

Trusted Puzzle Solvers without Clock Support
against Spam and Denial-of-Service Attacks

Rui Deng

Jiangnan Institute of Computing Technology, Wuxi, China
Email: drui118@163.com

Zuoning Chen

Jiangnan Institute of Computing Technology, Wuxi, China
Email: chenzuoning@163.net

Abstract—Spam and Denial-of-Service (DoS) attacks are
growing threats on the Internet. Cryptographic puzzles can
be used to address the problem effectively. Additionally, the
Trusted Puzzle Solver (TPS), which is similar to the Trusted
Platform Module (TPM), is also proposed to help
constructing crypto puzzles that may have some outstanding
specialties in security and efficiency. Based on the analysis
and discussion of two existing crypto puzzles relying on the
TPS with a trusted clock, two new improved crypto puzzles
are presented, and all the drawbacks found in the old ones
are eliminated. The TPS in the new crypto puzzles doesn’t
have to be equipped with a clock thus can be realized by the
TPM without modification. Also, prototype experiments
show that the new crypto puzzles can do better in mitigating
DoS attacks.

Index Terms—TPM, DoS, spam, cryptographic puzzle,
Trusted Puzzle Solver

I. INTRODUCTION

Spam[1], or unsolicited email, is a big threat to email
systems. Attackers can flood users’ mailboxes with low
costs, while taking down a web server within a short
period of time, resulting in the loss of time and money to
both users and service providers. And also, Denial-of-
Service (DoS) attack that can exhaust a server’s resources
easily and harmfully is a growing concern on the Internet
and other open communications systems. A lot of
research has been done in the past years, aiming to seek
effective solutions to these problems.

 Cryptographic puzzles, originally proposed for
securing key agreement[2], were first proposed for
fighting spam by Dwork and Naor[3], and have been
widely used now in mitigating spam and DoS. Proof-of-
Work puzzles and Time-Lock Puzzles are two main types
of crypto puzzle models in use.

Proof-of-Work puzzles[4], also known as client
puzzles[5-6], impose costs on the clients by forcing them
to do some work (i.e. crypto calculations) per service
access, thereby consuming their resources and slowing
down the service request rate. However, it should be
noted that client puzzles’ generation, as well as the
verification of their solutions must be done efficiently,
otherwise these two operations would become new DoS

attack surfaces. It’s also very common that some service
providers prepare enough puzzles and corresponding
solutions in advance, and don’t generate or solve puzzles
online when providing services. In this way, the latency
of generating and solving the puzzles are hidden from the
users when they are trying to access services. However,
the adversary can accumulate enough puzzles and
solutions and use all of them at the same time to launch
DoS attacks. Examples of exploring Proof-of-Work
puzzles include using pre-challenges (the pre-challenges
can range from security questions to micro-payments)
against spam[7], “hashcash”[8] invented by A.Back,
defending against (distributed) DoS attacks[9-14] and
Sybil attacks[15-16], metering visits to websites[17],
providing incentives in P2P systems[18], and rate-
limiting TCP connections[19].

The researchers in the study of utilizing crypto puzzles
against DDoS attacks concentrate mainly on constructing
puzzles that can’t be solved in parallel. Q. Tang[11]
proposed RSW client puzzle scheme, which is based on
the repeated squaring technique therefor is parallel
computation resistant. They also proposed two batch
verification modes for the RSW client puzzle scheme in
order to improve the verification efficiency of the server,
and described how to integrate the scheme with
reputation systems to further improve the effectiveness in
practice. Douglas[20] further improved security
definitions for client puzzles, and proposed that solving n
puzzles should be n times harder than solving one puzzle.

A Sybil attack[21] consists of an attacker introducing a
large number of phantom nodes into a network. Without
centralized admission control, it’s difficult to distinguish
multiple nodes operated by a single attacker from several
independent nodes. Since the cost of participation in a
p2p network is usually low, resourceful attackers can
introduce enough phantom nodes so that they can control
a very large fraction of all nodes. This can be used for
denial of service or other abuse of the network. N.
Borisov[15] proposed a fully decentralized scheme in
which locally generated challenges are continually
distributed and then incorporated into the puzzle solutions
to ensure the freshness of the puzzles. Therefor puzzle
solutions can’t be reused over time by attackers.

2538 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.10.2538-2545

Meanwhile, Li F[16] presented the SybilControl scheme
for controlling the extent of Sybil attacks. It’s an
admission and retainment control scheme that requires
the nodes in a distributed system to periodically solve
computational puzzles and prevents the malicious
influence of misbehaving nodes that do not perform the
computation work.

Time-Lock puzzles, which were formally proposed by
Rivest et al.[22], have the property that it can be solved
only after a predetermined time. They can be used to send
information to the future, i.e., encrypting a message so
that no one can decrypt it until the predetermined time.
Good Time-Lock puzzles have the property that the
algorithm of solving them can’t be parallelized. That
means multiple machines won’t be any faster than a
single machine in solving a Time-Lock puzzle.
Applications of Time-Lock puzzles include timed release
from bilinear pairings[23], non-interactive timed-
release[24], proofs of sequential work[25], timed-release
encryption scheme that provides user anonymity[26-27],
timed release of digital signature[28] and
commitments[29], time capsule signature[30], and offline
submission[31]. However, Time-Lock puzzles can also
be used in fighting spam and DoS attacks, as long as the
secret in the puzzles must be checked by the server before
the client can access the service. As a result, the clients
are forced to be delayed for a period of time before
getting served.

Various techniques, such as trusted computing, have
been utilized in constructing crypto puzzles recently. The
core of trusted computing is the Trusted Platform Module
(TPM)[32], which is basically a crypto-enabled smartcard
soldered on the mainboard of a PC. With the help of a set
of platform configuration registers (PCRs), the TPM
participates in the booting process to help building trust
from BIOS to OS kernel and finally to the application
programs. And it can further prove to remote parties what
the current platform configuration is, which is named
“attestation”. Using PCRs, the TPM can indicate the
hardware and software configuration of the platform, and
releases secrets to the platform only if the PCRs show the
right value, which is termed “unsealing” or “unwrapping”.
The TPM can also create and store cryptographic keys,
either symmetric or asymmetric. One of the keys is a non-
migratable signing key, the Attestation Identity Key
(AIK), which can uniquely identify the TPM. An AIK
could be verified by a third party (i.e. a Privacy-CA) that
creates a certificate for it. This certificate, also known as
identity credential, is sent to the TPM and later used in
attestation. The TPM is embedded in cryptographic
algorithm engines such as RSA, HMAC and SHA-1 to
support the functions discussed above, but the
computational capability is very poor and improper for
multiple low latency scenarios, due to the architecture
and hardware restrictions.

Patrick and Sean[33] proposed the use of Trusted
Puzzle Solvers (TPS) which could be realized by using
TPM in constructing Proof-of-Work puzzles and Time-
Lock puzzles. However, the TPM has to be altered to be
equipped with a trusted clock to adapt to the proposed

TPS and crypto puzzles. The trusted clock in the TPS
plays an important role in the presented puzzles. The
proposed TPS has the following advantages over
traditional methods. It saves computing resources and/or
time as the puzzles would be solved by TPS. And the
time it takes to solve puzzles may vary dramatically
across different computing platforms in traditional
methods, while can be uniform under TPS.

Our contribution in this paper can be summarized as
follows. Through an analysis of the crypto puzzles
proposed in Ref.[33], we point out that these crypto
puzzles can’t defend against DoS attacks well under some
conditions. And further, two new improved crypto
puzzles are proposed, in which the TPS used doesn’t need
a trusted clock, thus can be realized by using TPM
without any modification. The timing work is done
uniformly on the server without clients’ participation,
therefor the QoS (Quality of Service)[34] can be
regulated well by the server. A prototype experiment
shows that the new crypto puzzles can do better in
mitigating DoS attacks.

The rest of the paper is organized as follows. In section
II, crypto puzzles proposed in Ref.[33] are reviewed and
analyzed, and their drawbacks are discussed. And then,
new improved crypto-puzzles for TPS without trusted
clock are proposed in section III. And a following
discussion and comparison between previous puzzles and
new ones are presented in section IV. Prototype
evaluation is described in section V before we draw the
conclusions in section VI.

II. PREVIOUS CRYPTO PUZZLES AND TPS

The TPS proposed by Patrick and Sean[33] is
analogical to the TPM in conformation and function,
except for a trusted clock. All client machines are
required to be equipped with a TPS to perform the puzzle
protocols. Every TPS has a distinct asymmetric key pair
(a private key sk and a public key pk) which is similar to
AIK in the TPM, a cryptographically secure random
number generator (RNG), a cryptographic engine to
perform operations such as HMAC, digital signature and
public-key decryption, and a trusted clock. All these
requirements are fulfilled by the TPM except for the
trusted clock that is not available inside TPM. The clocks
in the TPSs are key elements in the proposed puzzle
protocols. But the clocks need not be synchronized to a
global clock and may be reset at power-on, as long as
they are all ticking at the same and reasonably precise
frequency. Based on the TPS, two crypto puzzle models
were presented, which will be reviewed, and discussed
below.

A. Proof-of-Work Puzzles
Proof-of-Work puzzles are used to rate-limit service

accesses. This model relies on the TPS of the client to
solve the puzzles, and only the TPS knows how to solve
them up to a certain rate. A puzzle in this model consists
of a nonce and a fee. The nonce prevents the clients from
replaying puzzle solutions, while the fee is a parameter
used by the trusted clock in TPS to decide the time taken

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2539

© 2014 ACADEMY PUBLISHER

to solve the puzzle. To make sure the TPS doesn’t solve
the puzzles too quickly, an inside tick counter register
named balance is increased periodically (increased by 1
every millisecond in this model). Given a puzzle with a
fee, the TPS solves it only if the current balance is no less
than the fee. A puzzle in nature is a signature request on
the nonce by the TPS, as only the TPS know the sk, no
one can forge the signature. Thus together with the fee,
only the TPS can control the puzzle answer and the time
taken.

The puzzle protocol executed between a server and a
client is depicted as in Fig. 1. We put C for Client and S
for Server.

1) C sends a request for service to S.
Server Client Client TPS

pk,cert sk,balance

request for service

N R{0,1}80,fee [0,280)
puzzle:=(N,fee)

when balance fee,
puzzle

check balance ≥ fee ?
balance:=balance-fee
σ:=Signsk(puzzle)

σ

Puzzle in record &&
cert valid && σ valid

forget puzzle
grant request

puzzle,σ,pk,cert

Figure 1. Protocol Description of Proof-of-Work Puzzles

2) S records and returns the puzzle={N,fee} to C,
where N is a 80-bit random nonce and fee is a 80-bit non-
negative integer.

3) C waits until balance ≥ fee, and sends the puzzle to
TPS to get the signature. On getting the puzzle, the TPS
first checks balance ≥ fee, if true, signs the nonce in the
puzzle and decrease balance by fee. C sends the signature
(σ) together with the pk, cert and the puzzle back to S.

4) S checks whether the puzzle is in record, then
whether the cert is valid, and finally verifies the signature
on the nonce in the puzzle using the pk. Otherwise, he
declines the request.

This model uses the TPS to solve the puzzle and no
other resources are required, so the client machine is free
from the puzzle work and the whole efficiency gets
improved. Also the TPS is tamper-proof, the security of
the puzzle protocol is guaranteed. This model might work
well in mitigating spam and DoS most of the time, but we
find out that it may not function well under the following
conditions.

Note that when a puzzle is received, a good client may
query the balance and waits until balance ≥ fee before he
asks the TPS to solve the puzzle. But an evil client may
take it as a chance to start DoS attacks. He doesn’t care
about whether or not the signature on the nonce can be
verified, so a random number may be sent to the server as
σ. And also he doesn’t bother TPS for σ, and the fee
restriction is also ignored. Moreover, the evil client can
always get the right pk and cert which are often public
and easy to obtain. Once he gets the puzzle, the evil client
immediately forges an answer and sends it back to the
server, while the TPS is bypassed. Back in the sever end,
because the cert is always valid, it’s until the last
verification step being done that σ gets checked, before
the server can make the final judgment on the puzzle
answer. But at that time, all the expensive crypto
operations have been done, and the precious computation
resources are wasted for nothing, while the evil client
spends nothing in this attack and also breaks the time
limit restriction. Attackers might break down a server
easily in a short time using this kind of DoS bomb. It’s
also observed that the trusted clock in the TPS used for
enforcing the fee policy doesn’t help in slowing down the
attack, and the TPS itself gets bypassed. This model
might work well against spammers who do have to get
the service to accomplish the attack, but it just can’t
defend against the DoS attack discussed here.

And also, for the fee policy, it may not be an easy task
for the server to decide the fee for the puzzles. One way is
to decide the fee according to the server’s status, the
busier the larger, and the freer the smaller. But this
strategy doesn’t take clients’ balance into consideration.
Assume the server is very busy, he increases the fee to a
large number to relieve the pressure and to protect the
QoS, but some new clients’ balance might have been
increased to a number much larger than fee, these new
service requests will get fulfilled immediately, and the
policy fails. And there are also times when the server gets
freer, but the fee is still too large for some clients’
balance, resulting in unnecessary service delay and
resource waste.

To ensure that multiple applications on the same
machine can solve their own puzzles in parallel,
maintaining a separate balance for each application was
also talked about in this model. These new balance
registers were proposed to be saved outside the TPS, and
protected by techniques similar to “sealing” in the TPM.
We think it might not be practical to do so. Considering
that these balance registers are frequently accessed and
modified (by 1 per millisecond), techniques like “sealing”
are too complicated and time-consuming, not to mention
the poor processing speed of the TPM.

All the flaws discussed above would be fixed in
section III where the new improved puzzles are proposed.

B. Time-Lock Puzzles
This puzzle model also relies on the TPS present in the

client machine as a trusted time server. The TPS makes
sure that sufficient time has elapsed before the puzzle is
solved. And also the TPS must be the only possible
puzzle solver for the client. Besides timed release

2540 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

applications, this puzzle model can also be used for
mitigating spam and DoS attacks. The puzzle protocol is
depicted as in Fig. 2. We put C for Client and S for
Server.

Server Client Client TPS
pk,cert sk,k,cur_time(in ms)

pk,cert

cert valid ?
N R{0,1}80,

M:=Encpk(N||delay)
puzzle:=(M,delay)

M

t0:=cur_time
tstamp:=HMACk(M||t0)

t0,tstamp

N

delay

After delay ms
(M,t0,tstamp)

N||delay←Decsk(M)
tstamp valid ?
t1:=cur_time
t1>t0+delay ?

N

Figure 2. Protocol Description of Time-Lock Puzzles

1) C sends pk and cert of his TPS to S for a Time-Lock
puzzle.

2) S checks if cert is a valid certificate for pk. On
success, he returns C with {M ,delay} as the puzzle,
where delay is a 80-bit non-negative integer that denotes
the time (in ms) necessary for solving the puzzle and M is
the encryption of a 80-bit random nonce N concatenated
with delay under pk .

3) C relays M to his TPS. Let the current time be t0.
The TPS returns t0 and tstamp to C, where tstamp is time-
stamp on M at time t0 under the TPS’s secret HMAC key
k, i.e. tstamp=HMACk(M||t0).

4) After delay ms or more, C comes back and relays
{M,t0,tstamp} to the TPS. The TPS first decrypts M to
N||delay using sk, and then checks tstamp=HMACk(M||t0),
and finally t1 ≥t0+delay,where t1 is the current time. The
TPS returns N on all the checking passed or an error to C.

5) C sends N to S who will validate N and finally
fulfilled the service request.

This puzzle model does work well for the good client,
and can counter spammers who have to solve the puzzle
first before the attacks take effect. But similarly, it still
might not be able to mitigate the DoS attacks under
certain conditions.

For the same reason discussed, the DoS attacker can
just ignore the delay requirement and bypass the TPS. He
can flood the server with wrong N. What is worse is that
in step 1 and step 2, the attacker spends nothing to get a
puzzle that is generated by the server with two expensive
cryptographic operations, cert validation and pk
encryption. The attacker may only need to flood the
server with step 1 and step 2 to accomplish the attack,

without even bothering to send forged N. The problem
here is that it’s just too easy for an attacker to send a
puzzle request which costs the server a relatively
considerable amount of computational resources.

In the next section, two improved versions of the
puzzle models discussed above are presented and all the
shortcomings described above are eliminated.

III. NEW CRYPTO PUZZLES AND TPS WITHOUT CLOCK
SUPPORT

It’s observed from the analysis in last section that the
time-limit or time-delay policy can’t be enforced
faithfully on the client machine even the clock on the
TPS is trustworthy. So it is improper to rely on the client
to do the timing work.

In the new puzzle model, the timing work is moved to
the server end. Since the trusted clock on the TPS is only
used for time service in the old models, the TPS used in
new puzzle models needn’t be equipped with a clock
anymore. Hence the TPS can be totally compatible with
the TPM available on many PCs, and can be realized by
the TPM without modification. The new models only use
the TPS as a non-substitutable puzzle solver to every
client. For the convenience of discussion, the same terms
and symbols in the old puzzle models are used in the new
improved ones.

A. New Proof-of-Work Puzzles

Server Client Client TPS
pk,cert

request for service

puzzle,σ,pk,cert

N R{0,1}80,fee [0,280),
t0:=current time

record puzzle:=(N,fee, t0)
N

σ:=Signsk(N)

early reply forbidden

after fee ms
request for puzzle answer

puzzle,σ,pk,cert

Puzzle in record &&
cert valid && σ valid

forget puzzle
grant request

sk

Figure 3. Protocol Description of New Proof-of-Work Puzzles

In this new model, the timing work is done by the
server itself and every puzzle can only be tried once. The
puzzle protocol is depicted as in Fig. 3.

1) C sends a request for service to S.
2) S records{N,fee,t0} and returns the puzzle={N, fee}

to C, where N is a 80-bit random nonce ,fee is a 80-bit
non-negative integer which represents the time delay

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2541

© 2014 ACADEMY PUBLISHER

before the puzzle answer is required, and t0 is the current
time.

3) C sends the puzzle to TPS to get the signature. On
getting the puzzle, the TPS signs the nonce and returns
the result back to C. C doesn’t use the fee in the protocol
as the timing job isn’t done here. But the fee is still
included in the puzzle, for the client might need it. For
example, the client should be told how long it takes
approximately before he can get serviced, so he can
rearrange his schedule accordingly. And also, during this
time interval, the client machine can run any other tasks,
rather than busy-waiting or stalling.

4) When the time for a puzzle is due, S sends a request
for the puzzle answer to C and waits for the reply for a
certain period of time. If he doesn’t get the reply before
the timeout, the protocol is aborted. Note also, any early
arriving reply, that means a surprise reply from C before
S initiates the request, would be deemed an attack attempt,
and the protocol is aborted. On receiving the puzzle
answer, S checks whether the puzzle is in record, then if
the cert is valid, and finally verifies the signature on the
nonce in the puzzle using the pk. Otherwise, he declines
the request.

The new Proof-of-Work Puzzles model is free from the
drawbacks in the old one. First, the timing work is done
on the server side, so the TPS doesn’t have to embed a
trusted clock inside. The requirement for the TPS is
lowered. Also, the DoS attack described in section II
can’t be applied here, because any early arriving reply
can be identified easily and is considered as an attack,
therefore C can only send back the reply when he gets the
request from S. Thus the time policy can be enforced
faithfully. Even if the attacker bypasses the TPS and
sends back a wrong answer, S can just find it out and
simply aborts the protocol as he does in other
unsuccessful protocol executing instances.

It’s also noticeable that C doesn’t have to maintain a
unique balance register for every separate application to
support parallel processing. As for the fee, the server can
simply adjust it only according to the service status. For
example, every fee in the puzzle can be calculated based
on the amount of unsolved puzzles, or the requests
waiting to be fulfilled.

B. New Time-Lock Puzzles
The new Time-Lock-Puzzles also place the timing

work on the server side to protect the time delay in each
puzzle. But the DoS attack described in section II still
needs to be addressed first before the new puzzle protocol
is presented. As pointed out in section II, it’s much more
expensive to generate a puzzle by S than to generate a
puzzle request by C. So it might be proper to impose a
comparative computation on C before S generates a
puzzle. That forces the client to commit its computational
resources to the protocol run before the server allocates
its memory and processing time. There are various ways
to do it, and we choose the method in Ref.[5] to use in the
new puzzle model as an example. Any other techniques,
such as the one in Ref.[10], that can achieve the same
goal are feasible in this model.

It’s also noticeable that it’s not necessary to perform an
expensive cryptographic operation to verify the cert for
pk every time; a cashed lookup table may help. When S
gets {cert, pk}, he first checks the lookup table, if hit, no
further validation is needed. Otherwise, the normal
verification is performed, and on success, the new item is
added to the lookup table. And old items in the table can
be removed according to its last hit time.

The puzzle protocol is depicted as in Fig. 4 and every
puzzle can only be tried once.

Server Client Client TPS
pk,cert

pk,cert

forged N

n [1,160],x R{0,1}160

{n,x′,SHA-1(x)}

M^N′

N←Decsk(M^N′)

early reply forbidden

After delay ms, ask for
puzzle answer

lookup table sk

x

x valid && cert valid ?
N,N′ R{0,1}80,

M:=Encpk(N)^N′,
t0:=current time

puzzle:=(M,delay)

N′

N

Figure 4. Protocol Description of New Time-Lock Puzzles

1) C sends pk and cert of his TPS to S who records
them temporarily.

2) S sends {n,x’,SHA-1(x)} to C, where x is a 160 bits
nonce, and x’ is x with its n lowest bits set to 0. C has to
try all the possible values to regenerate x. This should
take, on average, 2n-1 calculations of SHA-1. After that, C
sends x back to S.

3) S waits for the result with a timeout that varies
according to n. If the received x is incorrect, the protocol
is aborted. Otherwise, S searches for {pk,cert} in the
lookup table. If hit, he generates the puzzle. If missed, he
does the normal verification and then generates the
puzzle for C. N and N’ are 80 bits nonce, and the low 80
bits of Encpk(N) are masked by N’. Note that the current
time t0 when the puzzle is generated is also saved to
facilitate the timing work.

4) On receiving M, C can’t relay it immediately to the
TPS, for he also needs N’ to unmask M. The delay is also
sent to the client. During the delay C is free to do
anything meaningful until he gets the answer request
from S at the end.

5) When the time for a puzzle is due, S sends a request
for the puzzle answer together with N’ to C and waits for
the reply for a certain period of time. If he doesn’t get the
reply before the timeout, the protocol is aborted. With N’,

2542 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

C can unmask M and get the correct N from his TPS.
Note also, any early arriving reply would be deemed an
attack attempt, and the protocol is aborted. S fulfills the
service request if the received N is valid.

The time delay is the most important thing in the
Time-Lock Puzzles. In this model, the time delay is
ensured by the server end, thus the attacker can’t bypass
the time policy from the client end. And also, to counter
the DoS attack in the initial 2 steps in the old puzzle
model, a SHA-1 puzzle is used to slow down the clients.
If the attacker just ignores the SHA-1 puzzle and forges a
wrong answer, the server can find it out effortlessly and
abort the protocol. It’s also observed that the Parameter n
in the SHA-1 puzzle can be used to regulate the clients so
that everyone is served according to the service policy.
For example, to ensure that everyone gets equal service,
the n is larger for clients that initiate more requests than
for those that commit fewer requests. The lookup table
used in the protocol to save cryptographic calculations
can also help to save the requests’ information from the
same client, such as requests per minute, which can be
used in determining n for separate clients.

IV. DISSCUSSION

From the description in last section we can see that the
two new puzzle models don’t have the flaws found in the
old ones, and the trusted clock is also removed from the
TPS. As the timing is uniformly processed by the server,
the client only needs the TPS to solve the puzzles. Thus
the new puzzle protocols are simpler and more efficient
than the old ones, while remains the same security. While
the clients are free from trusted clocks, the server in the
new models needs to do the timing work which is easy to
implement on the server machine. For example, a thread
in the service process waking up every 10 ms and
queuing up all the time-due requests into other service-
working threads might be a good choice. And finally the
new models can work as well as the old ones, but can
counter DoS attacks that overwhelm the old models.

Without trusted clock, the TPS can be realized by TPM
without modification. The AIK that can uniquely identify
the TPM is a good candidate for {sk,pk} of the TPS. But
the AIK can only be used as a signing key; it could not be
used in Time-Lock-puzzles. Keys generated by TPM and
used for RSA encryption and certified by AIK can be
used instead.

It should also be noted that in step 1 and step 2 of both
new and old Proof-of-Work puzzles, C spends nothing to
get the puzzle, though it’s also cheap for S to generate a
puzzle. But S has to remember every puzzle he generates
until he can safely delete it, i.e., C doesn’t send back the
puzzle answer after a certain period of time, or C does
send back the puzzle answer and passes the verification,
or fails the verification (depending on how many times a
puzzle can be tried). Anyway, S has to save the puzzles
for a while. If malicious users flood the server with many
requests without answering it, the server would be in
trouble of maintaining a large number of unsolved
puzzles which will never get processed by evil clients.
It’s suggested that audit be used to partly solve the

problem. And methods used in the new Time-Lock-
puzzles may also be of some help.

The SHA-1 puzzle used in the new Time-Lock-puzzles
may fail in fighting DDoS attackers who have much more
computational resources than the server. And it is even
worse that the SHA-1 puzzle can be solved in parallel. In
that case, the Repeated-Squaring method[10][35]that is
non-parallelizable might be used instead.

V. PROTOTYPE EVALUATION

The service latency increase under DDoS attack is
evaluated in both old and new models. The experiment
scenario is set as below. 8 computers, each equipped with
a 3GHz Core 2 processor, 4GB RAM, Linux Redhat 5
OS, are configured as the servers. While as many as 80
other computers are used to simulate clients in the
experiment, and all of them are comparable to the server
in computational ability. And in every client computer, at
most 1000 threads are used to simulate working clients,
good or evil. So there are at most 80000 simulated clients
in the scenario. All the computers are connected in the
local Gigabit network. The clients connect to the 8
servers randomly.

Since there is no TPM with trusted clock available, and
the TPM is not suitable to serve 1000 threads in RSA
computation, the puzzle protocols have to be predigested
before evaluation. Firstly, the delay or fee is set to 0, so
no clock is needed in TPS in the old model, and also the
delay is always neglected by attackers. Secondly, we use
1024-bit RSA signature as the puzzle, and for simplicity,
no cert is used, but pk is used to identify the client. And
lastly, TPS is simulated by software (as a dynamic linked
library simulating all the needed functions in the real TPS,
such as crypto operations), and all the RSA and other
crypto computations are done by local CPU instead of
TPM for the reason discussed above. And also, RSA keys
are chosen on purpose so that verification is much faster
than signing, which favors the servers in computation. It
takes less than 6ms to generate a RSA signature on the
client computer, while on the server end it can validate
more than 14000 RSA signatures per second.

Cases of client nodes from 1000 to 80000 are tested in
the experiment, less than 5% of which are good clients.
While good clients stick to the protocols faithfully, evil
clients strike the DDoS attacks discussed in this paper. In
every test, good clients are generated randomly on every
client computer ranging from 2% to 5% of all the
simulated clients on this machine. Every good client
delivers 10 to 100 requests randomly in each test, while
the evil clients attack the servers all through the test. The
service latencies are obtained by good clients and then
averaged to get the final results. All the programs are
written in C++ using Linux socket programming.

Table I shows the latency increase (in ms) experienced
by a normal client request in the old and new models.
Normally, a user takes less than 1 ms to get one’s service
request fulfilled. Under DDoS attack, we find that the
latency increases slowly in new models, and even an
almost 80,000-node botnet can only degrade the
performance of a normal request by 2.78 ms. While in old

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2543

© 2014 ACADEMY PUBLISHER

models, the latency increases drastically to 672 ms at the
beginning, and the DDoS attack quickly breaks the server
down.

VI. CONCLUSION

Two new improved crypto puzzles are presented after
an analysis and discussion of two existing crypto puzzles
relying on the TPS with a trusted clock. And all the
drawbacks found in the old ones are eliminated. The TPS
in the new puzzles doesn’t have to be equipped with a
clock, thus can be realized by the TPM without
modification. The new crypto puzzles can deal with some
DoS attacks that the old ones can’t. The new crypto
puzzles protocols are simpler and more efficient than the
old ones, while remains the same security. Prototype
experiments also show that the new puzzle models can
mitigate DDoS attacks well.

REFERENCES

[1] Q. Zhang, P. Wang, H. Yang. Applications of Text
Clustering Based on Semantic Body for Chinese Spam
Filtering.Journal of Computers.2012,Vol 7(11):2612-2616

[2] R. C. Merkle. Secure Communications Over Insecure
Channels. Commun. ACM, 1978,Vol 21(4):294-299.

[3] C. Dwork and M. Naor. Pricing via Processing or
Combatting Junk Mail. In CRYPTO, volume 740 of LNCS,
Springer, 1992: 139-147

[4] M.Jakobsson and A. Juels. Proofs of Work and Bread
Pudding Protocols. In CMS'99: Proceedings of the IFIP
TC6/TC11 Joint Working Conference on Secure
Information Networks, 258-272

[5] T. Aura, P. Nikander, and J. Leiwo, DoS-Resistant
Authentication with Client Puzzles, Proc. Security
Protocols Workshop 2000, Springer-Verlag, New York,
2000: 170-177

[6] B. Waters, A. Juels, J. A. Halderman, and E.W.Felten.
New Client Puzzle Outsourcing Techniques for Dos
Resistance. In ACM Conference on Computer and
Communications Security, ACM,2004:246-256

[7] R. Roman, J. Zhou, and J. Lopez. Protection Against Spam
Using Pre-Challenges.In SEC, Springer, 2005: 281-294

[8] A.Back. Hashcash-a denial of service counter-measure.
Technical report, 2002.

[9] D. Dean and A. Stubble_eld. Using Client Puzzles to
Protect TLS. In SSYM'01:Proceedings of the 10th
conference on USENIX Security Symposium, Berkeley,
CA, USA, 2001. USENIX Association, 1-1.

[10] Yves Igor Jerschow, Modular Square Root Puzzles: Design
of Non-Parallelizable and Non-Ineractive Client Puzzles,in
Computers & Security volume 35. 2013:25-36.

[11] Q. Tang, A. Jeckmans, On Non-Parallelizable
Deterministic Client PuzzleScheme with Batch Verication
Modes, Centre for Telematics and InformationTechnology,
University of Twente, http://doc.utwente.nl/69557/(2010).

[12] C. Dixon, T.Anderson, and A. Krishnamurthy. Phalanx:
Withstanding multimillion-node botnets. Proc.
NSDI,2008.45-58.

[13] B.Parno,D.Wendlandt, E.Shi,A.Perrig,B.Maggs,and Y.Hu.
Portcullis:Protecting connection setup from denial-of-
capability attacks. Proc. ACM SIGCOMM,2007: 289-300

[14] H. Wang,H. Zhou, C. Wang. Virtual Machine-based
Intrusion Detection System Framework in Cloud
Computing Environment.Journal of Computers.2012,Vol
7(10):2397-2403

[15] N. Borisov. Computational Puzzles as Sybil Defenses. In
Peer-to-Peer Computing, IEEE Computer Society, 2006,
171-176

[16] Li F, Mittal P, Caesar M, et al. SybilControl: practical
sybil defense with computational puzzles[C]//Proceedings
of the seventh ACM workshop on Scalable trusted
computing. ACM, 2012:67-78

[17] M. K. Franklin and D. Malkhi. Auditable Metering with
Lightweight Security. In Financial Cryptography, volume
1318 of LNCS, Springer, 1997: 151-160.

[18] A. Serjantov and S. Lewis. Puzzles in P2P systems. In 8th
Cabernet Radicals Workshop, Oct 2003.

[19] A. Juels and J. G. Brainard. Client Puzzles: A
Cryptographic Countermeasure Against Connection
Depletion Attacks. In NDSS. The Internet Society, 1999,
151-165.

[20] Douglas Stebila. Stronger difficulty notions for client
puzzles and denial-of-service-resistant
protocols,LNCS,volume 6558,2011:284-301.

[21] John Douceur. The Sybil Attack. In Proceedings of the 1st
International Peer to Peer Systems Workshop, March
2002:251-260

[22] R.L.Rivest, A. Shamir, and D. A. Wagner. Time-lock
puzzles and timed-release crypto. Technical Report
MIT/LCS/TR-684,MIT,February 1996

[23] K. Chalkias and G. Stephanides. Timed Release
Cryptography from Bilinear Pair-ings Using Hash Chains.
In Communications and Multimedia Security, volume
4237 of LNCS, Springer, 2006: 130-140

[24] J. Cathalo, B. Libert, and J.-J. Quisquater. Efficient and
Non-interactive Timed-Release Encryption. In ICICS,
volume 3783 of LNCS, Springer,2005: 291-303

[25] Mahmoody M, Moran T, Vadhan S. Publicly verifiable
proofs of sequential work[C]//Proceedings of the 4th
conference on Innovations in Theoretical Computer
Science. ACM, 2013:373-388.

[26] A.C.-F. Chan and I. F. Blake. Scalable, Server-Passive,
User-Anonymous Timed Release Cryptography. In ICDCS,
IEEE Computer Society,2005:504-513

[27] K. Chalkias, D. Hristu-Varsakelis, and G. Stephanides,
Improved Anonymous Timed-Release Encryption, in
ESORICS 2007: Proceedings of the 12th European
Symposium On Research In Computer Security,
Sep.2007:311-326

TABLE I.
LATENCY INCREASE

Number of client nodes New model Old model

1000 0.01 672

5000 0.12 4863

10000 0.33 >15000

20000 0.65 /

30000 1.08 /

40000 1.34 /

50000 1.57 /

60000 1.98 /

70000 2.27 /

80000 2.78 /

2544 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

[28] J. A. Garay and M. Jakobsson. Timed Release of Standard
Digtigal Signatures. In Financial Cryptography, volume
2357 of LNCS, Springer,2002:168-182

[29] D.Boneh and M. Naor. Timed Commitments. In CRYPTO,
volume 1880 of LNCS, Springer,2000: 236-254

[30] Y.Dodis and D.H. Yum, Time Capsule Signature, in
FC'05:Proceeding of the 9th International Conference on
Financial Cryptography and Data Security,2005: 57-71

[31] Y. I. Jerschow, M. Mauve, Offline Submission with RSA
Time-Lock Puzzles,in: CIT 2010: Proceedings of the 10th
IEEE International Conference on Computer and
Information Technology, 2010: 1058-1064

[32] TPM Work Group. TCG TPM Speci_cation Version 1.2
Revision 103. Technical report, Trusted Computing Group,
2007.

[33] P. Tsang and S. Smith, Combating spam and denial-of-
service attacks with trusted puzzle solvers, in Proceedings
of the Information Security Practice and Experience
Conference, 2008:188-202

[34] C. Liu, D. Liu.QoS-oriented Web Service Framework by
Mixed Programming Techniques. Journal of
Computers.2013,Vol 8(7):1763-1770

[35] G. Karame and S. Capkun, Efficient Client Puzzles based
on Repeated-Squaring. ;In Proceedings of IACR
Cryptology ePrint Archive. 2009:607-607

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2545

© 2014 ACADEMY PUBLISHER

