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Abstract—Ongoing improvements in Computational 
Biology (CB) research have generated massive amounts of 
Protein-Protein Interactions (PPIs) data set. In this regards, 
the availability of PPI data for several organisms provoke 
the discovery of computational methods for measurements, 
analysis, modeling, comparisons, clustering and alignments 
of biological data networks. Nevertheless, fixed network 
comparison is computationally stubborn and as a result 
several methods have been used instead.  It is very crucial to 
utilize the memory of computing devices for Protein- 
Protein Interactions (PPIs) data set. We have compared the 
memory uses using Pushdown Automata and de Bruijn 
graph based Bloom Filter for global proteins network 
alignment.  De Bruijn graph is regularly used in Next 
Generation Sequencing (NGS) for large scale data set. De 
novo genome assembler utilizes the memory. Bloom filter 
and Pushdown Automat perform better to reduce memory. 
We have noticed that Pushdown Automata outperform 
Bloom filter in memory saving but it takes more time than 
Bloom filter. The result shows that Bloom filter software 
Mania implements full de novo assembly of human genome 
data set using  6.5 GB memory in 27 hours, on the other 
hand Pushdown Automat performs same results in 1 GB 
memory of 31 hours. 

 
Index Terms—De Bruijn Graph, Bloom Filter, Pushdown 
Automata, Next Generation Sequencing. 

 

I.  INTRODUCTION 

System Biology incorporates the total environment to 
analyze the data set of plants, animals, human, molecules 
and insects DNA, RNA and Proteins. We know that 
majority parts of the biological systems are organized by 
a network of molecular interactions. Some popular 
networks are Protein- Protein Interactions (PPIs) network, 
Genome-Genome Sequencing (GGS), DNA-RNA 
interactions, genetic regulatory network and metabolic 
networks. Various sophisticated system can be 

represented by using network representation. Some 
gigantic systems are as biological networks, 
transportation networks, big data set networks and social 
media network. For biological data set measurement the 
most phenomenal network is Protein-Protein Interaction 
network. Proteins perform their activity in combined 
groups among various cells. A protein corresponds to a 
node of a graph and the relation between proteins refers 
as edges of the graph. The PPIs networks are modeled as 
graph structures [1, 2]. 

The de Bruijn graph is a mathematical tool which 
plays an increasingly important role in next-generation 
sequencing applications for DNA or RNA sequences. 
This graph was first introduced to perform de novo 
assembly of DNA sequences [3]. Now-a-days this 
methods massively implemented in de novo mRNA [4] 
and metagenome [5] assembly, genomic variants 
detection [6,7] and de novo alternative splicing calling [8]. 
But, an important real issue of this structure is its large 
memory utilization for large organisms. For example, the 
regular encoding of the de Bruijn graph for the human 
genome (n ≈ 2.7 ・ 108, k-mer size k = 27) requires 17 
GB (n ・ k/4 bytes) of storage area to store the nodes 
sequences alone. Graphs for much higher genomes and 
metagenome cannot be organized on a typical lab cluster, 
due to the prohibitive memory usage.  

Current findings on de Bruijn graphs have been 
targeted on organizing more lightweight data 
representations. Li et al. remarkable research of 
minimum-information de Bruijn graphs, by not indicating 
of read locations and paired-end information [9]. 
Simpson et al. experiments a distributed de Bruijn graph 
to decrease the memory usage per node [10]. Conway and 
Bromage used sparse bit array format to store an implicit, 
immutable graph organization [11]. Targeted process 
compute local assemblies around sequences of interest, 
using simple memory, with greedy methods [12] or 
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portions of the de Bruijn graph [13]. Ye et al. recently 
showed that a graph roughly equivalent to the de Bruijn 
graph can be obtained by storing only one out of g nodes 
(12 ≤ g ≤ 27) [14]. 

Conway and Bromage checked that the own 
information of the edges is a lower bound for exactly 
encoding the de Bruijn graph [11]: 

bits
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E
⎟
⎠
⎞

⎜
⎝
⎛ +14

2log  

k + 1= length of the sequence that uniquely defines an 
edge.  
|E|= is the number of edges.  
 

II.  RELATED WORK 

 A recent research [15] from Pell et al. defined the 
probabilistic de Bruijn graph, that is a de Bruijn graph 
stored as a Bloom filter. It is proved that the graph can be 
encoded with as little as 4 bits per node. An important 
limitation of this representation is that the Bloom filter 
introduces false nodes and false branching. Though, they 
noticed that the global format of the graph is 
approximately preserved, up to a limited false positive 
rate. Pell et al. did not implement assembly directly by 
searching the stochastic graph. Instead, they impose the 
graph to divide the set of reads into smaller sets, which 
are then combined in turns using a classical assembler. In 
the arXiv version of [15], it is unclear how much memory 
is required by the partitioning algorithm. Some 
algorithms have designed on Global Network Alignment 
(GNA). PATH [16], GA [17], NATALIE [18] and 
NetAlignBP, NetAlignMR [19] all focus on GNA.  

I. DE BRUIJN GRAPHS AND BLOOM FILTERS 
The directed graph which maintain edge from all nodes 

of the graph as a fashion of A=(a1,a2,a3,………..an) to B = 
(b1,b2,b3,……….bn) with B is being a left-sided part of A, 
or b1=a2, b2=b3 and so on is called de Bruijn graph. To 
formal define de Bruijn graph depends on two set as 
nodes and their relation as dimensions. In the light of 
Bioinformatics the nodes set can be set of nucleotides of 
DNA and the dimensions is similar with k-mer length. 
 

 
 

Figure 1: The complete de Bruijn Graph of two symbols 0 and 1. 
Example:  
Two symbol 0 and 1. 
Dimensions =3, so the possible words= 23=8 as 
00,001,010,011,100,101,110,111. Two nodes are only 

related if last two symbols of A are same with first two 
symbols with B (A→B).  On the same it can be define 
that the de Bruijn graph maintain a relation only if last k-
1 symbols of node A are similar as the first k-1 symbols 
of node B. 

The Bloom filter [20] is a memory efficient hash-
based data format, construct to test whether a components 
is in a set. It designed of a bit array of m bits, started with 
zeros, and h hash activity. To input or test the relationship 
of an element, h hash values are measured, yielding h 
array locations. The input operation corresponds to 
setting all these locations to 1. The relationship operation 
returns positives if and only if all of the bits at these 
positions are 1. A negative answer means the element is 
definitely not in the set. A positives answer indicates that 
the element may or may not be in the set.  
 
Removing critical false positives 
The cFP structure 
 
Here we have proposed a system that avoids false 
branching. To this end, we introduce the cFP structure of 
critical False Positives k-mers, implemented with a 
standard set allowing fast membership test.  
Let M = true positive nodes 
 E= be the set of extensions of nodes from M.. Let G= be 
the set of all elements of N for which the Bloom filter 
answers yes. So of critical false positives cFP = G \ M. 
Figure 2 shows a simple graph with the set M of correct 
nodes in regular circles and cFP in dashed rectangles.  
 
 
 

 

Algorithm 1 Constant-memory enumeration of critical 
false positives 
 
 
1: Input: The set M of all nodes in the graph, the Bloom 
filter constructed from M, the maximum number M 
of elements in each partition (determines memory 
usage) 
2: Output: The set cFP 
3: Store on disk the set P of extensions of S for which 
the Bloom filter answers yes 
4: Free the Bloom filter from memory 
5: D0 ← G 
6: i ← 0 
7: while end of S is not reached do 
8: Pi ← θ 
9: while |Gi| < M do 
10: Gi ← Gi∪{next k-mer in S} 
11: for each k-mer m in Di do 
12: if m / ∈ Pi then 
13: Di+1 ← Di+1 ∪ {m} 
14: Delete Di, Gi 
15: i ← i + 1 
16: cFP← Di 
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Figure 2: Graphical representation of Bloom filter operations in the probabilistic de Bruijn graph. (a) Shows a network of seven nodes M 
de Bruijn Graph, and Z, its probabilistic representation from a Bloom filter. Red Dashed rectangular nodes are immediate neighbors of M 
in Z. These nodes are the critical false positives. Blue Dashed node define other nodes of Z; (b) Hash table of M  (c) Bloom filter related  

to M; incidentally, (d) Space requirement of and saving measurements. 
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III.  PUSHDOWN AUTOMATA 

Pushdown Automat (PDA) is very useful tool in 
computer science to free occupied memory space. Push 
Down Automaton (PDA) likes a finite automaton that has 
a single stack. A stored of data from stored item can be 
retrieved, also known as push down stack or push down 
list.PDA can write symbol in the stack and read back 
from later. A read-write head executes the POP operation 
by reading topmost symbols and erase from stack.  

PUSH operation executes simply writing operation in 
stack. Stack offer the infinite memory and  PUSH-POP 
the symbol in “”Last-In-First-Out” fashion. Pushdown 

Automata contains 3 elements: 1.Input Tape 2.Stack 
Input 3.Control Unit 

PDA starting from initial state and reads the symbol 
from input tape. It switches to next state, where control 
unit reads symbol from input tape and matched with the 
stack symbol for each input tape symbol. When control 
unit matched with stack symbol, the symbol on the top of 
the stack removed and the remaining symbol moved up. 
Removing symbol from the stack referred to as popping 
symbol. When top symbol of stack and the input tape 
symbol not matched, the input does not belong to the 
languages or string, and PDA block or reject the input. If 
it reaches end of the input tape and stack is empty, then 
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the input belongs the string and accept it.Fig-1shown 
schematic presentation of PDA. 

 
 

Figure 3: Schematic presentation of PDA 
Memory Mapping for Anchor Selection 
The complete view of the memory saving process is 

illustrated in figure 4 below. Here we see that there are 
three key units that manage memory efficiently. These 
units are Control Unit, Matching Unit and Count Unit. 
Along with these units two tables are available as Stack 
Table and Input data table. Stack Table contains the 
whole data set of proteins or DNA or RNA.  Control unit 
restricts the matching with desired input from whole data 
set. When match or mismatches occurs it frees the stack. 
At the end of the input table, there is an end symbol that 
determines the last terminal of the input data position. It 
refers that a match is occurred. While a complete Anchor 
is matched from given data set count unit will counts the 
total value of these matches and returns the matching 
seeds. When a mismatch is occurred control unit pop the 
data set from stack but do not count the anchor found. 
The overall view of these processes is mathematically 
narrated at algorithm 2 below.  
 

 
 

Figure 4: The Memory Mapping for Anchor Selection 
 

Here this algorithm proposed the memory efficient for 
finding anchor from a local DNA sequence. This 
algorithm can handle more than 500 base pair of gene 
sequence. Some other methods like full hashing and 
heuristic based approaches are used in memory 
optimization but not efficient than that of Bloom Filter 
and PDA. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. IMPLEMENTATION 
De Bruijn graph based Bloom filter is implemented 

under the environment of de novo assembly software: 
Miniaa. A pivotal preliminary measure is to pick the list 
of distinct k-mers that appear in the reads. To remove 
likely sequencing errors, only the k-mers which appear at 
least d times are kept. We experimentally set d to 3.  
Consequently, the Pushdown Automata based memory 
saving have implemented and experimented under the 
environments of Java with Integrated Development 
Environment (IDE) Netbeans. The object oriented 
implementation helped us to perform the nucleotides (A, 
C, T, and G) as a distinct object. This object oriented 
implementation enables faster managements of data set 
under various class levels for complete data set. We first 
customize the whole data set into a fixed stack. Then the 
data set are merged together into fixed memory space. 
According to the PDA analysis, each and every character 
set is matched with stored data set in stack.  While all the 
values are matched with the comparisons of desired 
Anchor seed of the DNA segments, it will counts that one 
Anchor has found and the process will continue until 
reached the last nucleotide base pair. In Perl, it is little 
difficult and time consume to design the PDA and 

Algorithm 2: 

Memory Mapping (Θ,Γ, φ,max_length) 
1: Initialize the input symbol (anchor) in input tape 
(Θ) 
                               Anchor←Θ     
2: Initialize MMSs in stack tape (Γ) 
                                  MMSs←Γ   
3: Initialize count unit (φ) 
                               0←ϑ   
4: lengthjandi max_1 ←←  
5: while ( ==Γ ][ j $) 
6: If ( ][][ ji Γ==Θ ) 

7:             11 −←+← jjandii   
8:                  if ( ==Θ ][i ┴) 
9:                        1+ϑ←ϑ  
10:                     ]1[][ Θ←Θ i    
11:                End if 
12:                else go to step 6. 
13:                 if  ( ==Γ ][ j $) 
14:                      print φ. 
15:                 End if 
16:                 else go to step 6. 
17:  End if 
18: else 1−← jj   

19:        If   ( ==Γ ][ j $) 

20:           print φ. 
21:        End if 
22:       else go to step 6 
23: End loop
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algorithmic analysis due to its more formal and structural 
based formation. Besides, it is easy to implement the 
concept under the environment MatLab. But MatLab is 
not perfect for this environment because desired 
algorithm functions are not available and difficult to 
implement the algorithm. Our experiments outperform 
the result of existing system irrespective of Perl and 
MatLab environments.  That why we have choose Java to 
implement the system. 

IV.  RESULT 

The outcomes of these two process, a few interesting 
changes have had observed. Pushdown Automata is very 
efficient for any arbitrary predictions in any DNA 
segments or sequences. It is clearly noticed that 
Pushdown Automata has potential and strong capabilities 
to handle the data set whatever the environment. Figure 5 
below shows the performance Pushdown Automata.  
 

 
Figure 5: The impact of Pushdown Automata 

 
For de Bruijn graph based alignment the CPU 

Utilization time for long data set range from 1500000 to 
2000000 requires 8.2, 8.5, 10, 11.4,12, and 12.5.  On the 
contrary, Pushdown Automata algorithm takes more time 
for the same data set and the time values are 8.2, 9, 10.8, 
12, 12.9 and 14. But for the previous data set whose 
lengths are less than 1500000, Pushdown Automata based 
process takes less time than de Bruijn graph based 
alignment. Figure 6 below shows the impact for de Bruijn 
graph based alignment. 
 
 

Figure 6: Impact of for de Bruijn graph based alignment. 
 

The reasons behind for de Bruijn graph based 
alignment requires more time to solve small data set is 
that it works for arbitrary probabilistic values where 
Pushdown Automata works deterministic path and values. 
The comparative results of these two methods are below 
at figure 7.  
 

Figure 7: Comparative Illustration of Dynamic Programming and 
Warshall Graph Algorithm 

V.  CONCLUSION 

Both de Bruijn graph based alignment and Pushdown 
Automata perform predictions of DNA base pair 
according to the process. de Bruijn graph based 
alignment has better capabilities to handle large data set 
due to its randomness. On the other side, Pushdown 
Automata works based on predefine values and path. 
That why Pushdown Automata has to check the entire 
path and values weather the path is short or long. That is 
the reason de Bruijn graph based alignment requires more 
time. We will find why Randomness causes more time 
and deterministic process is better for small data set in 
future work. 

REFERENCES 

[1] M.Lavallée-Adam, B.Coulombe, M.Blanchette, “Detection 
of locally overrepresented GO terms in protein-protein 
interaction networks”, Research in Computational 
Molecular Biology Springer;302-320,2009. 

[2] Z.P. Li, S.H.Zhang, Y.Wang, X.S.Zhang, L.Chen, 
“Alignment of molecular networks by integer quadratic 
programming”. Bioinformatics ,23(13):1631-1639,2007. 

[3] R.M.Idury, M.S.Waterman,A new algorithmfor DNA 
sequence assembly. J Comput Biol ,2(2):291–306,1995. 

[4] M.G.Grabherr,Full-length transcriptome assembly from 
RNA-Seq data without a reference genome. Nat Biotech, 
29(7):644–652,2011. [http://dx.doi.org/10.1038/nbt.1883] 

[5] Y.Peng, H.C.M.Leung, S.M.Yiu, F.Chin, Meta-IDBA: a de 
Novo assembler for metagenomic data. Bioinformatics, 
27(13):i94–i101,2011. 

[6] P. Peterlongo, N.Schnel, N.Pisanti, M.F.Sagot, V.Lacroix, 
Identifying SNPs without a reference genome by 
comparing raw reads. In String Processing and Information 
Retrieval. Berlin, Heidelberg: Springer; 147–158,2010. 

[7] Z. Iqbal, M.Caccamo, I.Turner, P.Flicek, G.McVean, De 
novo assembly and genotyping of variants using colored de 
Bruijn graphs. Nat Genet 2012, 44:226–232. 

2626 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER



[8]  G.Sacomoto, J.Kielbassa, R.Chikhi, R.Uricaru, 
P.Antoniou, M.Sagot, P.Peterlongo, V.Lacroix, 
KISSPLICE: de-novo calling alternative splicing events 
from RNA-seq data. BMC Bioinformatics 2012, 13(Suppl 
6):S5. [http://www.biomedcentral.com/1471-
2105/13/S6/S5] 

[9] R.Li, H..Zhu, J.Ruan, W.Qian, X.Fang, Z.Shi, Y.Li, S.Li, 
G.Shan, K.Kristiansen, De novo assembly of human 
genomes with massively parallel short read sequencing. 
Genome Res , 20(2):265,2010. 

[10] Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, 
Birol I: ABySS: A parallel assembler for short read 
sequence data. Genome Res19(6):1117–1123 
[http://genome.cshlp.org/content/19/6/1117.abstract],2009. 

[11] T.C. Conway, A.J.Bromage, Succinct data structures for 
assembling large genomes. Bioinformatics, 27(4):479,2011. 

[12] R.L. Warren, R.A.Holt, Targeted assembly of short 
sequence reads. PloS One, 6(5):e19816,2011. 

[13]  Peterlongo P, Chikhi R: Mapsembler, targeted and micro 
assembly of large NGS datasets on a desktop computer. 
BMC Bioinformatics, 13:48,2012. 

[14] C.Ye, Z.Ma, C.Cannon, M.Pop, D.Yu, Exploiting 
sparseness in de novo genome assembly. BMC 
Bioinformatics 2012, 13(Suppl 6):S1. 
[http://www.biomedcentral.com/1471-2105/13/S6/S1] 

[15] J.Pell, A.Hintze, R.Canino-Koning, A.Howe, J.M.Tiedje, 
C.T.Brown, Scaling metagenome sequence assembly with 
probabilistic de Bruijn graphs. Arxiv preprint 
arXiv:1112.4193 2011. 

[16] M.Zaslavskiy, F.Bach, J.P.Vert,A path following algorithm 
for the graph matching problem. IEEE Trans Pattern Anal 
Mach Intell, 31(12):2227-2242,2009. 

[17] M.Zaslavskiy, F.Bach, J.P.Vert : Global alignment of 
protein-protein interaction networks by graph matching 
methods. Bioinformatics, 25(12):i259-i267,2009. 

[18] G.Klau, A new graph-based method for pairwise global 
network alignment. BMC Bioinformatics, 10(Suppl 
1):S59,2009. 

[19] M.Bayati, M.Gerritsen, D.F.Gleich, A.Saberi, Y.Wang, 
Algorithms for large, sparse network alignment problems. 
2009 Ninth IEEE International Conference on Data Mining 
IEEE, 705-710,2009. 

[20] A.Kirsch, M.Mitzenmacher , Less hashing, same 
performance: Building a better Bloom filter. Algorithms–
ESA, 4168:456–467,2006. 

Md.Sarwar Kamal received the B.Sc 
(Hons) in computer science and 
engineering from University of 
Chittagong Bangladesh in 2009. Since 
2009, he has been serving as a faculty 
member in the Department of Computer 
Science and Engineering at BGC Trust 
University Bangladesh Chittagong. Now 
he is MS (Engineering) student in the 
Department of Computer Science and 

Engineering at Chittagong University of Engineering & 
Technology (CUET), Chittagong, Bangladesh. Currently his 
research project on Bioinformatics Local sequence alignments 
algorithms analysis under the guideline of Dr. Mohammad 
Ibrahim Khan .His research interest includes Bioinformatics and 
Data mining. 
 

Dr. Mohammad Ibrahim Khan 
received the B.S. degree in Electrical 
and Electronic Engineering from 
Bangladesh University of Engineering 
and Technology (BUET), Bangladesh in 
1999. He received M.S. degree in 
Computer Science and Engineering 
from the same University in 2002. He 
received his Ph.D. degree in Computer 

Science and Engineering from Jahangirnagar University in 2010. 
Since 1999, he has been serving as a faculty member in the 
Department of Computer Science and Engineering at 
Chittagong University of Engineering & Technology (CUET), 
Chittagong, Bangladesh. Currently his research project on 
Bioinformatics Local sequence alignments algorithms analysis 
with his research group. His research interest includes Digital 
Image Processing, Graph Theory, Cryptography, Digital 
Watermarking, Multimedia Systems, and Digital Signal 
Processing. 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2627

© 2014 ACADEMY PUBLISHER




