
Memory Optimization for Global Protein
Network Alignment Using Pushdown Automata

and De Bruijn Graph
Based Bloom Filter

MD. Sarwar Kamal
Computer Science and Engineering, Chittagong University of Engineering and Technology, Chittagong, Bangladesh

sarwar.saubdcoxbazar@gmail.com

Mohammad Ibrahim Khan
Computer Science and Engineering, Chittagong University of Engineering and Technology, Chittagong, Bangladesh

muhammad_ikhancuet@yahoo.com

Abstract—Ongoing improvements in Computational
Biology (CB) research have generated massive amounts of
Protein-Protein Interactions (PPIs) data set. In this regards,
the availability of PPI data for several organisms provoke
the discovery of computational methods for measurements,
analysis, modeling, comparisons, clustering and alignments
of biological data networks. Nevertheless, fixed network
comparison is computationally stubborn and as a result
several methods have been used instead. It is very crucial to
utilize the memory of computing devices for Protein-
Protein Interactions (PPIs) data set. We have compared the
memory uses using Pushdown Automata and de Bruijn
graph based Bloom Filter for global proteins network
alignment. De Bruijn graph is regularly used in Next
Generation Sequencing (NGS) for large scale data set. De
novo genome assembler utilizes the memory. Bloom filter
and Pushdown Automat perform better to reduce memory.
We have noticed that Pushdown Automata outperform
Bloom filter in memory saving but it takes more time than
Bloom filter. The result shows that Bloom filter software
Mania implements full de novo assembly of human genome
data set using 6.5 GB memory in 27 hours, on the other
hand Pushdown Automat performs same results in 1 GB
memory of 31 hours.

Index Terms—De Bruijn Graph, Bloom Filter, Pushdown
Automata, Next Generation Sequencing.

I. INTRODUCTION

System Biology incorporates the total environment to
analyze the data set of plants, animals, human, molecules
and insects DNA, RNA and Proteins. We know that
majority parts of the biological systems are organized by
a network of molecular interactions. Some popular
networks are Protein- Protein Interactions (PPIs) network,
Genome-Genome Sequencing (GGS), DNA-RNA
interactions, genetic regulatory network and metabolic
networks. Various sophisticated system can be

represented by using network representation. Some
gigantic systems are as biological networks,
transportation networks, big data set networks and social
media network. For biological data set measurement the
most phenomenal network is Protein-Protein Interaction
network. Proteins perform their activity in combined
groups among various cells. A protein corresponds to a
node of a graph and the relation between proteins refers
as edges of the graph. The PPIs networks are modeled as
graph structures [1, 2].

The de Bruijn graph is a mathematical tool which
plays an increasingly important role in next-generation
sequencing applications for DNA or RNA sequences.
This graph was first introduced to perform de novo
assembly of DNA sequences [3]. Now-a-days this
methods massively implemented in de novo mRNA [4]
and metagenome [5] assembly, genomic variants
detection [6,7] and de novo alternative splicing calling [8].
But, an important real issue of this structure is its large
memory utilization for large organisms. For example, the
regular encoding of the de Bruijn graph for the human
genome (n ≈ 2.7 ・ 108, k-mer size k = 27) requires 17
GB (n ・ k/4 bytes) of storage area to store the nodes
sequences alone. Graphs for much higher genomes and
metagenome cannot be organized on a typical lab cluster,
due to the prohibitive memory usage.

Current findings on de Bruijn graphs have been
targeted on organizing more lightweight data
representations. Li et al. remarkable research of
minimum-information de Bruijn graphs, by not indicating
of read locations and paired-end information [9].
Simpson et al. experiments a distributed de Bruijn graph
to decrease the memory usage per node [10]. Conway and
Bromage used sparse bit array format to store an implicit,
immutable graph organization [11]. Targeted process
compute local assemblies around sequences of interest,
using simple memory, with greedy methods [12] or

2622 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.10.2622-2627

portions of the de Bruijn graph [13]. Ye et al. recently
showed that a graph roughly equivalent to the de Bruijn
graph can be obtained by storing only one out of g nodes
(12 ≤ g ≤ 27) [14].

Conway and Bromage checked that the own
information of the edges is a lower bound for exactly
encoding the de Bruijn graph [11]:

bits
k

E
⎟
⎠
⎞

⎜
⎝
⎛ +14

2log

k + 1= length of the sequence that uniquely defines an
edge.
|E|= is the number of edges.

II. RELATED WORK

 A recent research [15] from Pell et al. defined the
probabilistic de Bruijn graph, that is a de Bruijn graph
stored as a Bloom filter. It is proved that the graph can be
encoded with as little as 4 bits per node. An important
limitation of this representation is that the Bloom filter
introduces false nodes and false branching. Though, they
noticed that the global format of the graph is
approximately preserved, up to a limited false positive
rate. Pell et al. did not implement assembly directly by
searching the stochastic graph. Instead, they impose the
graph to divide the set of reads into smaller sets, which
are then combined in turns using a classical assembler. In
the arXiv version of [15], it is unclear how much memory
is required by the partitioning algorithm. Some
algorithms have designed on Global Network Alignment
(GNA). PATH [16], GA [17], NATALIE [18] and
NetAlignBP, NetAlignMR [19] all focus on GNA.

I. DE BRUIJN GRAPHS AND BLOOM FILTERS
The directed graph which maintain edge from all nodes

of the graph as a fashion of A=(a1,a2,a3,………..an) to B =
(b1,b2,b3,……….bn) with B is being a left-sided part of A,
or b1=a2, b2=b3 and so on is called de Bruijn graph. To
formal define de Bruijn graph depends on two set as
nodes and their relation as dimensions. In the light of
Bioinformatics the nodes set can be set of nucleotides of
DNA and the dimensions is similar with k-mer length.

Figure 1: The complete de Bruijn Graph of two symbols 0 and 1.
Example:
Two symbol 0 and 1.
Dimensions =3, so the possible words= 23=8 as
00,001,010,011,100,101,110,111. Two nodes are only

related if last two symbols of A are same with first two
symbols with B (A→B). On the same it can be define
that the de Bruijn graph maintain a relation only if last k-
1 symbols of node A are similar as the first k-1 symbols
of node B.

The Bloom filter [20] is a memory efficient hash-
based data format, construct to test whether a components
is in a set. It designed of a bit array of m bits, started with
zeros, and h hash activity. To input or test the relationship
of an element, h hash values are measured, yielding h
array locations. The input operation corresponds to
setting all these locations to 1. The relationship operation
returns positives if and only if all of the bits at these
positions are 1. A negative answer means the element is
definitely not in the set. A positives answer indicates that
the element may or may not be in the set.

Removing critical false positives
The cFP structure

Here we have proposed a system that avoids false
branching. To this end, we introduce the cFP structure of
critical False Positives k-mers, implemented with a
standard set allowing fast membership test.
Let M = true positive nodes
 E= be the set of extensions of nodes from M.. Let G= be
the set of all elements of N for which the Bloom filter
answers yes. So of critical false positives cFP = G \ M.
Figure 2 shows a simple graph with the set M of correct
nodes in regular circles and cFP in dashed rectangles.

Algorithm 1 Constant-memory enumeration of critical
false positives

1: Input: The set M of all nodes in the graph, the Bloom
filter constructed from M, the maximum number M
of elements in each partition (determines memory
usage)
2: Output: The set cFP
3: Store on disk the set P of extensions of S for which
the Bloom filter answers yes
4: Free the Bloom filter from memory
5: D0 ← G
6: i ← 0
7: while end of S is not reached do
8: Pi ← θ
9: while |Gi| < M do
10: Gi ← Gi∪{next k-mer in S}
11: for each k-mer m in Di do
12: if m / ∈ Pi then
13: Di+1 ← Di+1 ∪ {m}
14: Delete Di, Gi
15: i ← i + 1
16: cFP← Di

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2623

© 2014 ACADEMY PUBLISHER

 (a)

 (b)

 (c) (d)

Figure 2: Graphical representation of Bloom filter operations in the probabilistic de Bruijn graph. (a) Shows a network of seven nodes M
de Bruijn Graph, and Z, its probabilistic representation from a Bloom filter. Red Dashed rectangular nodes are immediate neighbors of M
in Z. These nodes are the critical false positives. Blue Dashed node define other nodes of Z; (b) Hash table of M (c) Bloom filter related

to M; incidentally, (d) Space requirement of and saving measurements.

a1…….ak
10mod

1
∑

=

k

i

i
ia

ATC 0

CCG 0

TCC 5

CGC 6

………….

Bloom Filter

1
0
0
0
1
1
0
0
0
0

Node information=

()[]34
72log =30 bits

Organized Size=

10 + 3.6 =28
bits
Bloom False
Positive

III. PUSHDOWN AUTOMATA

Pushdown Automat (PDA) is very useful tool in
computer science to free occupied memory space. Push
Down Automaton (PDA) likes a finite automaton that has
a single stack. A stored of data from stored item can be
retrieved, also known as push down stack or push down
list.PDA can write symbol in the stack and read back
from later. A read-write head executes the POP operation
by reading topmost symbols and erase from stack.

PUSH operation executes simply writing operation in
stack. Stack offer the infinite memory and PUSH-POP
the symbol in “”Last-In-First-Out” fashion. Pushdown

Automata contains 3 elements: 1.Input Tape 2.Stack
Input 3.Control Unit

PDA starting from initial state and reads the symbol
from input tape. It switches to next state, where control
unit reads symbol from input tape and matched with the
stack symbol for each input tape symbol. When control
unit matched with stack symbol, the symbol on the top of
the stack removed and the remaining symbol moved up.
Removing symbol from the stack referred to as popping
symbol. When top symbol of stack and the input tape
symbol not matched, the input does not belong to the
languages or string, and PDA block or reject the input. If
it reaches end of the input tape and stack is empty, then

CCG

AAA

TCC TAT

CTA

CGC

ATC

GCT GAG

TGG

TTG

GGA

AGC

ATT

CGA

2624 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

the input belongs the string and accept it.Fig-1shown
schematic presentation of PDA.

Figure 3: Schematic presentation of PDA
Memory Mapping for Anchor Selection
The complete view of the memory saving process is

illustrated in figure 4 below. Here we see that there are
three key units that manage memory efficiently. These
units are Control Unit, Matching Unit and Count Unit.
Along with these units two tables are available as Stack
Table and Input data table. Stack Table contains the
whole data set of proteins or DNA or RNA. Control unit
restricts the matching with desired input from whole data
set. When match or mismatches occurs it frees the stack.
At the end of the input table, there is an end symbol that
determines the last terminal of the input data position. It
refers that a match is occurred. While a complete Anchor
is matched from given data set count unit will counts the
total value of these matches and returns the matching
seeds. When a mismatch is occurred control unit pop the
data set from stack but do not count the anchor found.
The overall view of these processes is mathematically
narrated at algorithm 2 below.

Figure 4: The Memory Mapping for Anchor Selection

Here this algorithm proposed the memory efficient for
finding anchor from a local DNA sequence. This
algorithm can handle more than 500 base pair of gene
sequence. Some other methods like full hashing and
heuristic based approaches are used in memory
optimization but not efficient than that of Bloom Filter
and PDA.

II. IMPLEMENTATION
De Bruijn graph based Bloom filter is implemented

under the environment of de novo assembly software:
Miniaa. A pivotal preliminary measure is to pick the list
of distinct k-mers that appear in the reads. To remove
likely sequencing errors, only the k-mers which appear at
least d times are kept. We experimentally set d to 3.
Consequently, the Pushdown Automata based memory
saving have implemented and experimented under the
environments of Java with Integrated Development
Environment (IDE) Netbeans. The object oriented
implementation helped us to perform the nucleotides (A,
C, T, and G) as a distinct object. This object oriented
implementation enables faster managements of data set
under various class levels for complete data set. We first
customize the whole data set into a fixed stack. Then the
data set are merged together into fixed memory space.
According to the PDA analysis, each and every character
set is matched with stored data set in stack. While all the
values are matched with the comparisons of desired
Anchor seed of the DNA segments, it will counts that one
Anchor has found and the process will continue until
reached the last nucleotide base pair. In Perl, it is little
difficult and time consume to design the PDA and

Algorithm 2:

Memory Mapping (Θ,Γ, φ,max_length)
1: Initialize the input symbol (anchor) in input tape
(Θ)
 Anchor←Θ
2: Initialize MMSs in stack tape (Γ)
 MMSs←Γ
3: Initialize count unit (φ)
 0←ϑ
4: lengthjandi max_1 ←←
5: while (==Γ][j $)
6: If (][][ji Γ==Θ)

7: 11 −←+← jjandii
8: if (==Θ][i ┴)
9: 1+ϑ←ϑ
10:]1[][Θ←Θ i
11: End if
12: else go to step 6.
13: if (==Γ][j $)
14: print φ.
15: End if
16: else go to step 6.
17: End if
18: else 1−← jj

19: If (==Γ][j $)

20: print φ.
21: End if
22: else go to step 6
23: End loop

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2625

© 2014 ACADEMY PUBLISHER

algorithmic analysis due to its more formal and structural
based formation. Besides, it is easy to implement the
concept under the environment MatLab. But MatLab is
not perfect for this environment because desired
algorithm functions are not available and difficult to
implement the algorithm. Our experiments outperform
the result of existing system irrespective of Perl and
MatLab environments. That why we have choose Java to
implement the system.

IV. RESULT

The outcomes of these two process, a few interesting
changes have had observed. Pushdown Automata is very
efficient for any arbitrary predictions in any DNA
segments or sequences. It is clearly noticed that
Pushdown Automata has potential and strong capabilities
to handle the data set whatever the environment. Figure 5
below shows the performance Pushdown Automata.

Figure 5: The impact of Pushdown Automata

For de Bruijn graph based alignment the CPU

Utilization time for long data set range from 1500000 to
2000000 requires 8.2, 8.5, 10, 11.4,12, and 12.5. On the
contrary, Pushdown Automata algorithm takes more time
for the same data set and the time values are 8.2, 9, 10.8,
12, 12.9 and 14. But for the previous data set whose
lengths are less than 1500000, Pushdown Automata based
process takes less time than de Bruijn graph based
alignment. Figure 6 below shows the impact for de Bruijn
graph based alignment.

Figure 6: Impact of for de Bruijn graph based alignment.

The reasons behind for de Bruijn graph based
alignment requires more time to solve small data set is
that it works for arbitrary probabilistic values where
Pushdown Automata works deterministic path and values.
The comparative results of these two methods are below
at figure 7.

Figure 7: Comparative Illustration of Dynamic Programming and
Warshall Graph Algorithm

V. CONCLUSION

Both de Bruijn graph based alignment and Pushdown
Automata perform predictions of DNA base pair
according to the process. de Bruijn graph based
alignment has better capabilities to handle large data set
due to its randomness. On the other side, Pushdown
Automata works based on predefine values and path.
That why Pushdown Automata has to check the entire
path and values weather the path is short or long. That is
the reason de Bruijn graph based alignment requires more
time. We will find why Randomness causes more time
and deterministic process is better for small data set in
future work.

REFERENCES

[1] M.Lavallée-Adam, B.Coulombe, M.Blanchette, “Detection
of locally overrepresented GO terms in protein-protein
interaction networks”, Research in Computational
Molecular Biology Springer;302-320,2009.

[2] Z.P. Li, S.H.Zhang, Y.Wang, X.S.Zhang, L.Chen,
“Alignment of molecular networks by integer quadratic
programming”. Bioinformatics ,23(13):1631-1639,2007.

[3] R.M.Idury, M.S.Waterman,A new algorithmfor DNA
sequence assembly. J Comput Biol ,2(2):291–306,1995.

[4] M.G.Grabherr,Full-length transcriptome assembly from
RNA-Seq data without a reference genome. Nat Biotech,
29(7):644–652,2011. [http://dx.doi.org/10.1038/nbt.1883]

[5] Y.Peng, H.C.M.Leung, S.M.Yiu, F.Chin, Meta-IDBA: a de
Novo assembler for metagenomic data. Bioinformatics,
27(13):i94–i101,2011.

[6] P. Peterlongo, N.Schnel, N.Pisanti, M.F.Sagot, V.Lacroix,
Identifying SNPs without a reference genome by
comparing raw reads. In String Processing and Information
Retrieval. Berlin, Heidelberg: Springer; 147–158,2010.

[7] Z. Iqbal, M.Caccamo, I.Turner, P.Flicek, G.McVean, De
novo assembly and genotyping of variants using colored de
Bruijn graphs. Nat Genet 2012, 44:226–232.

2626 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

[8] G.Sacomoto, J.Kielbassa, R.Chikhi, R.Uricaru,
P.Antoniou, M.Sagot, P.Peterlongo, V.Lacroix,
KISSPLICE: de-novo calling alternative splicing events
from RNA-seq data. BMC Bioinformatics 2012, 13(Suppl
6):S5. [http://www.biomedcentral.com/1471-
2105/13/S6/S5]

[9] R.Li, H..Zhu, J.Ruan, W.Qian, X.Fang, Z.Shi, Y.Li, S.Li,
G.Shan, K.Kristiansen, De novo assembly of human
genomes with massively parallel short read sequencing.
Genome Res , 20(2):265,2010.

[10] Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM,
Birol I: ABySS: A parallel assembler for short read
sequence data. Genome Res19(6):1117–1123
[http://genome.cshlp.org/content/19/6/1117.abstract],2009.

[11] T.C. Conway, A.J.Bromage, Succinct data structures for
assembling large genomes. Bioinformatics, 27(4):479,2011.

[12] R.L. Warren, R.A.Holt, Targeted assembly of short
sequence reads. PloS One, 6(5):e19816,2011.

[13] Peterlongo P, Chikhi R: Mapsembler, targeted and micro
assembly of large NGS datasets on a desktop computer.
BMC Bioinformatics, 13:48,2012.

[14] C.Ye, Z.Ma, C.Cannon, M.Pop, D.Yu, Exploiting
sparseness in de novo genome assembly. BMC
Bioinformatics 2012, 13(Suppl 6):S1.
[http://www.biomedcentral.com/1471-2105/13/S6/S1]

[15] J.Pell, A.Hintze, R.Canino-Koning, A.Howe, J.M.Tiedje,
C.T.Brown, Scaling metagenome sequence assembly with
probabilistic de Bruijn graphs. Arxiv preprint
arXiv:1112.4193 2011.

[16] M.Zaslavskiy, F.Bach, J.P.Vert,A path following algorithm
for the graph matching problem. IEEE Trans Pattern Anal
Mach Intell, 31(12):2227-2242,2009.

[17] M.Zaslavskiy, F.Bach, J.P.Vert : Global alignment of
protein-protein interaction networks by graph matching
methods. Bioinformatics, 25(12):i259-i267,2009.

[18] G.Klau, A new graph-based method for pairwise global
network alignment. BMC Bioinformatics, 10(Suppl
1):S59,2009.

[19] M.Bayati, M.Gerritsen, D.F.Gleich, A.Saberi, Y.Wang,
Algorithms for large, sparse network alignment problems.
2009 Ninth IEEE International Conference on Data Mining
IEEE, 705-710,2009.

[20] A.Kirsch, M.Mitzenmacher , Less hashing, same
performance: Building a better Bloom filter. Algorithms–
ESA, 4168:456–467,2006.

Md.Sarwar Kamal received the B.Sc
(Hons) in computer science and
engineering from University of
Chittagong Bangladesh in 2009. Since
2009, he has been serving as a faculty
member in the Department of Computer
Science and Engineering at BGC Trust
University Bangladesh Chittagong. Now
he is MS (Engineering) student in the
Department of Computer Science and

Engineering at Chittagong University of Engineering &
Technology (CUET), Chittagong, Bangladesh. Currently his
research project on Bioinformatics Local sequence alignments
algorithms analysis under the guideline of Dr. Mohammad
Ibrahim Khan .His research interest includes Bioinformatics and
Data mining.

Dr. Mohammad Ibrahim Khan
received the B.S. degree in Electrical
and Electronic Engineering from
Bangladesh University of Engineering
and Technology (BUET), Bangladesh in
1999. He received M.S. degree in
Computer Science and Engineering
from the same University in 2002. He
received his Ph.D. degree in Computer

Science and Engineering from Jahangirnagar University in 2010.
Since 1999, he has been serving as a faculty member in the
Department of Computer Science and Engineering at
Chittagong University of Engineering & Technology (CUET),
Chittagong, Bangladesh. Currently his research project on
Bioinformatics Local sequence alignments algorithms analysis
with his research group. His research interest includes Digital
Image Processing, Graph Theory, Cryptography, Digital
Watermarking, Multimedia Systems, and Digital Signal
Processing.

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2627

© 2014 ACADEMY PUBLISHER

