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

