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Abstract—We present an effective depth perception 
assessment index for stereoscopic images using a phase-shift 
model. To be more specific, we use Gabor filter to compute 
the responses of left and right images respectively, and 
proposed a phase-shift model for computing disparity maps 
based on phase gradient and phase difference information. 
Then, quality score for depth perception is obtained by 
measuring the similarity between the estimated disparities 
of the original and distorted stereoscopic images. 
Experimental results on two publicly 3D image quality 
assessment databases demonstrate that, in comparison with 
the most related existing methods, the devised algorithm 
achieves high consistency alignment with subjective 
assessment. 
 
Index Terms—Depth perception, phase-shift, quality 
assessment, binocular energy. 
 

I.  INTRODUCTION 

In recent years, there has been great progress in 
developing objective image quality assessment (IQA) 
metrics [1]. However, the development of three-
dimensional (3D) image/video quality index is still in its 
early stage. Assessing the 3D image quality is a 
challenging issue because it is affected by image quality, 
depth perception and visual comfort [2,3]. It is 
particularly challenging how to evaluate the perceived 
quality of depth perception and visual comfort when the 
stereoscopic image consists of two views with different 
quality.  

For measuring the perceived quality of stereoscopic 
images, several metrics have been proposed. Hwang et al. 
[4] devised a visual attention and depth assisted stereo 
image quality assessment by fusing the impact of stereo 
attention predictor, depth variation and stereo distortion 
predictor. Bensalma et al. [5] devised a Binocular Energy 
Quality Metric (BEQM) by modeling the complex cells 
responsible for the construction of the binocular energy, 
and evaluated the similarity between the binocular energy 
maps of the original and the distorted stereo-pairs. Chen 
et al. [6] constructed a “Cyclopean” view from the stereo-
pair, and evaluated the ‘Cyclopean’ view by 2D quality 
metrics. De Silva et al. [7] proposed a quality metric for 
compressed stereoscopic video by extracting features that 
quantify the compression artifacts. Other relevant works 
can be found in [8-9]. 

Some studies have been conducted on visual comfort 
evaluation for stereoscopic images [10]. Wopking found 
that disparity magnitude is the main factor for visual 

fatigue by subjective experiments [11], and oversized 
horizontal parallax may exceed the Panum’s binocular 
fusion limit and then cause blurred vision and diplopia 
phenomenon. Seuntiens et al. found that the crosstalk 
between left and right images may also induce visual 
discomfort [12]. Speranza et al. found that motion is 
another factor of visual comfort for 3D videos [13]. 
Lambooij et al. proposed a visual comfort prediction 
model by using average disparity magnitude and global 
disparity as features [14]. Nojiri et al. designed an 
effective objective method by considering parallax 
distribution and depth motion for 3D videos [15]. 
Perceptual visual attention models are taken into account 
in the visual comfort prediction methods [16,17]. 

Several works in the literatures have been proposed in 
evaluating depth perception. Lebreton et al. characterized 
3D materials on different depth perception scales [18]. 
Faria et al. proposed a stereoscopic depth perception 
approach inspired by the primary visual cortex using the 
stimulus response of the receptive field [19]. Currently, 
some metrics evaluated the two views of the stereoscopic 
images, disparity/depth images separately by 2D-IQA 
metrics, and then combined them into an overall score. 
Boev et al. [20] combined monoscopic and stereoscopic 
quality components from the ‘Cyclopean’ image and 
disparity map respectively for stereo-video evaluation. 
Benoit et al. [21] computed quality scores of both stereo-
pair and the disparity map by 2D quality metrics, and 
then combined them to produce a final score. You et al. 
[22] investigated ten common 2D quality evaluators on a 
stereo-pair and on its disparity map, and found the 
optimal combination means which can yield the best 
performance. 

In this paper, we proposed a depth perception 
assessment index for stereoscopic images using a phase-
shift model. The main contributions of the paper are as 
follows: 1) we focus on phase-shift receptive field 
mechanism for depth perception computation; 2) we 
calculate the phase difference similarity between the 
estimated disparity shifts as the final quality index; 3) we 
demonstrate that depth perception is not the main visual 
cue in evaluating 3D visual quality under poor quality 
stereoscopic images. The rest of the paper is organized as 
follows. Section II presents the proposed depth 
perception assessment index. The experimental results are 
given and discussed in Section III, and finally 
conclusions are drawn in Section IV. 
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II.  PROPOSED DEPTH PERCEPTION ASSESSMENT INDEX 

We give a short overview on energy neurons modeling 
disparity-tuned cells in the visual cortex [23]. The output 
of a simple receptive field is formulated mathematically 
as a convolution of image I with the receptive field 
function fv,   

( , , ) ( , , ) ( , )v vC x y f x y I d dϕ ξ η ϕ ξ η ξ η
+∞ +∞

−∞ −∞
= − −∫ ∫   (1) 

Binocular complex cells combine the output of the 
receptive fields of left and right images as [24] 

( ) ( )
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where Re[] and Im[] are real and imaginary parts of the 
response.  

Currently, two different models have been proposed 
for complex cells tuned by disparity [25]  

1) Phase-shift: corresponding left and right receptive 
fields have different phases, e.g., 

2

( , , ) ( , , 2 ) ( , , 2 )
2 2Dv lv rv
D DE x y C x y v C x y vϕ ϕ π ϕ π= + + −   (3) 

2) Position-shift: corresponding left and right receptive 
fields are centered at shifted positions, e.g., 

2

( , , ) ( , , ) ( , , )
2 2Dv lv rv
D DE x y C x y C x yϕ ϕ ϕ= + + −       (4) 

In the phase-shift model, the preferred disparity can be 
estimated by / 2lrD vφ π= Δ , where lr l rφ φ φΔ = − being 
the phase difference between the left and right images, 
and ν is the central frequency of the cell. Also, the 
preferred disparity can be given by ˆD d= , where d̂ is the 
position shift that maximizes the EDv.  

However, the above binocular energy model is not 
directly suitable for the distorted stereoscopic images, 
because depth perception (with stimuli from the position 
shift) may not be able to correctly characterized in the 
case. The analysis results in our previous work [8] have 
revealed that phase shift between two views provides the 
main cue for binocular disparity; then, if the disparity of 
the input is not matched to the preferred disparity, the 

phase shift will tend not to be zero, and the binocular 
energy response will change. In order to measure depth 
perception, the existing technologies [20-22] directly 
evaluate the quality of the estimated disparity maps. 
However, position-shift mechanism is not suited for 
disparity computation for the distorted stereoscopic 
images.  

In a mathematical model of depth perception, the 
neurons can be treated by 2D filter tuned to different 
scales and orientations. In this work, we use Gabor filter 
to compute the responses of left and right images, 
respectively. Firstly, we define the phase gradient 
extended from 2D case as  
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where the phase derivatives are taken over the mean 
phase of the complex filter responses in the left and right 
images 
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being the phases of left and right images, respectively. 
Also, the phase difference between the left and right 

images is calculated as 
( , ; , ) ( , ; , ) ( , ; , )org org org

LR m L m R mx y x y x yϕ ω θ ϕ ω θ ϕ ω θΔ = −  (7) 
Taking into account the above equations, the estimated 

disparity vector is computed as the following Eq.(8). 
Since the estimated disparity vectors ( , ; )org mx y ωd and 

( , ; )dis mx y ωd are detected as phase shifts in the spectrum, 
we measure the similarity between the disparity vectors. 
Specifically, we define the phase difference between 
them as in Eq.(9). 

Here, represents the inner product of their gradient 
values in x and y direction, and T1 is a positive constant 
to increase the stability of the phase difference. In this 
paper, T1=0.85. 
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Finally, quality score of the depth perception is 
decided via averaging individual quality scores of pixels 

( , )
( , )DP

x y
Q x y

Q
N

∈Ω=
∑

                                                (10) 

where N is the number of pixels of the image.  
The phase difference between the estimated disparity 

vectors reflects the range of distortion degrees in an 
image. The higher estimated value, the larger distortion 
rang, and thus the lower depth perception quality. Here 
we present one example to illustrate this point above. The 
first row of Fig.1 shows: (a) JPEG compressed version, (b) 
JPEG2000 compressed version, (c) Gaussian blurred 
version, and (d) White Noise distorted version of left 
image of ‘Balloons’ test sequences from NBU IQA 
database. The second row of Fig.1 shows the estimated 
disparity maps from the stereoscopic images in the first 
row (used the stereo matching algorithm in [26]). The 
third row of Fig.1 shows the phase difference maps from 
the stereoscopic images in the first row by the proposed 
method. The difference mean opinion scores (DMOS) 

values for the Gaussian blurred, JPEG compressed, 
JPEG2000 compressed and White Noise distorted 
stereoscopic images are 30.6087, 31.4783, 29.4348 and 
30.1304, respectively, that is, the subjective measures for 
these distorted stereoscopic images are similar. It is 
clearly demonstrated that the evaluated quality of the 
estimated disparity by stereo matching have weak 
correlations with the subjective perceived quality, while 
the proposed quality scores are more consistent with the 
DMOS values. 

III.  EXPERIMENTAL RESULTS AND ANALYSES 

A.  Databases And Performance Measures 
In the experiment, two publicly available 3D IQA 

databases: NBU 3D IQA Database [8], and LIVE 3D 
IQA Phase I Database [6], are used to verify the 
performance of the proposed metric for stereoscopic 
images. The NBU 3D IQA Database consists of 312 
distorted stereoscopic pairs generated from 12 reference 
stereoscopic images. Five types of distortions, JPEG, 

( )
( ) ( ) ( )

1

1

1

2 2 2

( , ; ), ( , ; )
( , ) arccos

( , ; ) ( , ; )

( , ; ) ( , ; ) ( , ; ) ( , ; )
arccos

( , ; ) ( , ; ) ( , ; )

org m dis m
DP

org m dis m

org dis org dis
x m x m y m y m

org org dis d
x m y m x m y

x y x y T
Q x y

x y x y T

d x y d x y d x y d x y T

d x y d x y d x y d

ω ω
ω ω

ω ω ω ω

ω ω ω

⎛ ⎞+
⎜ ⎟=
⎜ ⎟⋅ +⎝ ⎠

Δ ⋅ Δ + Δ ⋅ Δ +
=

Δ + Δ ⋅ Δ + Δ

d d

d d

( )2

1( , ; )is
mx y Tω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+⎝ ⎠

                     (9)

 

 

    
(a)                                                   (b)                                                        (c)                                                       (d) 

    
(e)                                                      (f)                                                        (g)                                                       (h) 

    
(i)                                                     (j)                                                       (k)                                                         (l) 

Figure 1. Examples of quality degraded left images of ‘Balloons’ test sequences from NBU 3D IQA database: (a) JPEG compressed version; (b) 
JPEG2000 compressed version; (c) Gaussian blurred version; (d) White Noise distorted version; (e) The estimated disparity map of (a); (f) The 

estimated disparity map of (b); (g) The estimated disparity map of (c); (h) The estimated disparity map of (d); (i) The calculated phase difference 
map of (a); (j) The calculated phase difference map of (b); (k) The calculated phase difference map of (c); (l) The calculated phase difference map 

of (d). 
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JP2K, Gblur, WN and H.264, are symmetrically applied 
to the left and right reference stereoscopic images at 
various levels. The LIVE 3D IQA Phase I Database 
consists of 365 distorted stereoscopic pairs generated 
from 20 reference stereoscopic images. Five types of 
distortions, JPEG, JP2K, Gblur, WN and FF, are 
symmetrically applied to the left and right reference 
stereoscopic images at various levels for the LIVE 3D 
IQA Phase I Database. 

In the paper, four commonly-used performance 
indicators are used to benchmark the proposed metric 
against the relevant state-of-the-art techniques: Pearson 
linear correlation coefficient (PLCC), Spearman rank 
order correlation coefficient (SRCC), Kendall rank-order 
correlation coefficient (KRCC), and root mean squared 
error (RMSE), between the objective and subjective 
scores. For a perfect match between the objective and 
subjective scores, PLCC=SRCC=KRCC=1, and 
RMSE=0. For the nonlinear regression, we use the 
following five-parameter logistic function [27]:  

1 4 5
2 3

1 1
2 1 exp( ( ))pDMOS x

x
β β β

β β
⎛ ⎞

= ⋅ − + ⋅ +⎜ ⎟+ ⋅ −⎝ ⎠
 (11) 

where β1, β2, β3, β4 and β5 are determined by using the 
subjective scores and the objective scores. 

B.  Overall Assessment Performance  
For evaluating the proposed algorithm, the relevant 

existing 2D-IQA schemes, e.g., PSNR, SSIM [28], MS-
SSIM [29], UQI [30], VIF [31], VSNR [32] and FSIM 
[33], have been compared. In order to characterize depth 
perception, the 2D-IQA schemes directly predict the 
quality of the estimated disparity maps (stereo matching 
algorithm [26] is used in this paper). The PLCC, SRCC, 
KRCC and RMSE of the eight schemes on the two 
databases are given in Table.1, where the three best 
metrics have been highlighted in boldface. It is clearly 
shown that directly evaluating disparity quality does not 
improve the performance, because the quality of the 
estimated disparity highly dependent on the stereo 
matching algorithm, and the 2D quality metric for 
disparity maps does not align with the human perception 
of disparity. Fig.2 and Fig.3 show the scatter plots of 
predicted quality scores against subjective quality scores 
(in terms of DMOS) for the eight schemes on the two 
databases, respectively. From the figures we find that, in 
the case of low quality stereoscopic images (e.g., DMOS 
is larger than 40), the predicted depth perception quality 
is limited within a certain range (the predicted DMOS is 
lower than 40) by the proposed scheme. The phenomenon 
is acceptable because depth perception is not the main 
visual cue in 3D perception for the low quality case; that 
is, image quality and visual comfort will dominate the 3D 

TABLE 1.  
PERFORMANCE OF THE PROPOSED METHOD AND THE OTHER SCHEMES ON THE TWO DATABASES. 

IQA 
model 

NBU (312 images) LIVE I (365 images) average 

PLCC SRCC KRCC RMSE PLCC SRCC KRCC RMSE PLCC SRCC KRCC RMSE 

PSNR 0.3935 0.3926 0.2810 15.7935 0.2574 0.2488 0.1680 15.8448 0.3255 0.3207 0.2245 15.8192 

SSIM 0.4354 0.4510 0.3201 15.4659 0.2921 0.2786 0.1895 15.6825 0.3638 0.3648 0.2548 15.5742 

MS-SSIM 0.5210 0.5482 0.4010 14.6641 0.2950 0.2948 0.2005 15.6678 0.4080 0.4215 0.3008 15.1660 

UQI 0.4889 0.4847 0.3412 14.9859 0.3293 0.2741 0.1888 15.4827 0.4091 0.3794 0.2650 15.2343 

VIF 0.5681 0.4859 0.3374 14.1381 0.3423 0.3094 0.2106 15.4071 0.4552 0.3977 0.2740 14.7726 
VSNR 0.4746 0.4776 0.3386 15.1215 0.3183 0.2696 0.1863 15.5452 0.3965 0.3736 0.2625 15.3334 
FSIM 0.4043 0.4148 0.2949 15.7125 0.2090 0.1711 0.1108 16.0354 0.3067 0.2930 0.2029 15.8740 

Proposed 0.7559 0.7969 0.5824 10.6624 0.8373 0.8396 0.6327 8.9654 0.7966 0.8183 0.6076 9.8139 

 

 
(a) PSNR                                      (b) SSIM                                        (c) MS-SSIM                                       (d) UQI 

 
(e) VIF                                          (f) VSNR                                          (g) FSIM                                        (h) Proposed 

Figure 2. Scatter plots of predicted quality scores against the subjective scores (DMOS) of the eight methods on the NBU 3D IQA databases. 
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perception quality in assessment (in agreement with the 
subjective observations in [34]).  

C.  Performance On Individual Distortion Types 
To more comprehensively evaluate the prediction 

performance of the proposed method, we compare the 
eight schemes on each type of distortion. The PLCC and 
SRCC results are listed in Tables.2-3, where the best 

metrics have been highlighted in boldface. One can see 
that the proposed scheme obtains the best performance on 
the most of the distortion types. Even though some 2D 
metrics may perform well on some specific types of 
distortions, e.g., MS-SSIM is an effective measure for 
noisy images, but it is not able to faithfully measure the 
quality of images impaired by other types of distortions. 

 
(a) PSNR                                      (b) SSIM                                        (c) MS-SSIM                                       (d) UQI 

 
(e) VIF                                          (f) VSNR                                          (g) FSIM                                        (h) Proposed 

Figure 3. Scatter plots of predicted quality scores against the subjective scores (DMOS) of the eight methods on the LIVE 3D IQA databases. 
 

TABLE 2  
PERFORMANCE COMPARISON OF THE EIGHT SCHEMES ON EACH INDIVIDUAL DISTORTION TYPE IN TERMS OF PLCC. 

 Criteria PSNR SSIM MS-SSIM UQI VIF VSNR FSIM Proposed 

N
B

U
 

JPEG 0.5174 0.6688  0.8289  0.6388  0.5257  0.6800  0.5824  0.8746 

JP2K 0.5338  0.6055  0.7461  0.7233  0.6200  0.6526  0.5534  0.8213 

Gblur 0.1712 0.2616  0.2754  0.3983  0.6422  0.4281  0.1462  0.9384 

WN 0.7942  0.8809  0.8916  0.6249  0.4564  0.7373  0.8550  0.9343 

H246 0.2806  0.4238  0.6139  0.5163  0.5313  0.4427  0.3143  0.8374 

LIV
E I 

JPEG 0.7091 0.0226 0.3636 0.5496 0.4023 0.4550 0.1220 0.8994 

JP2K 0.6815 0.6887 0.8492 0.8647 0.8675 0.8004 0.5493 0.9257 

Gblur 0.7091 0.7472 0.8301 0.8636 0.9206 0.8318 0.7473 0.9278 

WN 0.7656 0.8888 0.9027  0.7571 0.7685 0.7475 0.8407 0.6269 

FF 0.4226 0.5419 0.5837 0.6396 0.6451 0.6769 0.2082 0.7074 

 
TABLE 3  

PERFORMANCE COMPARISON OF THE EIGHT SCHEMES ON EACH INDIVIDUAL DISTORTION TYPE IN TERMS OF SRCC. 
 Criteria PSNR SSIM MS-SSIM UQI VIF VSNR FSIM Proposed 

N
B

U
 

JPEG 0.4977 0.6520 0.8021 0.6376 0.4798 0.6900 0.5425 0.8875 

JP2K 0.4097 0.5350 0.7208 0.6086 0.5240 0.5610 0.4639 0.8976 

Gblur 0.0951 0.1413 0.2282 0.3295 0.6048 0.2003 0.0812 0.9403 

WN 0.7761 0.8504 0.8760 0.6298 0.4326 0.7123 0.8056 0.8876 

H246 0.2718 0.4195 0.5997 0.4765 0.4469 0.4117 0.3512 0.8829 

LIV
E I 

JPEG 0.1082 0.0288 0.3259 0.5155 0.3672 0.3014 0.0724 0.8780 

JP2K 0.6658 0.6667 0.8222 0.8285 0.8273 0.7720 0.5075 0.8892 

Gblur 0.6177 0.5794 0.7775 0.8076 0.8810 0.7677 0.4705 0.9289 

WN 0.7632 0.8852 0.8979 0.6784 0.7348 0.7432 0.8425 0.5253 

FF 0.3779 0.5327 0.5102 0.5815 0.5164 0.5668 0.0471 0.5196
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This validates that depth quality does not directly equal to 
the quality of estimated disparity maps.  

V.  CONCLUSIONS 

In this paper, we devised a satisfactory computational 
model to provide an effective depth perception 
assessment index for stereoscopic images. More 
specifically, we use Gabor filter at different scales and 
orientations to compute the responses of left and right 
images. Then, we proposed a phase-shift model for 
computing disparity maps that is based on phase gradient 
and phase difference information. Finally, we calculate 
the similarity between the estimated disparity maps of the 
original and distorted stereoscopic images as the final 
quality index. Compared with state-of-the-art 2D image 
quality assessment (2D-IQA), the proposed metric 
performs better in terms of both accuracy and efficiency 
on two publicly available 3D IQA databases. In the future 
work, we will further explore how to combine image 
quality, depth perception and visual comfort in modeling 
3D visual perception. 
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