
Reliability and Portability Assessment Tool
Based on Hazard Rates for

an Embedded Open Source Software

Yoshinobu Tamura
Yamaguchi University/Graduate School of Science and Engineering, Ube, Japan

Email: tamura@yamaguchi-u.ac.jp

Shigeru Yamada
Tottori Univerisity/Graduate School of Engineering, Tottori, Japan

Email: yamada@sse.tottori-u.ac.jp

Abstract— An embedded OSS (Open Source Software)
known as one of OSS has been gaining a lot of attention in
the embedded system area, i.e., Android, BusyBox, TRON,
etc. However, the poor handling of quality problem and
customer support prohibit the progress of embedded OSS.
Therefore, many companies have been hesitant to innovate
the embedded OSS because of OSS includes several software
versions. Also, it is difficult for developers to assess reliability
and portability of the porting-phase in case of installing
the embedded OSS on a single-board computer. In this
paper, we develop a method of software reliability/portability
assessment tool based on a hazard rate model for the
embedded OSS. Especially, we analyze actual software
failure-occurrence time-interval data to show numerical
examples of software reliability/portability assessment for
the embedded OSS. Moreover, we show that our model
and tool can assist quality improvement for embedded OSS
systems development.

Index Terms— reliability, portability, embedded system, open
source software, software tool

I. INTRODUCTION

There is growing interest in the next-generation soft-
ware development and maintenance paradigm by us-
ing network computing technologies such as a cloud
computing and SaaS (Software as a Service). Also, the
software development paradigm based on an open source
project is rapidly spreading because of the cost reduction,
quick delivery, work saving. For successful example, OSS
(Open Source Software) systems which serve as key
components of critical infrastructures in the society are
still ever-expanding now, i.e., Apache HTTP Server[1],
MySQL[2], OpenStack[3], etc. The open source project
contains special features so-called software composition
by which several geographically-dispersed components
are developed in all parts of the world. The success-
ful experience of adopting such open source projects
includes Apache HTTP server, Firefox Web browser[4],
and GNU/Linux operating system. We focus on the prob-
lems in the software quality/reliability, which prohibit the
progress of OSS.

Especially, software reliability growth models
(SRGM’s)[5], [6], [7], [8] and the related hazard rate
models[9], [10], [11], [12] have been applied to assess the
reliability for quality management and testing-progress
control of software development. On the other hand, the
effective method of dynamic testing management for new
distributed development paradigms as typified by the
open source project has only a few presented[13], [14],
[15]. In case of considering the effect of the debugging
process on entire system in the development of a method
of reliability assessment for OSS, it is necessary to grasp
the situation of registration for bug tracking system,
the degree of maturity of OSS, and so on. Especially,
an embedded OSS known as one of OSS’s has been
gaining a lot of attention in the embedded system area,
i.e., Android[16], BusyBox[17], TRON, etc. However,
the poor handling of quality problem and customer
support prohibit the progress of embedded OSS. Also,
it is difficult for developers to assess reliability and
portability of the porting-phase in case of installing the
embedded OSS on a single-board computer. The term
“porting-phase” means the rebuilding process in which
the developers create an OS/application developed for the
specific computer system to suit another computer system
in terms of portability. From above mentioned problems,
many companies have been hesitant to innovate the
embedded OSS.

In this paper, we propose a method of software relia-
bility assessment based on a flexible hazard rate model
for embedded OSS. Also, we derive several assessment
measures. Especially, we also develop the software reli-
ability/portability assessment tool for the porting-phase
of embedded system development by using Java pro-
gramming language. Then, we analyze actual software
failure-occurrence time-interval data to show numerical
examples of software reliability/portability analysis for
the porting-phase of embedded system development based
on the proposed tool. Moreover, we develop the tool
considering optimal release problem based on a hazard
rate model for the embedded open source software. Also,

2546 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.10.2546-2556

we add a new feature to our tool in order to compare
our model with the existing models. Then, we show
that the proposed tool can assist quality improvement for
embedded OSS systems development. Furthermore, we
investigate a useful software reliability assessment method
for the actual open source system development.

II. RELATED RESEARCH

Many fault-counting type SRGM’s have been applied to
assess the reliability for quality management and testing-
progress control of software development. However, it
is difficult to apply the SRGM’s for assessing qual-
ity/reliability of the OSS, because the number of detected
faults in the OSS project can not converge to a finite
value. In other words, for many OSS’s, there are no testing
phases for open source development paradigm, in which
test personnel may detect and remove the faults as in a
usual testing. In fact, there are several SRGM’s that can
be applied in the above situation, i.e., the Weibull and
Log-logistic SRGM’s, and so on[5]. Especially, in case
that the number of detected faults can not converge to a
finite value, it is difficult to assess whether the porting
phase will succeed by using reliability assessment mea-
sures derived from SRGM’s. As another more challenging
aspect of the embedded OSS project, the embedded OSS
includes several software components in terms of hard-
ware such as device driver, firmware, updater[18], [19].
Also, several software reliability assessment tools have
developed by several researchers, i.e., CASRE[20], AT&T
SRE Toolkit, SoRel[21], etc. However, it is difficult to
assess the porting phase of embedded system by using
these software tools from above reasons.

Generally, OSS’s of several versions are opened in the
website of open source project. Therefore, it is difficult
for the embedded software managers to decide the spe-
cific version used as the embedded system product. The
software managers will be able to judge success and
failure of the product planning in the porting phase, if
the software managers can assess the reliability of the
porting phase. Moreover, it is difficult for the software
managers to judge success and failure of the porting phase
quantitatively by using the existing SRGM’s because of
the structural problems of modeling. We summarize the
solution approach of these problems as follows:

• We propose a plausible SRGM for the porting phase.
The proposed model can assess the trend of reliabil-
ity regression by using our model.

• We offer the reliability assessment tool for the port-
ing phase. Thereby, the software managers can easily
assess the reliability of porting phase without the
mathematical knowledge.

• Our software tool can be estimate the optimum
software release time. The optimum software release
time will be useful for the software managers to
minimize the development cost in the porting phase.

III. HAZARD RATE MODEL FOR EMBEDDED OSS
In this paper, we assume that the software faults de-

tected at the porting-phase of embedded OSS include the

following type:
A1. the software failure caused by the latent fault of

embedded OSS
A2. the software failure caused by the latent fault of

unique software components (i.e., device driver)
In the assumption above, A1 is selected by probability

p and A2 selected by probability (1−p). Also, we can not
distinguish between assumption A1 and A2 in terms of
the software faults. The time interval between successive
faults of (k−1)-th and k-th is represented as the random
variable Xk (k = 1, 2, · · ·). Therefore, we can define the
hazard rate function zk(x) for Xk as follows:

zk(x) = p · z1k(x) + (1− p) · z2k(x) (1)
(k = 1, 2, · · · ; 0 ≤ p ≤ 1),

z1k(x) = D(1− α · e−αk)k−1 (2)
(k = 1, 2, · · · ; −1 < α < 1, D > 0),

z2k(x) = φ{N − (k − 1)} (3)
(k = 1, 2, · · · , N ; N > 0, φ >0),

where we can define the each parameter as follows:
z1k(x) : the hazard rate for the assumption A1,
α : the shape parameter representing the active state

of OSS project,
D : the initial hazard rate for the 1st software failure,
z2k(x) : the hazard rate for the assumption A2,
N : the number of latent faults in unique software

components,
φ : the hazard rate per inherent fault,
p : the weight parameter for z1k(x).

Eq.(2) means the hazard rate for a software failure-
occurrence phenomenon for the embedded OSS. On the
other hand, Eq.(3) represents the hazard rate for a software
failure-occurrence phenomenon for the unique software
components. Thus, our model simultaneously describes
both the fault detected at the embedded OSS installed
to embedded system by Eq.(2) and the fault detected
at the unique software components such as the device
driver[22].

In particular, our model includes both the modi-
fied Moranda model[11] and the conventional Jelinski–
Moranda(J-M) model[10]. Eq.(2) based on the Moranda
model means that the initial hazard rate for the 1st
software failure geometrically decreases with the active
state of OSS. Also, we assume that the active state of
OSS grows exponentially.

IV. RELIABILITY ASSESSMENT MEASURES

In porting-phase of embedded OSS, the distribution
function of Xk(k = 1, 2, · · ·) representing the time-
interval between successive faults of (k − 1)th and k-th
is defined as:

Fk(x) ≡ Pr{Xk ≤ x} (x ≥ 0), (4)

where Pr{A} represents the occurrence probability of
event A. Therefore, the following function means the

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2547

© 2014 ACADEMY PUBLISHER

probability density function of Xk:

fk(x) ≡
dFk(x)

dx
. (5)

Also, the software reliability can be defined as the
probability which a software failure does not occur during
the time-interval (0, x] after the porting-phase. The
software reliability is given by

Rk(x) ≡ Pr{Xk > x} = 1− Fk(x). (6)

From Eqs.(4) and (5), the hazard rate is given by the
following equation:

zk(x) ≡
fk(x)

1− Fk(x)
=

fk(x)

Rk(x)
, (7)

where the hazard rate means the software failure rate after
the porting-phase when the software failure does not occur
during the time-interval (0, x].

Therefore, we can obtain the software reliability assess-
ment measures from our hazard rate model represented by
Eq.(1). The probability density function can be derived as

fk(x) =
{
pD(1− α · e−αk)k−1

+ (1− p)φ(N − k + 1)
}

· exp

[
−

{
pD(1− α · e−αk)k−1

+ (1− p)φ(N − k + 1)
}
· x

]
. (8)

Especially, we can give the following expressions as
software reliability assessment measures derived from our
hazard rate model:! MTBF

The mean time between software failures(MTBF) is
useful to measure the property of the frequency of
software failure-occurrence, and is given by

E[Xk] = 1

/{
pD(1− α · e−αk)k−1

+ (1− p)φ(N − k + 1)

}
. (9)

! Software reliability
Also, the software reliability can be defined as the
probability which a software failure does not occur
during the time-interval (t, t + x] (t ≥ 0, x ≥ 0)
given that the testing-time of porting-phase is t. The
software reliability is given as follows:

Rk(x) = exp

[
−
{
pD(1− α · e−αk)k−1

+ (1− p)φ(N − k + 1)
}
· x

]
. (10)

! Porting stability
Moreover, we can estimate the porting stability from
our hazard rate model. We define the porting stability
as the value of model parameter w1.! MSE
The MSE (mean square error) can be obtained by

dividing the sum of square errors between the ob-
served value, yk, and its estimated one, ŷk, by the
number of data pairs; n. That is,

MSE =
1

n

n∑
k=1

(yk − ŷk)
2. (11)

ŷk (k = 1, 2, · · · , n) in Eq. (11) is obtained from the
estimated value. The mean square error indicates that
the selected model fits better to the observed data as
MSE becomes small. We compare the proposed flex-
ible hazard rate model for embedded OSS with the
following typical conventional hazard rate models:
for Moranda model:

zk(x) = Dck−1

(D > 0, 0 < c < 1; k = 1, 2, · · ·), (12)

E[Xk] =
1

Dck−1
. (13)

for Jelinski–Moranda(J-M) model:

zk(x) = φ(N − k + 1)

(N > 0, φ >0; k = 1, 2, · · · , N), (14)

E[Xk] =
1

φ(N − k + 1)
. (15)

The model parameters in Eq. (12) and (14) are
defined as follows:

D : the initial hazard rate for 1st software failure,
c : the reduction factor of hazard rate,
φ : the hazard rate per remaining fault,
N : the latent fault in software system.! Predicted relative error

Furthermore, we adopt the value of the predicted
relative error as comparison criteria of goodness-
of-fit in our tool. The predicted relative error is
defined as a relative error between the predicted and
observed values of the software failure-occurrence
time-interval. It is given by

Rp =
Â(tq)− q

q
, (16)

where tq is the termination time of the porting and q
is the observed number of faults detected in the time-
interval [0, tq). Â(tq) in Eq. (16) is the estimated
value of the MTBF at the termination time tq where
A(t) is estimated by using the actual data observed
up to arbitrary porting time tp(0 ≤ tp ≤ tq).

V. LAPLACE TREND TEST

Also, we use the Laplace trend test[18], [23] of the
data set to determine which hazard rate models are useful
to investigate. In case of the fault detection time-interval
data, the Laplace trend test statistic u(i) is given by the

2548 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

Figure 3. The estimated results of the Laplace trend test in case of
Android 1.0 SDK.

Figure 4. The estimated results of the Laplace trend test in case of
Android 1.1 SDK.

following equation[18], [23].

u(i) =

1
i−1

i−1∑
n=1

n∑
j=1

θj −

i∑
j=1

θj

2

i∑
j=1

θj

√
1

12(i− 1)

, (17)

where i is the failure number, θj means the j-th the fault
detection time-interval.

Especially, we focus on the embedded OSS in order
to evaluate the performance of our tool, i.e., Android[16]
and BusyBox[17]. BusyBox includes 4 components. In
this paper, we show numerical examples of the Android
OS developed for mobile phone. Also, we consider the
case of installing BusyBox to Android as the porting
environment. We use the data collected from the following
versions as Figures 1 and 2.! 2008 - Android 1.0 SDK Release 1 available (first

actual 1.0-compatible SDK)! Android 1.1 SDK, Release 1! Android 1.5 NDK, Release 1
We investigate the reliability regression and growth

trends by using the Laplace trend test. The estimation

Figure 5. The estimated results of the Laplace trend test in case of
Android 1.5 NDK.

results of Laplace trend test for each version are shown
from Figure 3 to Figure 5. First, the Laplace trend test
in case of Android 1.0 SDK shows a reliability growth
trend in all area from Figure 3. Figure 3 means that the
embedded software has been thoroughly-tested because
of the first version Android 1.0 SDK as the introduced
and retail version. Second, the Laplace trend test in
case of Android 1.1 SDK shows a reliability regression
trend in all area from Figure 4. We found that Figure 4
includes both the reliability regression trend. Especially,
Figure 4 means that the fault report is very heavy on
the bug tracking system because of the second version
Android 1.1 SDK as the widespread utilization version.
This implies that it is difficult to apply the conventional
hazard rate models. Moreover, the Laplace trend test in
case of Android 1.5 NDK shows a reliability regression
trend in all area before the failure No. 10 from Figure
5. We found that Figure 5 includes both the reliability
regression and growth trend because of the stable version
Android 1.5 NDK. Above mentioned results, it is difficult
for the software developers to assess the reliability of the
embedded software porting phase.

We show the performance illustrations of our tool in
Section VIII by using the data sets of the above mentioned
two versions in terms of Android 1.0 SDK and Android
1.5 NDK. Then, we confirm that our tool can assess the
reliability of the porting phase by using the other data
set. Also, our tool can comprehend both the trends of
reliability growth and retrogression.

VI. OPTIMAL RELEASE PROBLEM FOR THE
PORTING-PHASE

We find the optimal release time of porting-phase
by minimizing the total expected software cost in this
section. Then, we discuss about the determination of
optimal software release times minimizing the total ex-
pected software cost[24]. We introduce the following cost
parameters:
c1 the testing cost per porting-time (c1 > 0),
c2 the fixing cost per fault during the porting-phase

(c2 > 0),

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2549

© 2014 ACADEMY PUBLISHER

Figure 1. The partial source data in Android.

Figure 2. The partial source data in BusyBox.

c3 the fixing cost per fault after the release (c3 > c2).
Then, the expected software cost of OSS can be for-

mulated as:

C1(l) = c1

l∑
k=1

E[Xk] + c2l, (18)

where l is the number of software failure-occurrence.
Also, we can define the expected software cost for

software components as follows:

C2(l) = c3 (N − l) . (19)

Consequently, from Eqs. (18) and (19), the total ex-
pected software cost is given by

C(l) = C1(l) + C2(l). (20)

From l∗ obtained by minimizing l, we can estimate the
optimum software release time

∑l∗

k=1 E[Xk].
Therefore, we can give the following expressions such

as software release time derived from our hazard rate
model:! Optimum software release time

Moreover, we can estimate the optimal software

release time minimizing the expected total software
cost based on our hazard rate model.! Total expected software cost
We can estimate the total expected software cost in
case of the estimated optimum software release time∑l∗

k=1 E[Xk].

VII. RELIABILITY/PORTABILITY ASSESSMENT TOOL

A. Specification requirement

The specification requirements of the reliabil-
ity/portability assessment tool for embedded OSS are
shown as follows:

1. This tool should be operated by clicking the mouse
button and typing on the keyboard to input the data
through GUI system.

2. An object-oriented language, Java, should be used
to implement the program. This tool is developed as
a stand-alone application on Windows1, Unix2, and
Macintosh3 operating system.

1Windows is a registered trademark licensed to Microsoft Corp.
2Unix is a registered trademark licensed to the Open group.
3Macintosh is a trademark of Macintosh Laboratory, Inc. licensed to

Apple Computer, Inc.

2550 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

3. This tool treats the hazard rate model for embedded
OSS, and illustrate the MTBF, software reliability,
porting stability, and predicted relative error as soft-
ware reliability/portability assessment measures.

4. In case of the fault detection time-interval data, the
Laplace trend test statistic is illustrated.

5. This tool calculate the MSE for several existing
models.

B. Software reliability assessment procedures
The procedures of reliability/portability assessment

built into the proposed tool for embedded OSS are shown
as follows:

1. This tool processes the data file in terms of the
software failure-occurrence time-interval data in the
porting-phase of the embedded system for reliabil-
ity/portability assessment.

2. Using the data obtained from the porting-phase, we
analyze the data for input data.

3. This tool estimates the unknown parameters included
in our hazard rate model. We assume as w1 = pD
and w2 = (1− p)φ for the simplification technique.
Moreover, we define w1 and w2 as the scale of the
porting stability.

4. This tool illustrates the MTBF, software reliability,
porting stability, and predicted relative error as soft-
ware reliability/portability assessment measures.

5. This tool illustrates the Laplace trend test statistic of
the data set.

6. We focus on optimal software release problems
based on our hazard rate model for the porting-phase.
Especially, the expected total software cost and the
optimal software release time minimizing the cost
for our model are plotted on the CRT.

This tool is composed of several function components
such as fault analysis, estimation of unknown parameters,
goodness-of-fit test for the estimated model, graphical
representation of fault data, and results of estimation.
The structure of reliability/portability assessment tool for
embedded OSS is shown in Figure 6. Moreover, we show
the activity diagram and the sequence diagram of our tool
in Figure 7.

VIII. PERFORMANCE ILLUSTRATIONS

In this section, we analyze a set of actual software
failure-occurrence time-interval data to show performance
illustrations of software reliability/portability measure-
ment for application of our tool4. We show numeri-
cal examples for reliability/portability assessment of the
porting-phase of embedded system development by using
embedded OSS. Moreover, we illustrate the estimation re-
sults of our tool by using the data sets assumed the porting
environment such as Section V. Considering the realities
of the field use, we show the performance illustrations of
our tool by using the data sets in terms of “Android 1.0
SDK Release 1” and “Android 1.5 NDK”.

4Reliability/Portability Assessment Tool for Embedded OSS (RPAT
for Embedded OSS), URL: http://sourceforge.net/projects/rpatforeoss/

Figure 9. The estimated MTBF in case of Android 1.5 NDK.

A. Reliability assessment results

The estimated results of the unknown parameters of
our hazard rate model are shown in Figure 8 in case of
Android 1.5 NDK. Also, the estimated MTBF in Eq. (9)
is shown in Figure 9 in case of Android 1.5 NDK. The
horizontal axis of Figure 9 means the porting time k.
From Figure 9, we can confirm that the MTBF grows as
porting procedures go on. Moreover, Figure 10 shows the
estimated software reliability in case of Android 1.5 NDK.
The horizontal axis of Figure 10 means the elapsed time
after the end of the detected faults k = 50. From Figure
10, if the embedded system is operated after the under
the same strict conditions as the testing phase after the 50
faults at the time of Jun. 1, 2009, the software reliability
after 12 hours after from the beginning of its operation
shows about 0.5. Therefore, we found that at least one
software failure may occur with the probability of 50%
within 12 hours. Next, Figure 11 shows the behaviors
of the predicted relative error in case of Android 1.5
NDK. As shown in Figure 11, the variation of the model
becomes stable when the porting progress ratio exceeds
80%.

Similarly, we illustrate several reliability assessment
measures of Android 1.0 SDK in Figures 12∼14. From
Figures 12∼14, we found that our tool can be used for the
other data. Especially, Figures 11 and 14 mean that the
estimated predicted relative errors in case of two versions
equal to or lower than 0.15 through all porting progress
ratio. Therefore, we found that our tool can be used
regardless of the difference in the data set from Figures
11 and 14.

B. Optimal release problem with reliability of embedded
OSS

Also, we consider that the developer of embedded
system can estimate the optimal release time with consid-
ering reliability by combining the total expected software
cost with the reliability. We assume that the reliability
requirement as follows:

Rk(0.1) = 0.5.

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2551

© 2014 ACADEMY PUBLISHER

MENU

Data read-in

Hazard Rate Model for Embedded OSS

Data
processing

Data
registration

--- Calculation Process ---

* Estimation of unknown
 parameters of our model
* MSE

--- Graphical Display ---

* MTBF
* Software reliability
* Porting stability
* Predicted relative error
* Laplace trend test
* Total software cost

Data
update

Data
deletion

Figure 6. The structure of reliability/portability assessment tool for embedded OSS.

Figure 10. The estimated software reliability in case of Android 1.5
NDK.

Figure 11. The estimated predicted relative errors in case of Android
1.5 NDK.

We obtain the reliability R51(0.1) = 0.462 when the
optimum release time is t′ = 6.6 days where l′ = 51.
Then, we need to lengthen the porting-time, which is
shown in Figure 15 as (t′ − t∗) = 8.8 − 6.6 = 2.2
days. Figure 15 illustrates the optimum release time with

Figure 12. The estimated MTBF in case of Android 1.0 SDK.

Figure 13. The estimated software reliability in case of Android 1.0
SDK.

reliability objective R61(0.1) = 0.5. From Figure 15,
we have found that the optimum release time become
lengthen, and the total expected software cost increases.
When the porting time and the reliability objective are
assumed as Rk(0.1) = 0.5, we obtain t′

∗
= 8.8 from

l∗ = 61. Then, the total expected software cost is 1502.8.

2552 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

OSS selection

fault data processing

data.csv creation

main class

abstract class

parameter estimation
MSE calculation

data plot: cumulative MTBF
data plot: cumlative software reliability

data plot: predicted relative error

data plot: porting stability
data plot: result of LTT

RPAT

cumulative MTBFresults

porting stabilitysoftware reliability

LTTpredicted relative error

output resultsoftware cost with reliability requirement

data plot: software cost with reliability requirement

Figure 7. The activity diagram of reliability/portability assessment tool for embedded OSS.

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2553

© 2014 ACADEMY PUBLISHER

Figure 8. The estimated results of the model parameters in case of Android 1.5 NDK.

Figure 14. The estimated predicted relative errors in case of Android
1.0 SDK.

Figure 15. The optimum software release time with reliability require-
ment, t

′∗
in case of Android 1.5 NDK.

IX. CONCLUDING REMARKS

It is important for software developers to control the
porting-phase in embedded system development by using
software reliability/portability assessment tool without
knowing the details of the process of the faults data
analysis. In this paper, we have proposed a software
reliability/portability assessment tool based on the hazard
rate model for embedded system development by using
Java programming language.

In this paper, we have shown that our method can
grasp both the embedded OSS and the unique software
components such as the device driver. Additionally, we
have presented several performance illustrations for the
actual data. Moreover, it is useful for embedded soft-
ware developers to understand the debugging progress
in porting-phase of embedded system development by
using a software reliability/portability assessment tool
without knowing the details of the process of the fault
data analysis. Furthermore, our tool proposed here is
useful for embedded system developers in terms of the
management of the debugging process in the porting-
phase of embedded system development. The results of
data analysis are represented simply and visually by GUI
and this tool prepares the expandability, portability, and
maintainability by using Java.

The proposed model is used as a simple combination
technique of two exponential models by using the repro-
ducing property. In particular, the proposed model is as-
sumed for reliability assessment in unusual circumstances
such as the OSS porting phase. However, the readers can
describe another combination models by using some other
models. Moreover, the embedded system developers can
modify our tool.

2554 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

Finally, we have focused on the reliability/portability
under the porting-phase of an embedded system devel-
opment by using the embedded OSS. Distributed de-
velopment environment typified by such embedded OSS
will evolve at a rapid pace in the future. Our reliabil-
ity/portability assessment tool is useful as a method of
reliability/portability assessment to solve the problems
which many companies have been hesitant to innovate
the embedded OSS.

ACKNOWLEDGMENTS

This work was supported in part by the Grant-in-Aid
for Scientific Research (C), Grant No. 24500066 and
No. 25350445 from the Ministry of Education, Culture,
Sports, Science, and Technology of Japan.

REFERENCES

[1] The Apache HTTP Server Project, The Apache Software
Foundation, 2013, http://httpd.apache.org/

[2] Oracle Corporation and/or Its Affiliates, MySQL, 2013,
http://mysql.com/

[3] The OpenStack project, OpenStack, 2013,
http://www.openstack.org/

[4] Mozilla.org, Mozilla Foundation, 2013
http://www.mozilla.org/

[5] M.R. Lyu, ed. Handbook of Software Reliability Engineer-
ing, Los Alamitos, CA: IEEE Computer Society Press,
1996.

[6] J.D. Musa, A. Iannino, and K. Okumoto, Software Reli-
ability: Measurement, Prediction, Application, New York:
McGraw-Hill, 1987.

[7] S. Yamada, Software Reliability Modeling: Fundamen-
tals and Applications, Tokyo/Heidelberg: Springer–Verlag,
2013.

[8] K.Y. Cai, D.B. Hu, C. Bai, H. Hu, and T. Jing,
Does software reliability growth behavior follow a non-
homogeneous Poisson process, Information & Software
Technology, vol. 50, no. 12, pp. 1232-1247, 2008.

[9] G.J. Schick and R.W. Wolverton, An Analysis of Com-
peting Software Reliability Models, IEEE Transactions
Software Engineering, vol. SE-4, no. 2, pp. 104–120, 1978.

[10] Z. Jelinski and P.B. Moranda, Software Reliability Re-
search, in Statistical Computer Performance Evaluation,
Freiberger, pp. 465–484, New York: Academic Press,
1972.

[11] P.B. Moranda, Event–altered Rate Models for General
Reliability Analysis, IEEE Transactions Reliability, vol.
R–28, no. 5, pp. 376–381, 1979.

[12] M. Xie, On a Generalization of the J-M Model, Proceed-
ings Reliability ’89, 5, Ba/3/1–5 Ba/3/7, 1989.

[13] Y. Zhou and J. Davis, “Open source software reliability
model: an empirical approach,”Proceedings of the Fifth
Workshop on Open Source Software Engineering, pp.67–
72, 2005.

[14] P. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam, Em-
pirical evaluation of defect projection models for widely-
deployed production software systems, Proceeding of the
12th International Symposium on the Foundations of Soft-
ware Engineering (FSE-12), pp. 263–272, 2004.

[15] J. Norris, Mission-critical development with open source
software, IEEE Software Magazine, vol. 21, no. 1, pp. 42–
49, 2004.

[16] Open Handset Alliance, Android, 2013,
http://www.android.com/

[17] Erik Andersen, BUSYBOX, 2013,
http://www.busybox.net/

[18] V. Almering, M.V. Genuchten, G. Cloudt, and P.J.M.
Sonnemants, Using software reliability growth models in
practice, IEEE Software, pp. 82–88, 2007.

[19] Y. Tamura and S. Yamada, Reliability analysis methods
for an open source software with their comparison of
goodness-of-fit, Proceedings of the IEEE International
Conference on Industrial Engineering and Engineering
Management, pp. 208–212, 2009.

[20] Open Channel Foundation, CASRE 3.0, 2011,
http://www.openchannelsoftware.com/projects/CASRE 3.0

[21] Karama Kanoun, SoRel, 2011,
http://homepages.laas.fr/surf4tst/sorel/sorel.html

[22] Y. Tamura and S. Yamada, Reliability assessment based on
hazard rate model for an embedded OSS porting phase,
Journal of Software Testing, Verification and Reliability,
vol. 23, no. 1, pp. 77–88, 2013.

[23] P.A. Keiler and T.A. Mazzuchi, Enhancing the predictive
performance of the Goel-Okumoto software reliability
growth model, Proceedings Annual Reliability and Main-
tainability Symposium, IEEE Press, pp. 106–112, 2000.

[24] S. Yamada and S. Osaki, Cost-reliability optimal software
release policies for software systems, IEEE Transactions
on Reliability, vol. 34, no. 5, pp. 422–424, 1985.

Yoshinobu Tamura received the B.S.E., M.S., and Ph.D. de-
grees from Tottori University in 1998, 2000, and 2003, re-
spectively. From 2003 to 2006, he was a Research Assistant
at Tottori University of Environmental Studies. From 2006 to
2009, he was a Lecturer and Associate Professor at Faculty of
Applied Information Science of Hiroshima Institute of Tech-
nology, Hiroshima, Japan. Since 2009, he has been working as
a Associate Professor at the Graduate School of Science and
Engineering, Yamaguchi University, Ube, Japan. His research
interests include reliability assessment for open source software.
He is a regular member of the Institute of Electronics, Informa-
tion and Communication Engineers of Japan, the Information
Processing Society of Japan, the Operations Research Society
of Japan, the Society of Project Management of Japan, and
the IEEE. Dr. Tamura received the Presentation Award of the
Seventh International Conference on Industrial Management in
2004, the IEEE Reliability Society Japan Chapter Awards in
2007, the Research Leadership Award in Area of Reliability
from the ICRITO in 2010, and the Best Paper Award of the
IEEE International Conference on Industrial Engineering and
Engineering Management in 2012.

Shigeru Yamada received the B.S.E., M.S., and Ph.D. degrees
from Hiroshima University, Japan, in 1975, 1977, and 1985,
respectively. Since 1993, he has been working as a professor at
the Department of Social Management Engineering, Graduate
School of Engineering, Tottori University, Tottori-shi, Japan.
He has published over 500 reviewed technical papers in the
area of software reliability engineering, project management,
reliability engineering, and quality control. He has authored
several books entitled such as Introduction to Software Man-
agement Model (Kyoritsu Shuppan, 1993), Software Relia-
bility Models: Fundamentals and Applications (JUSE, Tokyo,
1994), Statistical Quality Control for TQM (Corona Publishing,
Tokyo, 1998), Software Reliability: Model, Tool, Management
(The Society of Project Management, 2004), Quality-Oriented
Software Management (Morikita Shuppan, 2007), Elements of
Software Reliability Modeling Approach- (Kyoritsu Shuppan,
2011), and Project Management (Kyoritsu Shuppan, 2012). Dr.
Yamada received the Best Author Award from the Information
Processing Society of Japan in 1992, the TELECOM System

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2555

© 2014 ACADEMY PUBLISHER

Technology Award from the Telecommunications Advancement
Foundation in 1993, the Best Paper Award from the Reliability
Engineering Association of Japan in 1999, the International
Leadership Award in Reliability Engg. Research from the IC-
QRIT/SREQOM in 2003, the Best Paper Award at the 2004
International Computer Symposium, the Best Paper Award from
the Society of Project Management in 2006, the Leadership
Award from the ISSAT in 2007, the Outstanding Paper Award
at the IEEE International Conference on Industrial Engineering
and Engineering Management (IEEM208) in 2008, the Interna-
tional Leadership and Pioneering Research Award in Software
Reliability Engineering from the SREQOM/ICQRIT in 2009, the
Exceptional International Leadership and Contribution Award in
Software Reliability at the ICRITO’2010, and 2011 Best Paper
Award from the IEEE Reliability Society Japan Chapter in 2012.
He is a regular member of the IEICE, the Information Processing
Society of Japan, the Operations Research Society of Japan, the
Japan SIAM, the Reliability Engineering Association of Japan,
Japan Industrial Management Association, the Japanese Society
for Quality Control, the Society of Project Management, and the
IEEE.

2556 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

