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Abstract— Chameleon all-but-one trapdoor function (ABO-
TDF) is an important and useful primitive which was
introduced in [9]. With the help of it, a more efficient black-
box construction of public key encryption (PKE) scheme,
which is secure against chosen-ciphertext attack (CCA),
can be given. In this paper, we formally generalize the
construction of chameleon ABO-TDFs. As a special case of
our generalization, a concrete construction of ABO-TDFs,
which was first introduced by Peikert and Waters [1], is
presented. Although the existence of lossy trapdoor functions
is equivalent to that of ABO-TDFs by using the conversion
in [1], as Peikert et al. said, the conversion involves some
degradation in lossiness (i.e. additional leakage). Therefore,
in this sense, our result is different from those in [21] where
Hemenway et al. proved that homomorphic encryption with
some additional properties implies lossy trapdoor functions.

Index Terms— lossy trapdoor functions; chameleon all-but-
one trapdoor functions; chosen ciphertext security; homo-
morphic encryption

I. INTRODUCTION

LOSSY trapdoor functions (LTDFs) were first intro-
duced by Peikert and Waters [1]–[3] and further

studied in [4]–[12]. LTDFs imply lots of fundamental
cryptographic primitives, such as collision-resistant hash
functions, oblivious transfer, etc. In addition, they can
also be used to construct many cryptographic schemes,
such as deterministic public-key encryption, encryption
and commitments that are secure against selective opening
attacks. Most important of all, LTDFs enable black-box
construction of CCA secure PKE schemes (see [13]–[20]
and their references).

LTDF is centered around the idea of losing information.
Informally, LTDF is a public function f that is created to
behave in one of two ways. The first way corresponds
to the usual completeness condition for an (injective)
trapdoor function: given a suitable trapdoor for f , the
entire input x can be efficiently recovered from f(x). In
the second way, f statistically loses a significant amount
of information about its input, i.e. most outputs of f
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have many preimages. Finally, the two behaviors are
indistinguishable: given just the public description of f ,
no efficient adversary can tell whether f is injective or
lossy.

LTDFs were further extended to a richer abstraction
called all-but-one trapdoor functions (ABO-TDFs). In an
ABO collection, each function has an extra input called
its branch. All of the branches are injective trapdoor
functions (having the same trapdoor value), except for
one branch which is lossy. The lossy branch is specified
as a parameter to the function sampler, and its value is
hidden by the resulting function description.

The black-box construction of CCA-secure PKE from
LTDFs in [1] needs a collection of LTDFs, a collection
of ABO-TDFs, a pair-wise independent family of hash
functions, and a strongly unforgeable one-time signature
scheme, where the set of verification keys is a subset of
the branch set of the ABO collection.

Since LTDFs implies CCA secure PKE schemes, in
[21], Hemenway and Ostrovsky considered the problem
whether homomorphic encryption implies LTDFs. Fortu-
nately, they found the “bridge” and presented an excellent
construction of LTDFs from homomorphic encryption
schemes with some additional properties.

About LTDFs and ABO-TDFs, in [1], Peikert and
Waters has proved that, from the perspective of existence,
LTDFs are equivalent to ABO-TDFs with binary branch
sets and an ABO collection for large branch sets can
also be constructed from one with just binary branch set.
However, their conversion involves some degradation in
lossiness (i.e. additional leakage) and whether this can be
improved remains open [1].

Lai et al. [9] introduced a new notion named chameleon
ABO-TDFs whose goal is to replace ABO-TDFs and
strongly unforgeable one-time signature in the construc-
tion of CCA-secure PKE schemes, which can improve
the efficiency of [1]. They also proposed a concrete con-
struction of chameleon ABO-TDFs based on any secure a-
gainst chosen plaintext attack (CPA) homomorphic public
key encryption scheme with some additional properties,
like the Damgård-Jurik encryption scheme [22].
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A. Our Contributions

In this paper, we formally generalize the construction of
chameleon ABO-TDFs, which includes their construction
as a special case. As another special case of our gener-
alization, a concrete construction of ABO-TDFs instead
of lossy trapdoor functions is also presented, which does
not involve degradation of lossiness. Since the lossiness
amount of information is of key importance for the
construction of CCA-secure public key schemes, in this
sense, our result is different from that of [21].

B. Organization of the Paper

The remainder of the paper is organized as follows. In
Section 2 we review some standard notions and crypto-
graphic definitions. In Section 3 we describe our generic
construction of chameleon ABO-TDFs. In Section 4, we
give two special cases which can be regarded as two
applications of our generic construction. In Section 5, we
describe a simple homomorphic encryption scheme which
can be used in our construction.

II. PRELIMINARIES

In this section we review some standard notations and
cryptographic definitions.

A. Basic Concepts

Let N be the set of natural numbers. If M is a set, then
we let |M | denote its size and m

R←− M denote picking
element m uniformly at random from M. Let λ be a
security parameter and PPT is probabilistic polynomial
time. Let z ← A(x, y, · · · ) denote the operation of
running an algorithm A with inputs (x, y, · · · ) and output
z. A function negl(λ) is negligible (in λ) if negl(λ) =
o(λ−c) for any constant c > 0. Let U` denote the uniform
distribution on `-bit binary strings.

B. Cryptographic Notions

1) Lossy Trapdoor Functions: Let n(λ) = poly(λ)
be the length of the functions’s input and k(λ) ≤ n(λ)
denotes the lossiness of the collection. Moreover, we also
define the residual leakage value r(λ) = n(λ)− k(λ).

Definition 1 (Lossy Trapdoor Functions [1]–[3]): A
collection of (n, k)-lossy trapdoor functions is given
by a tuple of probabilistic polynomial-time algorithms
(Sinj, Sloss, F ,F−1) having the following properties.

1) Easy to sample an injective function with trapdoor:
Sinj(1

λ) outputs (s, t) where s is a function index
and t is its trapdoor, F (s, ·) computes an injec-
tive (deterministic) function fs(·) over the domain
{0, 1}n, and F−1(t, ·) computes f−1

s (·).
2) Easy to sample a lossy function: Sloss(1

λ) outputs
s, where s is a function index, and F (s, ·) computes
a (deterministic) function fs(·) over the domain
{0, 1}n whose image has size at most 2r = 2n−k.

3) Hard to distinguish injective from lossy: The en-
sembles {s : (s, t) ← Sinj(1

λ)}λ∈N and {s :

s ← Sloss(1
λ)}λ∈N are computationally indistin-

guishable.
Remark 2: In fact, we also consider a relaxed defini-

tion of lossy TDFs in some situations, which we call
almost-always lossy TDFs. In particular, we need that
with overwhelming probability, the description s of a
function describes an injective function while F−1(s, ·)
is the inversion of F (s, ·). Moreover, we also require that
the lossy function F (s, ·) generated from Sloss has image
size at most 2r = 2n−k with overwhelming probability .

2) All-But-One Lossy Trapdoor Functions: The new
notion of ABO-TDFs is a richer abstraction of LTDFs.
Briefly, in an ABO collection, every function has another
extra input which is called its branch. All the branches
are injective TDFs, except for one branch that is lossy.
Formally,

Definition 3 (ABO-TDFs [1]–[3]): A collection
of (n, k)-all-but-one trapdoor functions with branch
collection B is given by a tuple of possibly PPT
algorithms (Sabo, Gabo, G

−1
abo) having the following

properties:
1) Sampling a trapdoor function with given lossy

branch: for any b∗ ∈ Bλ, Sabo(b∗) outputs (s, t),
where s is a function index and t is its trapdoor.

2) Evaluation of injective functions: For any b ∈ Bλ
distinct from b∗, Gabo(s, b, ·) computes an injective
(deterministic) function gs,b(·) over the domain
{0, 1}n, and G−1

abo(t, b, ·) computes g−1
s,b (·).

3) Evaluation of lossy functions: Gabo(s, b∗, ·) com-
putes a function gs,b∗(·) over the domain {0, 1}n
whose image has size at most 2r = 2n−k.

4) Hidden lossy branch: The ensembles {s :
(s, t) ← Sabo(b∗0)}λ∈N,b∗0∈Bλ and {s : (s, t) ←
Sabo(b∗1)}λ∈N,b∗1∈Bλ are computationally indistin-
guishable.

Remark 4: Just as lossy TDFs, we also consider a
relaxed definition of ABO-TDFs and we call it almost-
always ABO-LTDFs. In particular, we require that the
injective, invertible and lossy properties hold with over-
whelming probability.

3) Chameleon All-But-One Trapdoor Functions:
Chameleon ABO-TDFs is also a specific kind of ABO-
TDFs with two variable (a, b) as a branch [9]. We recall
it as follows. Let A×B = {Aλ×Bλ}λ∈N be two families
of sets whose elements is the branches. Then,

Definition 5 (Chameleon ABO-TDFs [9], [10]): A
family of (n, k)-chameleon ABO-LTDFs consists of four
PPT algorithms (Sch, Fch, F

−1
ch ,CLBch) which have the

following properties:
1) Sampling a function: For any λ ∈ N, Sch(1λ)

outputs (s, t,Q) where s is a function index, t is
its trapdoor and Q ⊂ Aλ × Bλ is a set of lossy
branches.

2) Evaluation of injective functions: For any (a, b) ∈
Aλ × Bλ, if (a, b) /∈ Q where (s, t,Q) ←
Sch(1λ), then Fch(s, a, b, ·) computes a injective
function gs,a,b(·) over the domain {0, 1}n, and
F−1

ch (s, t, a, b, ·) computes g−1
s,a,b(·).
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3) Evaluation of lossy functions: For any (a, b) ∈ Aλ×
Bλ, if (a, b) ∈ Q where (s, t,Q) ← Sch(1λ), then
Fch(s, a, b, ·) computes a function gs,a,b(·) over the
domain {0, 1}n whose image has size at most 2n−k.

4) Chameleon property: On input the function index s,
the trapdoor t and any a ∈ Aλ, CLBch computes a
unique b ∈ Bλ to result in a lossy branch (a, b). In
formula, b← CLBch(s, t, a) such that (a, b) ∈ Q.

5) Security (1)—Indistinguishability between lossy
branches and injective branches: It is hard to dis-
tinguish a lossy branch from an injective branch.
Any PPT algorithm A that receives s as input,
where (s, t,Q) ← Sch(1λ), has only a negligible
probability of distinguishing a pair (a, b0) ∈ Q from
(a, b1) /∈ Q, even a is chosen by A. Formally, let
A = (A1,A2) be a distinguisher CH-LI and define
its advantage as AdvCH-LI

A (1λ) :∣∣∣∣∣∣∣∣∣∣
Pr

β = β′ :

(s, t,Q)← Sch(1λ);
a← A1(s);

b0 = CLBch(s, t, a);

b1
R←− Bλ;β

R←− {0, 1};
β′ ← A2(s, a, bβ)

− 1

2

∣∣∣∣∣∣∣∣∣∣
.

It is hard to distinguish a lossy branch from an
injective branch, if AdvCH-LI

A (·) is negligible for
every PPT distinguisher A.

6) Security (2)—Hard to find one-more lossy branch:
Any probabilistic polynomial-time algorithm A
that receives (s, a, b) as input, where (s, t,Q) ←
Sch(1λ) and (a, b)

R←− Q, has at most a negli-
gible probability of outputting a pair (a′, b′) ∈
Q\{(a, b)}.

If F−1
ch (t, a, b, ·) can correctly invert all images of

gs,a,b(·) with (a, b) /∈ Q and CLBch(s, t, a) output b
satisfying (a, b) ∈ Q, both with overwhelming probabil-
ity, then we call the collection almost-always chameleon
ABO-TDFs.

4) Homomorphic Encryption:
Definition 6 (Homomorphic Encryption [9], [10]):

A PKE scheme Π = (Gen,Enc,Dec) is called
homomorphic if:
• It is CPA seucre;
• The plaintext space is a group M and we denote the

group operation by “+”;
• all the ciphertexts are members of a group C ′;
• ∀x0, x1 ∈ X , and ∀r0, r1 in R, there exists an r∗ ∈
R satisfying

Encpk(x0 + x1, r
∗) = Encpk(x0, r0)Encpk(x1, r1).

III. GENERIC CONSTRUCTION OF
CHAMELEON ABO-TDFS

Let d = d(λ), k = k(λ), l = l(λ) be three polynomials
of λ. Let Π = (Gen,Enc,Dec) be a homomorphic en-
cryption scheme with plaintext space M and randomness
space R satisfying |M | > d|R|. In addition, we assume
that

1) M is a finite field (or commutative ring with mul-
tiplicative identity and, with overwhelming proba-
bility, each element in M has multiplicative inverse
when we construct almost-always chameleon ABO-
TDFs).

2) For a,m ∈M , (Encpk(m))a = Encpk(am).
In the following, we give the description of our chameleon
ABO-TDFs (Sch, Fch, F

−1
ch ,CLBch) with the set of

branches A× B = {Aλ ×Bλ}λ∈N = {Mk ×M l}λ∈N:
• Sampling a function: Sch takes as input 1λ. It invokes

Gen(1λ) to generate (pk, sk). Then it samples uni-
formly at random a matrix D = (Ad×(k+1), Bd×l) =
(xij)d×(k+l+1) satisfying rank(Bd×l) ≥ l, where
xij ∈ M for 1 ≤ i ≤ d, 1 ≤ j ≤ k +
l + 1, and computes C = (cij)d×(k+l+1) =
(Encpk(xij))d×(k+l+1). It outputs the function index
s = (pk,C), the trapdoor t = (sk,D) and the set
of lossy branches Q which is the set of all pairs of
(a1, · · · , ak, b1, · · · , bl) ∈Mk+l satisfying

a1x11 + · · ·+ akx1k + x1,k+1

+b1x1,k+2 + · · ·+ blx1,k+l+1 = 0,
a1x21 + · · ·+ akx2k + x2,k+1

+b1x2,k+2 + · · ·+ blx2,k+l+1 = 0,
· · ·

a1xd1 + · · ·+ akxdk + xd,k+1

+b1xd,k+2 + · · ·+ blxd,k+l+1 = 0.
(1)

• Evaluating a function: Fch takes as input
(s, a1, · · · ak, b1, · · · bl, x), where x ∈ M . It
computes

y =
(
(ca111 · · · c

ak
1kc1,k+1c

b1
1,k+2c

bl
1,k+l+1)x,

(ca121 · · · c
ak
2kc2,k+1c

b1
2,k+2 · · · c

bl
2,k+l+1)x,

· · · , (ca1d1 · · · c
ak
dkcd,k+1c

b1
d,k+2 · · · c

bl
d,k+l+1)x

)
:= (y1, · · · , yd)

and outputs y.
• Inverting an injective function: F−1

ch takes
as input (s, t, a1, · · · ak, b1, · · · bl, y), where
(a1, · · · , ak, b1, · · · , bl) /∈ Q. Choose i ∈ {1, · · · , d}
satisfying

a1xi1 + · · ·+ akxik + xi,k+1

+ b1xi,k+2 + · · ·+ blxi,k+l+1 6= 0

and outputs

x = Decsk(yi) ·
(
a1xi1 + · · ·+ akxik + xi,k+1

+b1xi,k+2 + · · ·+ blxi,k+l+1

)−1

• Computing a lossy branch: CLBch takes as input
(s, t, a1, · · · , ak). It can obtain (b1, · · · , bl) since
rank(Bd×l) ≥ l, where Bd×l is the matrix that was
sampled to satisfying (1). Then it output (b1, · · · , bl).

Now we state our main theorem as follows.
Theorem 7: The algorithms (Sch, Fch, F

−1
ch ,CLBch) is

a collection of (log |M |, log |M | − log d|R|)-chameleon
all-but-one trapdoor functions.
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Proof: We prove this theorem from the following
aspects:

1) About injective function Fch : For any
(a1, · · · , ak, b1, · · · , bl) ∈ Mk+l, if we know
(a1, · · · , ak, b1, · · · , bl) /∈ Q, then

y = Fch(s, a1, · · · ak, b1, · · · bl, x)

=
(
(ca111 · · · c

ak
1kc1,k+1c

b1
1,k+2c

bl
1,k+l+1)x,

(ca121 · · · c
ak
2kc2,k+1c

b1
2,k+2 · · · c

bl
2,k+l+1)x,

· · · , (ca1d1 · · · c
ak
dkcd,k+1c

b1
d,k+2 · · · c

bl
d,k+l+1)x

)
is a deterministic injective function over the domain
M since the randomness of the encryption algorith-
m has been determined by the relationships of xij
and cij .

2) About F−1
ch : For any (a1, · · · , ak, b1, · · · , bl) ∈

Mk+l, if (a1, · · · , ak, b1, · · · , bl) /∈ Q, then

y = Fch(s, a1, · · · ak, b1, · · · bl, x)

=
(
(ca111 · · · c

ak
1kc1,k+1c

b1
1,k+2c

bl
1,k+l+1)x,

(ca121 · · · c
ak
2kc2,k+1c

b1
2,k+2 · · · c

bl
2,k+l+1)x,

· · · , (ca1d1 · · · c
ak
dkcd,k+1c

b1
d,k+2 · · · c

bl
d,k+l+1)x

)
=
(
([Encpk(x11)]a1 · · · [Encpk(x1k)]ak

Encpk(x1,k+1) · [Encpk(x1,k+2)]b1

· · · [Encpk(x1,k+l+1)]bl)x,

([Encpk(x21)]a1 · · · [Encpk(x2k)]ak

Encpk(x2,k+1) · [Encpk(x2,k+2)]b1

· · · [Encpk(x2,k+l+1)]bl)x,

· · · ,
([Encpk(xd1)]a1 · · · [Encpk(xdk)]ak

· Encpk(xd,k+1) · [Encpk(xd,k+2)]b1

· · · [Encpk(xd,k+l+1)]bl)x
)

=
(
Encpk(x(a1x11 + · · ·+ akx1k + x1,k+1

+ b1x1,k+2 + · · ·+ blx1,k+l+1)),

Encpk(x(a1x21 + · · ·+ akx1k + x2,k+1

+ b1x2,k+2 + · · ·+ blx2,k+l+1)),

Encpk(x(a1xd1 + · · ·+ akxdk + xd,k+1

+ b1xd,k+2 + · · ·+ blxd,k+l+1))
)
.

Since F−1
ch chooses i ∈ {1, · · · , d} satisfying

a1xi1 + · · ·+ akxik + xi,k+1

+ b1xi,k+2 + · · ·+ blxi,k+l+1 6= 0

and outputs

x = Decsk(yi) ·
(
a1xi1 + · · ·+ akxik + xi,k+1

+b1xi,k+2 + · · ·+ blxi,k+l+1

)−1
,

F−1
ch can retrieve x correctly.

3) About lossy function Fch : For any (a1, · · · , ak,
b1, · · · , bl) ∈ Mk+l, if choose (a1, · · · , ak,

b1, · · · , bl) ∈ Q, then

y = Fch(s, a1, · · · ak, b1, · · · bl, x)

=
(
Encpk(x(a1x11 + · · ·+ akx1k + x1,k+1

+ b1x1,k+2 + · · ·+ blx1,k+l+1)),

Encpk(x(a1x21 + · · ·+ akx1k + x2,k+1

+ b1x2,k+2 + · · ·+ blx2,k+l+1)),

Encpk(x(a1xd1 + · · ·+ akxdk + xd,k+1

+ b1xd,k+2 + · · ·+ blxd,k+l+1))
)

=
(
Encpk(0),Encpk(0), · · · ,Encpk(0)

)
.

Then the image size of Fch is at most d|R|. There-
fore the amount of lossiness is at least log|M | −
logd|R|.

4) Hard to distinguish a lossy branch from an injective
branch: Since the scheme Π = (Gen,Enc,Dec) is
CPA-secure, the scheme Π′ = (Gen′,Enc′,Dec′),
whose encryption algorithm is

Enc′pk(m1, · · · ,md) = (Encpk(m1), · · · ,Encpk(md))

and decryption algorithm is corresponding to it, is
also CPA-secure. Now if A = (A1,A2) is a PPT
distinguisher who can distinguish a lossy branch
from an injective branch with non-negligible prob-
ability. We can use A to construct a PPT adversary
A′ who breaks the CPA-secure of Π′. A′ works as
follows:

A′:
on input pk;
samples x11, · · · , xd,k+l+1

R←− M and
x′1,k+1, · · · , x′d,k+1

R←−M ;
outputs

m0 = (x1,k+1, · · · , xd,k+1),

and
m1 = (x′1,k+1, · · · , x′d,k+1);

receives the challenge ciphertext

c∗ = (Enc′pk(mb))
T ;

computes Cb = (c1, · · · , ck, c∗, ck+2 · · · , cl+k+1),
where

ci = (Encpk(x1i), · · · ,Encpk(xdi))
T ,

for i ∈ {1, · · · , k, k + 2, · · · , k + l + 1};
gives s = (pk, Cb) to A and obtains (a1, · · · , ak)
from A;
computes (b01, · · · , b0l ) and (b11, · · · , b1l ) using
m0,m1 and (a1, · · · , ak);
chooses randomly β ∈ {0, 1} and gives
(bβ1 , · · · , b

β
l ) to A;

outputs the bit β′ which A outputs.

Obviously, we have

AdvCPA
A′,Π′(λ) ≥ AdvCH-LI

A (λ).
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This contradicts the CPA-security of Π′.
5) Hard to find one-more lossy branch: We observe

that the matrix (xij)d×(k+l+1) are hidden by the
CPA-secure PKE. A could obtain the following
equations:

a1x11 + · · ·+ akx1k + x1,k+1

+b1x1,k+2 + · · ·+ blx1,k+l+1 = 0,
a1x21 + · · ·+ akx2k + x2,k+1

+b1x2,k+2 + · · ·+ blx2,k+l+1 = 0,
· · ·

a1xd1 + · · ·+ akxdk + xd,k+1

+b1xd,k+2 + · · ·+ blxd,k+l+1 = 0.

However, there are |M |k+l kinds of pairs that
satisfy those equations and each of them are equally
likely. Formally, we prove that if there exists an
PPT algorithm A that can find one-more lossy
branch with non-negligible probability, then we can
construct PPT inverter I which can breaks the one-
wayness of the PKE scheme. I works as follows:

I :
on input y, pk;
chooses xij ∈ M and computes cij = Encpk(xij)
for 1 ≤ i ≤ d; 1 ≤ j ≤ k, k+2 ≤ j ≤ k+ l+1 and
additionally chooses (a1, · · · , ak, b1, · · · , bl)

R←−
M ;
computes ci,k+1 = ca1i1 · · · c

ak
ik c

b1
i,k+2 · · · c

bl
i,k+l+1,

for 1 ≤ i ≤ d;
let C be the matrix (cij)d,k+l+1; chooses randomly
i0 ∈ {1, · · · , d}, j0 ∈ {1, · · · , k+l+1}\{k+1}; let
C1 be the matrix whose element ci0,j0 is replaced
by y (without loss of generality we assume j0 ≤ k);
gives

(
s = (pk,C1), (a1, · · · , ak, b1, · · · , bl)

)
to A;

if A outputs (a′1, · · · , a′k, b′1, · · · , b′l) and aj0 6= a′j0 ,
then outputs

xi0,j0 = −(aj0 − a′j0)−1[(a1 − a′1)xi0,1 + · · ·
+ ((aj0−1 − a′j0−1))xi0,j0−1

+ ((aj0+1 − a′j0+1))xi0,j0+1 + · · ·
+ (bl − b′l)xi0,k+l+1].

Obviously, we have

Pr[I success] ≥ 1

(k + l)d
· d · Pr[A success]

=
1

(k + l)
Pr[A success]

This contradicts to the one-wayness of the PKE Π.

IV. TWO SPECIAL CASES

In this section, we give two special cases of our generic
construction described above by fixing the corresponding
parameters.

A. The First Case

Now we fix the parameters as d = k = l = 1. We
remark that this is the case discussed in [9], where the
authors constructed a chameleon all-but-one TDFs and
used them to improve efficiency of the CCA scheme
presented in [1].

B. The Second Case

In this subsection, we fix the parameters as d =
l = 1, k = 0. As previously mentioned, let Π =
(Gen,Enc,Dec) be a homomorphic encryption scheme
with plaintext space M and randomness space R satisfy-
ing |M | > |R|. In addition, we assume that

1) M is a finite field (or commutative ring with mul-
tiplicative identity and, with overwhelming proba-
bility, each element in M has multiplicative inverse
when we construct almost-always ABO-TDFs)

2) For a,m ∈M , (Encpk(m))a = Encpk(am).
We remark that, in this situation, we essentially give
a construction of ABO-TDFs with branches set M . In
the following, we describe the construction in detail. A
collection of ABO-TDFs (Sabo, Gabo, G

−1
abo) is defined as

follows:
• Sabo(1λ, b∗): It invokes Gen(1λ) to generate

(pk, sk). Then it samples randomly x1, x2 ∈ M
satisfying b∗x1 + x2 = 0 and computes c1 =
Encpk(x1), c2 = Encpk(x2). The function index is
s = (pk, c1, c2) and the trapdoor is t = (sk, x1, x2).

• Evaluating a function Gabo: takes as input (s, b, x),
where (s, t) ← Gen(1λ), b, x ∈ M, it computes
y = Gabo(s, b, x) = (cb1c2)x and outputs y.

• Inverting an injective function G−1
abo : takes as input

(t, b, y), where b 6= b∗, it computes

x = Decsk(y)(bx1 + x2)−1.

Theorem 8: The algorithms described above give a
collection of (log |M |, log |M | − log |R|) almost-always
all-but-one trapdoor functions.

Proof: 1. For any b ∈ M distinct from b∗,
Gabo(s, b, x) = (cb1c2)x computes an deterministic func-
tion over the domain M since the randomness of Encpk(·)
has been determined by the relationship between x1, x2

and c1, c2. Meanwhile, the function Gabo(s, b, x) is al-
ways injective except that the event that x1 = 0 whose
probability is negligible.

2. Gabo(s, b∗, x) = (cb
∗

1 c2)x = Encpk(0). Therefore,
the image size of Gabo(s, b∗, ·) is at most |R|, and the
amount of lossiness is at least (log |M |, log |M |−log |R|).

3. Hidden lossy branch: Since the scheme Π =
(Gen,Enc,Dec) is CPA-secure, the scheme Π′ =
(Gen′,Enc′,Dec′), whose encryption algorithm is

Enc′pk(x1, x2) = (Encpk(x1),Encpk(x2))

and decryption algorithm is corresponding to it, is also
CPA-secure. Now if A = (A1,A2) is a PPT distinguisher
who can distinguish a lossy branch with non-negligible
probability when given the function index s. We can use
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A to construct a PPT adversary A′ who breaks the CPA-
secure of Π′. A′ works as follows:

A′:
on input pk;
obtains (b∗0, b

∗
1) from A;

samples randomly x0
1, x

0
2, x

1
1, x

1
2 ∈M such that b∗0x

0
1 +

x0
2 = 0, b∗1x

1
1 + x1

2 = 0;
outputs the message m0 = (x0

1, x
0
2),m1 = (x1

1, x
1
2) to

its challenger;
obtains the challenge ciphertext c∗ = (cb1, c

b
2);

gives (pk, cb1, c
b
2) to A;

outputs the bit b′ that A outputs.

Therefore, we have

Pr[A success] = Pr[A′ success].

This contradicts the CPA-security of Π′.

V. A SIMPLE IMPLEMENTATION

In this section, we give a simple homomorphic en-
cryption scheme which can be used to implement our
constructions of almost-always chameleon ABO-TDFs
and ABO-TDFs.

Formally, we consider the Damgård-Jurik (DJ) ho-
momorphic encryption scheme [22]. Let GenModulus
be a polynomial-time algorithm that, on input 1λ, out-
puts (N,P,Q) where N = PQ and P,Q are λ-bit
primes (except with probability negligible). In addition,
we require that gcd(N,φ(N)) = 1 (such N is called
admissible). Now we describe the Damgård-Jurik scheme
Π = (DJ.Gen,DJ.Enc,DJ.Dec):
• DJ.Gen(1λ): runs GenModulus(1λ) to obtain

(N,P,Q). Then choose a natural number ` < P,Q.
The public key is (N, `) and the private key is
sk = lcm(P − 1, Q− 1).

• DJ.Enc : To encrypt a message m ∈ ZN` with
respect to the public key (N, `), choose randomly
r ← Z∗N and output the ciphertext

c = (1 +N)m · rN
`

mod N `+1.

• DJ.Dec : To decrypt a ciphertext c using the private
key sk = lcm(P−1, Q−1), we first compute, by the
Chinese Remainder Theorem d, such that d = 1 mod
N ` and d = 0 mod sk. Then compute cd = (1+N)m

mod N `+1. At last, we can compute (m mod N `)
using the algorithm given in [22].

In addition, [22] also proved that based on decisional
composite residuosity assumption, the encryption scheme
described above is CPA-secure.

We remark that the DJ-scheme is sufficient for us to
construct the primitives introduced in this paper. In order
to illustrate the main idea, we only give the concrete
method to construct the ABO-TDFs of Section IV-B.
Formally, a collection of ABO-TDFs (Sabo, Gabo, G

−1
abo)

based on DJ-scheme is defined as follows:
• Sabo(1λ, b∗): It invokes DJ.Gen(1λ) to generate the

public/private key pair (pk, sk) =((N, `),(lcm(P −

1, Q−1))). Then it samples randomly x1, x2 ∈ ZN`
satisfying b∗x1 + x2 = 0 and computes

c1 = DJ.Encpk(x1), c2 = DJ.Encpk(x2).

The function index is s = (pk, c1, c2) and the
trapdoor is t = (sk, x1, x2).

• Evaluating a function Gabo: takes as input (s, b, x),
where (s, t)← DJ.Gen(1λ), b, x ∈ ZN` , it computes

y = Gabo(s, b, x) = (cb1c2)x mod N `

and outputs y.
• Inverting an injective function G−1

abo : takes as input
(t, b, y), where b 6= b∗, it computes and outputs

x = DJ.Decsk(y)(bx1 + x2)−1 mod N `.

Note that, with overwhelming probability, the item
bx1 + x2 mod N ` has multiplicative inverse.

VI. CONCLUSIONS

In this paper, we generalize the construction of
chameleon ABO-TDFs in [9]. As an application of our
generalization, we construct an ABO-TDFs which can
be used to construct CCA-secure public key encryption
schemes by using homomorphic encryption scheme with
some additional properties.
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