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Abstract— Problem: Multi-agent coordination is an impor-
tant issue in the domain of disaster emergency response
operations where a team of agents (field units or robots) aims
to achieve a joint objective. The responsibility of the Incident
Commander (IC) is to (I) specify an effective strategy
composed of a number of threads (a set of prioritized sub-
problems), (II) appropriately assign/allocate agents to these
threads as a strategic decision, and (III) release agents in a
timely manner from the assigned threads to adapt a strategic
decision to a new situation. Objective: The purpose of this
paper is to present an intelligent algorithm that assists a
human in multi-agent coordination by providing two key
functions: 1) automatically calculate and present a set of
feasible alternatives for selecting a choice as a strategic
decision in a definite time, and 2) autonomously and in
a timely manner identify a subset of assigned agents that
should be released from their threads in order to refine
a strategic decision. Method: This algorithm expands a
decision tree from a state node in which a thread (or several
threads) has received a set of new agents from either the
IC or a higher thread. Each thread is associated with one
level of a decision tree with a number of nodes. A thread
calculates a set of efficient coalitions using all the available
agents and generates a new node for each coalition to show
what agents are allocated to the thread and what agents are
released into a lower thread. In real-time, this algorithm
continuously observes and monitors the task environment
to identify a subset of the assigned agents that cannot
provide efficient capabilities for their threads and should be
released for assignment to other threads. Results: To gather
further insight, this paper applied this algorithm for team
coordination to a simulated search & rescue scenario in
an earthquake disaster-affected area where the team’s goal
was to rescue trapped people distributed in five operational
zones. The result was an infinite set of alternative scenarios
for a human-defined strategy. The calculated alternatives
were presented to the IC for selection according to his
intuition or for delegation to the system to determine an
optimal strategy.

Index Terms— Agent assignment problem, incident comman-
der, multi-agent coordination, human strategy, intelligent
algorithm, crisis response, action planning
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I. INTRODUCTION

A review of past disasters (natural or human-made)
shows that the coordination of disaster emergency/crisis
response operations is a significant and essential is-
sue. A responder team such as the INSARAG (Interna-
tional Search and Rescue Advisory Group) [7] that is
composed of an IC (Incident Commander) and several
field/operational units, called agents in this paper, is
faced with the problem of effectively performing spa-
tially dispersed tasks under evolving execution circum-
stances in a manner that achieves a joint objective in
a minimum time. Coordination is the act of managing
interdependencies among activities performed to achieve
a goal [11]. To maximize the global result, five types of
coordination are considered to be managed within the
team: 1) task dependencies, 2) action dependencies, 3)
redundant actions, 4) information sharing, and 5) agent
allocation [15]. Inefficient coordination can result in idle
agents, conflict among actions, or redundant activities,
and consequently, operations can require a very long
duration to be completed. Effective coordination is both
difficult and challenging because of the characteristics
of this domain including uncertainty in the outcome of
the actions of agents, incomplete task information, time
pressure, limited resources, and task flow [4].

Coordinating a team of agents is a critical issue because
the aim of the team is to achieve a joint objective.
Centralized multi-agent coordination is the primary role
of the IC. In this role, the IC must make three important
decisions: 1) select a global objective and specify a
strategy composed of a number of threads that are a set of
prioritized sub-problems, 2) strategically allocate agents
to these threads, 3) identify an appropriate time to adapt
the strategic decision to a new situation by identifying a
subset of assigned agents that should be released from
their threads and be sent to other threads [13], [14].
Human decisions define the macro behavior of the team
because they do not explicitly specify micro actions that
should be performed by the agents. A strategic decision
specifies a domain of agent actions to maximize the global
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results.
The calculation of the feasible alternatives for facili-

tating a strategic decision is an essential process. These
alternatives enable the IC to understand what options are
available at a specific time. Furthermore, in a real-time
situation, identifying the proper time to revise a strategic
decision is a difficult and challenging problem. These
two issues, however, are critical for efficient coordination.
It is a demanding problem for a human because of the
complexity of the crisis emergency response process.
Moreover, a fully automated system cannot provide a
complete solution for this problem and is not considered
a reliable substitute for a human.

Consequently, it is both important and necessary to
develop an ideal approach based on a mixed-initiative
solution in which an intelligent system assists the IC in
the multi-agent coordination and collaborates with him in
the decision making process. This paper focuses on two
sub-problems and the proposed issues that address them:
1) how to assist the IC and collaborate with a human in an
appropriate assignment of agents to threads, and 2) how
to support a human in the adaption of a thread assignment
to a new critical situation in a timely manner.

Many works have been developed for multi-agent
coordination especially for planning, scheduling, tasks
assignment, action coordination, decision making, and
optimization. Unfortunately they do not provide a proper
solution for the problem addressed by this paper. The
deficiencies can be categorized as follows:

• They aim to fully specify the micro-actions of the
agents. It is impossible, however, for an IC to make
all the decisions and define the detailed actions for
agents who are located in uncertain and dynamic
environments. Agents, human or robot, select and
perform the best action based on their perception of
the local environment using detailed information.

• They are automated systems that do not involve a
human in the process. The main obstacle is scale. It
is currently unfeasible for a fully automated system
to effectively determine all future possibilities that
may arise during the execution of tasks in a complex
environment.

The objective of this paper is to present an autonomous
algorithm. The two most important benefits to an IC of the
application of this algorithm in a centralized multi-agent
coordination are: 1) automated calculation of a set of
feasible alternatives for selecting the strategic decision at
a definite time, and 2) autonomous adaption of a strategic
decision at the proper time by identifying a subset of
agents who should be released from a subset of threads.

This paper is organized as follows. For further insight,
Section II provides our motivation for this paper by
introducing a simulated urban search & rescue scenario
in which the IC of a team of four agents is faced with
an agent coordination problem. Section III reviews some
related works. The problem is stated in more detail in
Section IV. The approach and proposed algorithm are
presented in Section V. Section VI discusses the imple-

mentation and evaluation process. Section VII presents
the result and we conclude our paper in Section VII.

II. MOTIVATION

Let us imagine that an earthquake has occurred in the
urban area displayed in Fig. 1. Urban search and rescue
(USAR), as a major function of the disaster emergency
response operations, aims to rescue the greatest number of
people trapped under the debris of the damaged buildings
in the shortest period of time. To rescue a victim in a
certain spatial location, a sequence of three dependent
location-based tasks must be accomplished. Each type of
task requires a set of definite capabilities and a consid-
erable amount of time. Table I lists these task types and
their capability requirements. We ignore the deadline for
tasks in this paper.

Figure 1: GIS map of spatial distribution of location-based temporal
macro tasks in five operational zones (road segments) of disaster-affected
area and location of disaster response team in the initial state

TABLE I.: Three Task Types of Problem Domain

Task-Type ∆ t Capability Requirements
(minute) C0 C1 C2

T0 5 1 0 0
T1 20 0 1 0
T2 60 0 0 1

Capabilities Description:
C0: Reconnaissance
C1: Search
C2: Light Rescue

Task Types Description:
T0: Reconnaissance
T1: Search
T2: Light Rescue

A team of four agents has been assigned to the five
operational areas that are presented by the five road
segments displayed in Fig. 1. Actions that an agent can do
are presented by capabilities that this agent possesses. An
agent can have different capabilities from those required
by the tasks. In a specific duration, an agent can execute
an action with a specific speed. Table II lists the charac-
teristics of the agents. It is assumed the agents are either
free (or idle) and are located in the incident command
post.

The shortest distances among each of the six road
segments are calculated by GIS and are presented in
Table III. To perform spatially distributed tasks, agents
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TABLE II.: Capabilities/Abilities of Four Agents

Action Number of Capabilities
Field Unit ID Speed C0 C1 C2
a0 2 1 0 0
a2 1 1 0 0

2 0 1 0
a6 1 0 1 0

2 0 0 1
a7 1 0 1 0

2 0 0 1

are required to move from one location to another through
the road network with a moving speed equal to 20. To
simplify the problem, these variables do not change over
time. These data are used by the IC in the decision-making
process. This table and related information are provided
and are updated by relevant teams or organizations whose
activities are to clear road blockages.

TABLE III.: Shortest Paths (given in meters) among Road Segments in
the Geographic Area Visualized in Fig. 1

s2 s1 s3 s4 s5 s6
s2 0 225 447 764 364 625
s1 225 0 370 687 418 548
s3 447 370 0 343 452 221
s4 764 687 343 0 618 224
s5 364 418 452 618 0 476
s6 625 548 221 224 476 0

A set of LoTeM tasks (Location-based Temporal Macro
tasks) are associated to each road segment. A LoTeM
task is an aggregate task of all the tasks with the same
task type that are spatially located within a geographic
area such as a road segment or city block [13]. Table
IV shows that twelve LoTeM tasks are located in the
five segments at time 0. The information regarding these
tasks forms the overall picture that the IC observes from
the task environment. For example, the 10th LoTeM task
states that in the proximity of road segment s5, five light
rescue tasks are estimated to be revealed and six tasks are
available and ready to be started. It is also estimated that
if the ninth LoTeM task (2 Not Yet Enabled, 5 Enabled) is
completed, five light rescue tasks will be revealed in the
same road segment. All of this information is presented
to the IC to provide a situational awareness of the state
of the environment in a timely manner.

TABLE IV.: Set of Location-based Temporal Macro Tasks Associated
to Five Road Segments Displayed in Fig. 1

No. Location Task-Type Not Yet Enabled Enabled
(Road S.) Amount Amount

1 s1 T0 0 25
2 s1 T2 0 4
3 s2 T1 0 5
4 s2 T2 10 5
5 s3 T0 0 15
6 s3 T1 8 0
7 s3 T2 2 8
8 s5 T0 0 10
9 s5 T1 2 5
10 s5 T2 5 6
11 s4 T1 0 18
12 s4 T2 10 2

The first step in the coordination of agents by the IC
is to specify a strategy. The joint objective that the IC
selects for the team is to rescue all the victims distributed
in the five operational areas. Table V presents the human
strategy composed of three threads to achieve the defined
goal. Thread 1 states that the first priority of the team is
to perform reconnaissance and search operations in three
geographic areas {s3, s4, s5}. Any appropriate subset
(sufficient coalition) of four agents {a0, a2, a6, a7} can
be assigned to this thread to accomplish the tasks that
are spatially distributed within these areas. The human
strategy has also defined agent a2 for three threads. To
specify a strategy, the IC considers two important facts:
1) agent availability, and 2) enabled tasks. Agents shared
among threads and task dependencies among the threads
make threads either completely or partially interdepen-
dent. For example, the search LoTeM task of the first
thread enables/reveals the light rescue LoTeM task of the
second thread.

TABLE V.: Example of Human Strategy with Three Threads Specified
by the IC for Centralized Multi-agent Coordination

Thread Id Sub- Sub-Goal Sub-
Location (Task Type) Team

1 s3, s4, s5 T0, T1 a0, a2, a6, a7
2 s3, s4, s5 T2 a2, a6, a7
3 s1, s2 T0, T1, T2 a0, a2, a6, a7

The second step in multi-agent coordinating is to ex-
ecute the human strategy by assignment (or allocation)
of the agents to the threads. We assume that the IC has
sent four free agents to thread 1. To distribute the agents
among the threads, the IC applies two simple methods: 1)
select a sufficient subset of available agents for a thread
for which this subset provides a maximum amount of
capabilities, and 2) select a sufficient subset of available
agents for a thread for which this subset provides a
minimum yet sufficient amount of capabilities. The result
is a set of two alternatives for selecting a choice as the
final strategic decision as shown in Table VI. A choice is
then made, for example, the first alternative is selected by
the IC, and its information is disseminated. This decision
constrains all four agent to thread 1, implying that the
agents are allowed to only perform reconnaissance or
search tasks distributed in {s3, s4, s5}.

In this step, the IC addresses the following questions:
• What alternatives are available for making a choice?
• How is a set of feasible alternatives calculated?
• When are these alternatives calculated?

TABLE VI.: Two Types of Assignment of Agents (AoA) to the Human
Strategy as Two Alternatives for Making a Choice at Time 0

AoA to AoA to AoA to
No. Method Thread 1 Thread 2 Thread 3
1 max a0, a2, a6, a7
2 min a2 a6 a0, a7

During operations, the IC continuously monitors the
real-time state of the task environment to identify a correct
time to adapt the current strategic decision. This requires

2588 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER



the IC to continually observe the real-time and updated
information of the complete environment and identify a
subset of assigned agents that should be released from
their threads and be assigned to subsequent threads. This
results in the re-running of the strategic decision making
procedure. The IC must address the following questions:

• Is this the right time to revise/adjust the strategic
decision?

• What agents should leave what threads?
• What threads should receive what released agents?

III. LITERATURE REVIEW

The problem addressed by this paper has been thor-
oughly studied and a data model has been designed for
formulating the problem [13]. The design of a GIS-based
intelligent software system, called GICoordinator, has
been proposed for this problem and the requirements of
this system have been defined [14]. These works provide
essential information for this paper to design and develop
the proper algorithm.

The incident commander system is a disaster-
management tool based on a series of rational bureaucratic
principles for disaster response [2]. The basic system
objectives and plans are established at or near the top
of the hierarchy and used as the basis for decisions and
behaviors at lower levels. FEMA provides a set of useful
manuals and guidelines regarding practices. However, it
does not explicitly define the design requirements and
algorithms for preparing incident action plans.

STaC is a valid approach that addresses strategic plan-
ning issues [10]. There are two inefficiencies, however,
in this approach. First, STaC is based on C TAEMS and
is not perfect for modeling this type of problem [13].
Moreover, STaC selects and automatically assigns a set
of agents that provides the threads with the minimum ca-
pabilities. This decision making approach can sometimes
be wrong as it is sometimes best to have all the useful
agents assigned to one thread.

There are other works related to the team task-
assignment problem that are applicable to an IC. A spatio-
temporal task allocation algorithm for human groups is
proposed for rescue operations management [19]. The
goal of the RoboCupRescue simulation project is to
build a simulator of rescue teams (fire-fighting, police,
ambulance) acting in large urban disasters to minimize
damages caused by earthquakes such as buried civilians,
building fires, and blocked roads [8]. Unfortunately, these
approaches are automated systems that do not involve
the human in the planning cycle. Furthermore, decisions
made by these approaches specify agent actions fully and
explicitly.

There are related automated mixed approaches that
include the participation of human teams. SpDI2A (Spa-
tially Distributed Intelligent Assistant Agents) includes
human activity to form a human-agent team. Human-
agent teams aim to distribute search and rescue tasks
among themselves and assign tasks to the proper teams
[12]. The goal of the COORDINATORS program is to

create distributed intelligent software systems that help
field units adapt their mission plans as the situation
around them changes and influences their plans. A single
COORDINATOR is partnered with each tactical unit to
collaborate and coordinate with the other tactical units
to optimize necessary mission changes [1], [9]. Unfortu-
nately, these systems address tactical decisions that are not
applicable to the strategic planning problems of incident
commanders.

DEFACTO incorporates artificial intelligence, 3D visu-
alization, and human-interaction reasoning into a unique
high-fidelity system for training incident commanders. A
key aspect focuses on adjustable autonomy that refers
to an agent’s ability to dynamically change his own
autonomy and possibly transfer control of a decision to
another human or agent [18]. Adjustable autonomy is
different from the strategic planning problems that an
incident commander must solve.

IV. PROBLEM STATEMENT

To gather further insight to the problem, Fig. 2 presents
the structure of the problem faced by this paper. Required
data and desirable results are shows in this figure. This
section is dedicated to the description of these elements.

Figure 2: Structure of the problem

A. The Problem Domain

The domain of emergency/crisis response is concerned
with reducing the number of fatalities in the first few
days after a disaster (natural or human-made). USAR
(Urban Search and Rescue) has a significant role in this
domain. USAR operations involves four task types: (1)
reconnaissance and assessment by collecting information
on the extent of the earthquake damage, (2) search and
locate victims trapped in collapsed structures, (3) extract
and rescue trapped victims, and (4) transport and dispatch
injured survivors to hospitals and shelters. Rescue tasks
can be classified into three categories: light, medium, and
heavy, according to their capability requirements.

Teams are often organized hierarchically. This is espe-
cially true for command and control organizations in mil-
itary and emergency response. A disaster response team
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such as a firefighting team or INSARAG has a hierarchical
structure composed of an incident commander at the top
level of the team and agents in the lower nodes of the
hierarchy.

B. Agents

In real domains, a team of agents, field units or robots,
is faced with the problem of performing geographically
dispersed tasks under evolving execution circumstances
in a manner that achieves a high-level objective in a
minimum time. These agents are spatially distributed
in a geographic environment, have different capabilities,
move from one location to another, perceive their local
environment, execute strategic decisions made by their
incident commander (IC), have partial information of the
state of the environment, make full decisions regarding
their own actions, coordinate their actions with each other,
cooperate with each other, perform various tasks, and
report to the operations center. In addition, there is an
uncertainty in action duration and outcome. Because he
has a global overview of the state of the environment, the
role of the IC is to coordinate and control the agents.

Tasks to be performed are spatially located in geo-
graphic objects (buildings, road segments, city blocks,
or zones), require one capability or several synchronous
capabilities, entail various dependencies, have dynamic
and temporal quantities, and take considerable time to
be completed. Team members work with incomplete and
uncertain task information (spatial distribution, quantity,
and duration of tasks) and new tasks may be revealed by
the actions of the agents or discovered by them in time
and space.

C. Location-based Temporal Macro Tasks (LoTeM)

The information in LoTeM tasks forms a global picture
of the task environment for the incident commander. A
LoTeM task is an aggregate task that combines a subset
of tasks that have two criteria: 1) identified tasks are from
the same task type, and 2) tasks are spatially contained
within a specific geographic object (or adjacent to a road
segment) to which this LoTeM task is located. LoTeM
tasks are encoded with geographic information.

At a specific time, a LoTeM task contains two variables:
1) an ”Enabled” number of tasks, and 2) a ”Not Yet
Enabled” number of tasks. The Enabled variable states
the number of available tasks observed, discovered, or
revealed within an associated geographic object. Agents
can only perform tasks that have become Enabled. The
Not Yet Enabled number states how many homogeneous
tasks are estimated to be revealed or discovered in the
future. These two numbers are dynamic and uncertain
quantities that may vary over time because agents can
complete enabled tasks while other agents may reveal
other tasks. These numbers provide an estimation of the
total duration and total capabilities required to perform
this task type in a geographic area.

There are interdependencies between LoTeM tasks as-
sociated with a specific location. For example, a recon-
naissance LoTeM task (number of Enabled plus Not Yet
Enabled) can enable the Not Yet Enabled part of the
LoTeM search task within the same geographic area.

D. Human Strategy

The workflow of the multi-agent coordination by the
IC is presented in Fig. 3. The first step is to define
a strategy. Strategy specification enables an IC, as a
human, to express and encode his intuition and initiative
for the multi-agent coordination and action planning to
achieve a global objective. A human strategy partitions
and decomposes a complex problem into a finite set of
prioritized sub-problems [10], [13]. A human strategy
specification is composed of a set of threads. A thread
contains a unique ranking, sub-team (a subset of agents),
sub-goal (a subset of task types), and sub-location (a
subset of geographic areas). Human strategy will allow
agents to engage in several threads.

Figure 3: Work flow of multi-agent coordination by the IC

E. Feasible Alternatives

The execution of a strategy is the strategic decision-
making process. It is the problem of assignment/allocation
of available agents to threads at a specific time. A
strategic decision states what agents are assigned to what
threads and constrains the actions of the agents to the
threads. An agent is allocated to only one thread. A thread
receives new agents, called available agents, from two
sources: 1) from a higher thread that has released them,
or 2) from a human who has directly entered them into
the thread.

A thread, as an autonomous entity, can select a suf-
ficient subset of available agents and send unrequired
agents to a lower thread. There may be a number of these
subsets. Therefore, a set of feasible alternative scenarios
may exist that present different distributions of the agents
among the threads. A feasible alternative can be selected
as a strategic decision.
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Agents flow from a higher thread to a lower thread
through a human strategy. For example, the human strat-
egy specified in Table V includes three threads as three
simple sub-problems. First, human strategy execution
enters/releases agent a2 to thread 1. Then, this agent
is assigned to thread 2 after it is released by thread 1.
Finally, this agent will be assigned to thread 3. It takes
time for this agent to reach thread 3.

F. Time for Decision Adapting

An agent assigned to a certain thread is retained by
this thread until this thread releases this agent into the
next thread as an idle/available agent. The IC must adjust
and adapt a strategic decision to the new state of the
environment in a timely manner. It is necessary to detect a
correct time for releasing the proper agents from a thread
to facilitate making a new strategic decision at a new time.

G. Importance of the Problem

The calculation of feasible alternatives and adapting
of a strategic decision are two important responsibilities
of an IC in a multi-agent coordination. They are time-
consuming processes. They become more difficult and
challenging for the IC when the human strategy contains
several interdependent threads that require the IC to
continuously revise and re-make strategic decisions under
rapidly dynamic situations and time pressure. Conse-
quently, this paper focuses on these two significant issues
and states two research questions:

• How to develop an automated algorithm that can
calculate feasible alternatives for making a choice
whenever threads receive new agents?

• How to develop an autonomous algorithm that can
monitor the state of the environment to identify what
agent (or set of agents) should be released from what
thread (or several threads) within a strategic decision
at a proper time?

V. ALGORITHM

Our proposal is an automated/autonomous algorithm
that assists an IC in a centralized multi-agent coordina-
tion. The responsibilities of this algorithm are presented
in Fig. 3. The proposed workflow shows a mix-initiative
approach in which humans and this intelligent algorithm
collaborate on solving a complex problem. This algorithm
includes two sub-algorithms whose pseudo code is pre-
sented in Algorithm 1 and Algorithm 2.

Algorithm 1 is an automated algorithm that calculates
a finite set of feasible alternatives for making a strategic
decision. It expands a decision tree from a node in which
a thread (or several threads) has received new agents from
the IC or from a higher thread. Thread n of the strategy
is associated with level n of the decision tree from which
it receives, from a higher thread, a number of nodes that
are in fact leaf nodes of the tree. This thread expands the
tree from all the received nodes and generates new nodes
for each received node. Each node expresses what agents

Data: n :an entity of the ”stateNode” class of the data model.
Data: S :an entity of the ”strategy” class.
Data: D :the problem domain.
Data: p :type of selection method.
Result: N :a set of entities of the ”stateNode” class that are final

feasible alternatives.
for i← 1 to |S.Threads| do

t← S.Threads[i];
ta← n.ThreadAssignments node[i];
ta.MacroTasks ofThread←−
f Calculate MacroTasks(n.Segments node, t,D);

end
Na←− ∅;
Nb←− ∅;
Nb←− Nb ∪ {n};
for i← 1 to |S.Threads| do

t← S.Threads[i];
for nb ∈ Nb do

ta← nb.ThreadAssignments node[i];
A1←− f Identify Agents ResidentIn(ta);
A2←− f Identify Agents ReceivedBy(ta);
for m0 ∈ ta.macroTask ofThread do

tm0← m0.T emporalMacroTasks.Last();
tm0.LegalAssignments←−
f Select Efficient Agents(m0, t, A1, A2);

end
M ←− ta.macroTask ofThread;
C1←− f Form EfficientCoalitions(M,A1, A2);
C2←− f Purify Coalitions(C1,M);
C3←− f Select Coalitions(C2, p);
for j ← 1 to |C3| do

Na←−
Na ∪ {f Generate NewNode(C3[j], nb)};

end
end
Nb←− Na;
Na←− ∅;

end
N ←− Nb;

Algorithm 1: Automated algorithm for calculation of
finite set of feasible alternatives for making a strategic
decision

have been assigned to higher threads and what agents
have been released into this thread. Finally, new nodes
generated by this thread are disseminated to the lower
threads.

For each node, this thread first extracts LoTeM tasks
associated with this thread. Then, it calculates a set of
efficient coalitions using all the available agents (previ-
ously assigned agents and recently received agents). An
efficient coalition is composed of a subset of available
agents that can provide all the capabilities required by
this thread considering the strategy definition, state of the
tasks, capabilities of the agents, and the problem domain.
A new node is generated for each coalition to show what
agents are allocated to this thread and what agents are
going to be released into a lower thread. It is important
to remember that the state of the tasks does not change
and all decisions taken are related to a snapshot. A node
is modeled by the ”stateNode” class of the data model
presented in Fig. 4.

Algorithm 2 is an autonomous algorithm that continu-
ously monitors the task states to detect the proper time
when a subset of assigned agents should be released from
their threads. In real-time, this algorithm continuously
observes and monitors the task environment that changes
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Data: n: an entity of the ”stateNode” class of the data model.
Data: S: an entity of the ”strategy” class.
Data: D: the problem domain.
Result: n.ThreadAssignment node: the updated attribute of

the n0.
repeat

for i← 1 to |S.Threads| do
t← S.Threads[i];
ta← n.ThreadAssignments node[i];
ta.MacroTasks ofThread←−
f Calculate MacroTasks(n.Segments node, t,D);

end
A3←− ∅;
for i← 1 to |S.Threads| do

t← S.Threads[i];
ta← n.ThreadAssignments node[i];
A1←− ta.AgentIds assigned;
for m0 ∈ ta.macroTask ofThread do

tm0← m0.T emporalMacroTasks.Last();
A1←− A1−
f Select Efficient Agents(m0, t, A1, {});

end
A3←− A3 ∪A1;

end
if |A3| = 0 then

f WaitForaWhile();
end
else

TA←− n.ThreadAssignment node;
f Releas Agents(TA,A3);
break;

end
until the global objective is achieved;

Algorithm 2: Autonomous algorithm for adaption of a
strategic decision

over time. It aims to identify, in a timely manner, a subset
of assigned agents that can no longer provide any efficient
capabilities for their threads. This algorithm sends these
unrequired agents to a lower prioritized thread in the
identified time. A release time indicates that the strategic
decision should be refined. This process results in re-
executing Algorithm 1.

To develop these algorithms, the first step is to formu-
late the problem. The SAP data model presents elements
of the problem, properties, relationships, and interaction
among these elements with regard to the problem data
modeling [13]. This data model is used to support the
development of the proposed algorithm. Fig. 4 shows a
part of the UML class diagram of the data model that is
used in this paper.

The following subsections are dedicated to the descrip-
tion of the sub-algorithms.

A. Calculate Macro Tasks

The purpose of Algorithm 3 is to extract the LoTeM
tasks that are associated with a definite thread. This algo-
rithm integrates the thread definition with the segments-
located macro tasks to select a subset of segment-based
macro tasks that are located in the thread. It classifies the
selected tasks according to the task types of the problem
domain and aggregates tasks of each group to calculate a
new macro task that is associated with this thread. Table
VII shows the achieved result from the execution of this
algorithm.

Figure 4: Part of the SAP data model that is used for the problem
formulation [13]

B. Select Efficient Agents for a Macro Task

This algorithm aims to identify a subset of available
agents that are efficient for a macro task of a specific
thread. Two objectives are identified: 1) define whether an
available agent is allowed to be assigned to a thread, and
2) calculate a maximum ability that an agent can provide
for a macro task. Algorithm 4 shows that this algorithm
considers three criteria for the selection of an agent.

Tasks require capabilities to be completed and agents
provide capabilities. An agent is efficient for a task if he
provides any capabilities required by that task. To simplify
this algorithm, we assume that each task type requires
a specific capability and agents provide different capa-
bilities. This assumption ignores tasks that may require
simultaneous capabilities. This algorithm applies both
Enabled and Not Yet Enabled tasks in the computation.

C. Form Efficient Coalitions for a Thread

Algorithm 5 aims to calculate a set of efficient coali-
tions for a specific thread. An efficient coalition is a subset
of efficient agents that can provide all the capabilities
required for this thread. An efficient coalition has the
ability to perform all the tasks contained by this thread. A
coalition is a candidate whose agents will be assigned to
the thread. In coalition formation theory, performance of
a coalition is a function of the capabilities of the agents
and quality of cooperation among the agents.

This algorithm engages all efficient and previously
assigned agents in this process. If a coalition is not found,
the algorithm selects a coalition that contains all the
efficient agents; however, this coalition will not fully meet
the capabilities that the thread requires to complete the
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n0.Segments node, t, D
Data: S: a set of ”segment” elements.
Data: t: an entity of the ”thread” class that presents a thread in

the human strategy.
Data: D: a set of ”taskType” elements in the problem domain.
Result: M : a set of ”macroTask” elements that will be extracted

for t.
begin

M ←− ∅;
for d0 ∈ D do

m0← f Initialize aNew macroTask();
m0.taskType← d0;
m0.geoObjectId← t.threadId;
m0.T emporalMacroTasks←−
{f Initialize aNew temporalMacroTask()};
M ←−M ∪ {m0};

end
for s0 ∈ S do

for m0 ∈ s0.MacroTasks ofSegment do
if m0.taskType.taskTypeId ∈
t.TaskTypeIds defined and
s0.segmentId ∈ t.segmentIds defined then

for i← 1 to |M | do
if M [i].taskType = m0.taskType
then

c0←
|m0.T emporalMacroTasks|;
tm0←
m0.T emporalMacroTasks[c0];
tm2←
M [i].T emporalMacroTasks[0];
tm2.disenabledAmount←
tm2.disenabledAmount +
tm0.disenabledAmount;
tm2.enabledAmount←
tm2.enabledAmount +
tm0.enabledAmount;

end
end

end
end

end
end

Algorithm 3: Extract the set of macro tasks contained
by a thread.

TABLE VII.: Temporal Macro Tasks associated with the Three Threads
in the Simulated USAR Scenario

Location Task-Type Not Yet Enabled Enabled
(Thread) Number Number
Thread 1 Reconnaissance 0 25
Thread 1 Search 12 23
Thread 2 Light Rescue 17 16
Thread 3 Reconnaissance 0 25
Thread 3 Search 0 5
Thread 3 Light Rescue 10 9

task. We assume that each macro task requires one type
of capability.

D. Purify Coalitions

Algorithm 6 aims to purify a set of coalitions. It is
important for the system to find and eliminate redundant
coalitions. The role of two coalitions formed by different
agents is the same for a thread if they provide the same
capabilities for the thread. Redundant coalitions cause a
loop problem in search algorithms.

The central part of this algorithm is an ability matrix.
This matrix is used to present a matrix of the total
capabilities that all the coalitions provide for all the macro

Data: t: an entity of the ”thread” class that presents a thread.
Data: A1: a subset of agents assigned to t.
Data: A2: a subset of agents released/entered into t.
Data: m: an entity of the ”macroTask” class.
Result: LA: a subset of entities of the ”legalAssignment” class to

encode agents selected for the m.
LA←− ∅;
tm0← m.TemporalMacroTasks.Last();
tm0.LegalAssignments←− ∅;
for a0 ∈ A1 ∪A2 do

if a0.agentId ∈ t.AgentIds defined then
if tm0.disenabledAmount > 0 or
tm0.enabledAmount > 0 then

x0← 0;
for C0 ∈ a0.agentType5.AgentCaps do

c2← m.taskType5.CapTypeIds[0];
n← C0.CapTypeIds.CountOf(c2);
if x0 < n ∗ aC0.speed then

x0← n ∗ aC0.speed;
end

end
if x0 > 0 then

lA0←−
f Initialize aNew legalAssignment();
lA0.agentId← agent.agentId;
lA0.maxAbility ← x0;
LA←− LA ∪ {lA0};

end
end

end
end

Algorithm 4: Select efficient agents for a macro task
associated with a thread

tasks. Rows indicate macro tasks and columns indicate
coalitions. A number in a cell shows the total capability
that the relevant collation can provide for the relevant
macro task. Finally, a number representing the weighted
total ability is calculated for each collation.

E. Select Coalitions

This simple algorithm aims to choose a number of
coalitions from the purified coalitions for a specific thread
according to a selection method. We consider two options:
1) sort the coalitions according to their weighted total
ability and then select the first and last that represent the
minimum and maximum ability, and 2) select all available
agents.

F. Generate a New Node

For a certain thread, a selected coalition defines what
agents should be assigned to this thread and what agents
should leave the thread. A number of coalitions may be
calculated and each one presents a feasible alternative
for an appropriate assignment of available agents to
this thread. A new node is produced for each coalition
and agents of this coalition are assigned to the related
thread. Unwanted agents are assigned to the next thread.
This algorithm updates the ”ThreadAssignments node”
attribute of the node.

VI. IMPLEMENTATION AND EVALUATION

The presented algorithms were implemented in GI-
Coordinator. GICoordinator is a spatial intelligent agent
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Data: M : the set of ”macroTask” elements associated with a
specific thread.

Data: A1: a subset of agents assigned to this thread.
Data: A2: a subset of agents released/entered into this thread.
Result: C: a set of ”coalition” elements.
begin

C ←− ∅;
C0←− ∅;
A1←− A1 ∩ f Read EfficientAgents(M);
A2←− A2 ∩ f Read EfficientAgents(M);
P ←− f Power(A2);
for p0 ∈ P do

p0←− p0 ∪A1;
C0←− C0 ∪ {p0};

end
for c0 ∈ C0 do

uc0←− true;
for m0 ∈M do

um0←− false;
tm0← m0.T emporalMacroTasks.last();
for lA0 ∈ tm0.LegalAssignments do

if lA0.agentId ∈ c0 then
um0←− true ;
exit for;

end
end
if um0 = false then

uc0←− false;
exit for;

end
end
if uc0 = true then

C ←− C ∪ {c0};
end

end
if C = ∅ then

c2←− f F ind biggest c0In(C0);
C ←− {c2};

end
end
Algorithm 5: Form efficient coalitions for a thread

that assists the IC and supports human decisions in the
coordination of a team of field units. It is used in crisis re-
sponse management, especially in urban search & rescue
operations [14]. This spatial intelligent system supports
the IC with intelligent algorithms for action planning
and task scheduling for the centralized coordination of
a team in a dynamic and spatial environment [15]. It
applies a spatial database for geographic and location-
based information management and uses GIS functions
to support development of these spatial intelligent al-
gorithms [13], [14]. The C#.Net programming language
was used to implement the core of GICoordinator. An
IC is equipped with a computer that runs an instance of
GICoordinator. A simulator that runs multiple instances
of the GICoordinator was developed for the evaluation of
distributed algorithms for decentralized coordination [16].

To better understand these two algorithms, they were
executed for the scenario described in Section II. Fur-
thermore, we tested the automated algorithm on various
human strategies and with different numbers of agents to
calculate the run time and number of generated nodes.
The results are presented in the next section.

Data: M : the set of ”macroTask” elements.
Data: C: the set of ”coalition” elements.
Result: C2: a subset of C that are purified.
begin

C2←− C;
for c0← 1 to |C| do

t0← 0;
for r0← 1 to |M | do

S[r0][c0]← 0;
m0←−M [r0];
tm0← m0.T emporalMacroTasks[0];
for lA0 ∈ tm0.LegalAssignments do

if lA0.agentId ∈ C[c0].AgentIds then
S[r0][c0]←
S[r0][c0] + lA0.maxAbility;

end
end
t0← t0 + S[r0][c0];

end
C[c0].totalAbality ← t0 ∗ |C[c0].AgentIds|;

end
for c0← 1 to |C| do

for c2← c0 + 1 to |C| do
Eq0← true;
for r0← 1 to |M | do

if S[r0][c0] 6= S[r0][c2] then
Eq0← false;
exit for

end
end
if Eq0 = true then

exit for
end

end
if Eq0 = false then

C2←− C2 ∪ {C[c0]};
end

end
end

Algorithm 6: Purify coalitions

VII. RESULT

A. Automated Calculation of Feasible Alternatives

Figure 5 presents the expanded/generated decision tree
from the automated algorithm using a state node in which
four free agents have been sent to thread 1 by the IC at
time 0 in the described USAR scenario. Table VIII shows
the result of this algorithm that represents a collection of
ten alternative scenarios presented for the IC to support
and assist him in selecting a choice for a strategic agent
coordination decision. Ten new nodes were generated and
each one presents a different assignment of agents to the
threads.

TABLE VIII.: Set of Alternatives Calculated by Automated Algorithm
for Making a Strategic Decision at Time 0

Choice Assignment Assignment Assignment
No. to Thread 1 to Thread 2 to Thread 3
1 a2 a7 a0, a6
2 a2 a6, a7 a0
3 a0, a7 a6 a2
4 a2, a7 a6 a0
5 a0, a2 a7 a6
6 a0, a2 a6, a7
7 a0, a2, a6 a2
8 a2, a6, a7 a0
9 a0, a2, a7 a6
10 a0, a2, a6, a7

2594 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER



Figure 5: Expand the decision tree from State Node 0 using the automated algorithm

B. Autonomous Adaption of a Strategic Decision

Assume that the sixth alternative was selected by the IC
or by an intelligent assistant system. Table IX shows this
strategic decision made at time 0. The information regard-
ing this decision was sent to the four agents distributed in
the operational area. According to this decision, the ac-
tions of agents {a0, a2} are limited to reconnaissance and
search tasks spatially located/distributed at the proximity
of the three roads {s3, s4, s5}. Furthermore, according
to this decision, the actions of agents {a6, a7} will
be restricted to light rescue tasks located in the same
geographic area. This mission started at time 0.

We have simulated the problem using a suitable ap-
proach [15]. An effective algorithm was used to dynami-
cally assign the LoTeM tasks to the agents in the multi-
agent scheduling process.

TABLE IX.: First Strategic Decision, the Sixth Alternative at Time 0,
for Coordination and Control of Agents

Thread Id Assigned Agents Start Time
1 a0, a2 0
2 a6, a7 0
3 0

Furthermore, assume that during the emergency re-
sponse operations, new data are reported to the operation
center from the agents. This center gathers and integrates
the data to continuously/temporally provide a situational
awareness in a timely manner as an overall picture for
the IC. The IC is required to adapt the current strategic
decision to the new situation at a proper time. Therefore,
he must scan and monitor the state of the environment.
At time 96, Table X shows the updated information of
the LoTem tasks.

TABLE X.: Updated State of Twelve Segment-based Temporal Macro
Tasks at Time 96 using GICoordinator [15].

No. Location Task-Type Not Yet Enabled Enabled
(Road S.) Amount Amount

1 s1 T0 0 25
2 s1 T2 0 4
3 s2 T1 0 5
4 s2 T2 10 5
5 s3 T0 0 0
6 s3 T1 0 8
7 s3 T2 2 5
8 s5 T0 0 0
9 s5 T1 0 7
10 s5 T2 5 3
11 s4 T1 0 9
12 s4 T2 5 7

The autonomous algorithm revealed that time 96 is
the correct time for adaption of the strategic decision.
Based on the strategic decision and Table X, there is
no available task that agent a0 can perform; other agents
must continue their tasks. The result was to release the
agent a0 from thread 1 and assign him to thread 2. This
action triggers the automated algorithms that re-calculate
a feasible alternative as shown in Fig. 6.

C. Evaluation of Efficiency of the Automated Algorithm

To evaluate the running time of the automated algo-
rithm, we executed it with the same tasks with three
human strategies and different team sizes. Strategy I
includes three threads that are agent independent. Strategy
II includes three semi-independent threads. Strategy III is
more complex with three threads where all the agents are
defined for all the threads.

Table XI shows the results of this test. The result
achieved for each scenario includes two parameters: 1)
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Figure 6: Autonomous adaption of the first strategic decision at time 96
by releasing agent a0 from thread 1 into thread 2 and the automated
calculation of a feasible alternative for this adaption decision.

TABLE XI.: Evaluation of Running Time (in milisecond) of the Auto-
mated Algorithm

Team All Coalitions Min-Max Coalitions
Size Strategy Run Time Nodes Run Time Nodes

4 I 27 1 31 1
8 I 44 16 38 8
12 I 51 81 43 8
4 II 29 2 28 2
8 II 42 28 41 6
12 II 101 171 41 6
4 III 51 10 38 3
8 III 106 172 40 4
12 III 922 1548 117 4

the running time, and 2) number of alternatives that were
calculated for this scenario.

..

VIII. CONCLUSION

This paper presented an intelligent algorithm composed
of two sub-algorithms for 1) automated calculation of
feasible alternative scenarios for selecting a strategic
decision at a specific time, and 2) autonomously detecting
the correct time at which this strategic decision should
be refined by releasing a set of identified agents from
their threads. This algorithm autonomously controls what
agents should be released from their thread within a
strategic decision. The role of the human is to select an
alternative as a strategic decision.

A strategic decision constrains agents to threads; how-
ever, it does not assign tasks to agents. A strategic
decision controls the domain of activities of the agents.

A coalition, which is a set of agents, is sufficient for a
thread if it provides all the capabilities required by all the
tasks (Enabled and Not Yet Enabled tasks) located in this
thread. A question that arises is: What coalition among

the available coalitions can accomplish this thread in the
least time? This question will be addressed in a future
work.

Many feasible alternatives are found for a case that
contains a large team and a complex strategy. The selec-
tion of the two coalitions that provide the minimum and
maximum capabilities for a thread reduce the run time
and number of generated alternatives.

The value of this algorithm is to assist a human and col-
laborate with him in the calculation of a centralized multi-
agent coordination. This issue is essential, especially in
a situation where the human strategy defines agents for
several threads.

This algorithm can be used in the multi-agent planning
problem. An action plan made by the IC is a sequence of
strategic decisions that states how a team of agents can
achieve the goal.

In the future, we will investigate a search-based al-
gorithm that aims to determine an optimal decision by
selecting the best choice among available alternatives.
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