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Abstract— As software evolves, test suite continually grows
larger. However running all the test cases in the test suite is
prohibitive in most cases. To reduce the cost of regression
testing, we can optimize test case execution schedule to
maximize the early fault detection rate of the original test
suite. Different from previous research, we use classifica-
tion algorithms to guide the schedule process based on
code change information and running result analysis. In
particular, we firstly train a classifier for each test case
using both the code change information and the running
result in previous versions. Then we secondly use the trained
classifier to estimate the fault detection probability of the
test case in a new version. Finally we generate a test
case execution schedule report based on the fault detection
probability of all the test cases. To verify the effectiveness
of our approach, we performed an empirical study on
Siemens Suite, which includes 7 real programs written by C
programming language, and chose some typical classification
algorithms, such as decision tree classifier, Bayes classifier,
or nearest neighbor classifier. Based on the final result, we
find that in most cases, our approach can outperform a
random approach and then further provide a guideline for
achieving cost-effective test case execution schedule when
using our approach.

Index Terms— software testing, regression testing, test case
execution schedule, classification algorithm, empirical study

I. INTRODUCTION

During software development and maintenance, soft-
ware continually evolves due to fault removal, func-
tion modification, or performance improvement. These
software evolution behaviors will inevitably cause code
changes. Regression testing can be used to guarantee
the correctness of these code changes and avoid their
side effect to other program modules. Statistical data
from some enterprises shows that regressing testing often
consumes up to 80% of the total software testing budget
and 50% of the software maintenance cost [1]. Test suite
maintenance is a core issue in regression testing, however
rerunning all the existing test cases is infeasible. For
example, Rothermel et al. found that running all the test
cases of a software in a cooperation enterprise needs about
7 weeks [2]. A practical solution is to optimize test case
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execution schedule to maximize the early fault detection
rate of the original test suite. This solution is especially
useful when the testing budget is limited.

Nowadays different approaches have been proposed
to optimize test case execution schedule by prioritizing
test cases and they mainly use program entity coverage
ability to guide test case execution schedule [2]–[8]. The
granularity of program entity can be set as statement,
method, or branch. Mirarab and Tahvildari proposed a
prioritization approach which is based on bayesian net-
works [9]. And they further enhanced their approach by
incorporating the feedback mechanism [10]. But in their
approach, they just assumed that the changes to program
entities (such as function) would introduce faults only in
the same program entities, but in reality, the changes of
program entities would introduce faults to other program
entities with data or control dependency. In addition, to
construct the training data, they need to consider source
code changes, software fault-proneness, and test coverage
data. Finally, they used a Bayesian Networks as their clas-
sifier which is a heavyweight classifier. To solve this issue,
we propose a different approach to optimize test case
execution schedule using some lightweight classifiers.

During the process of the software development and
maintenance, we can gather the code change information
and corresponding introduced faults. From these data, we
find that in a specific program module, code changes
are prone to introduce new faults. Therefore we can
conjecture that there exists some specific relationship be-
tween the code change and the fault detection probability,
and we want to use classification algorithms to mine
these relationship. We firstly construct training data by
gathering code change information and running result of
each test case in previous versions. We secondly train a
classifier for each test case using a specific classification
algorithm. We thirdly use the trained classifier to estimate
the fault detection probability of this test case in the new
version. Finally we prioritize these test cases according
to corresponding fault detection probability.

To verify the effectiveness of our approach, we de-
signed and performed an experimental study. In particular,
we chose some classical classification algorithms and
used Siemens Suite as our benchmark. Final result shows
that in most cases, our approach has advantage over
a random approach. Among different classifiers, Bayes
classifier performs best, while decision tree classifier
performs worst. We also find that the effectiveness of
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our approach is mainly related to the number of versions
or LOC/method. These findings can further guide the
use of our approach for achieving cost-effective test case
execution schedule.

The main contribution of this paper can be highlighted
as follows:

• To the best of our knowledge, we firstly propose
a classifier based test case execution schedule ap-
proach.

• We designed and performed an empirical study to
verify the effectiveness of our proposed approach.

The rest of this paper is organized as follows: Sec-
tion II provides the background of test case execution
schedule and introduces some typical classification algo-
rithms. Section III presents details of our classifier based
approach. Section IV presents the experimental study
including experimental setup, data analysis, and threats
to validity. Section V summarizes the related work and
highlights the contribution of our work. Section VI draws
a conclude and discusses several potential future work.

II. BACKGROUND

In this section, we briefly introduce the preliminary of
test case execution schedule. The formal description of
this issue was given by Rothermel et al. [2] as follows:

Given: a test suite T , the set of permutations of T PT ,
a function f from PT to a real number.

Problem: Find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈
PT )(T ′′ ̸= T ′)[f(T ′) ≥ f(T ′′)].

Different from the description of Rothermel et al.,
Kim and Porter summarized this process into four steps
from probability point of view [11]. These steps are: (1)
applying a regression test selection technique to a test
suite T , yielding T ′. (2) calculating a selection probability
for each test case in T ′. (3) executing the test case from T ′

with highest probability which is calculated in step 2 one
after another. (4) repeating step 3 until testing resource is
exhausted. In this paper, our research work is based on
the description of Kim and Porter.

To evaluate the performance of our proposed approach,
we need a suitable metric. In previous research, Rothermel
et al. proposed a metric APFD to measure the weighted
average of the percentage of faults detected during the
execution of the test suite [2]. However, this metric in-
volves fault numbers that each test case can reveal. Since
it is hard to obtain such information when performing
black box testing, therefore in this paper, we choose M1

[12] as our metric to measure the effectiveness of different
approaches. M1 can be used as a measure to illustrate how
rapidly an prioritized test cases can detect faults in black
box testing. The value of this metric can be computed as
follows:

M1 =
1
2 ×

∑m
i=1[(2×m− 2× i+ 1)× fi]

m×
∑m

i=1 fi
(1)

Here m is the size of the test suite and fi represents
whether the i-th test case can detect the fault, if not, the
value is 0, otherwise the value is 1.

A. Classification Algorithms

In this subsection, we will illustrate some representative
classification algorithms. The classification based learning
contains two stages: the first stage is to train a classifier
according to the training data, and the second stage is
to use the trained classifier to compute the probability of
present attribute set to one of the predefined class label. In
our research, we choose three representative classification
algorithms, they are Bayes classifier, nearest neighbor
classifier, and decision tree classifier.

Decision tree is a hierarchical structure, which consists
of nodes and directed edges. The tree has three types
of nodes: a root node, internal nodes, and terminal n-
odes. Decision tree has the following metrics: decision
tree induction is a nonparametric approach for building
classification model. Constructing decision trees is com-
putationally inexpensive. Decision trees are relative easy
to interpret. Decision trees are robust to the presence of
noise.

Bayes classifier is a simple probabilistic classifier based
on Bayes Theorem. It is used to find the relationship
between the attributes set and class label. It uses Bayes
formula to predict some particular attribute sets which
class they belong to. Compared to other classifiers, Bayes
classifier can use less time to training and predicating. It
is also robust even there exists isolated noise points. There
are two main variant techniques. One is AODE (Averaged
One-Dependence Estimators) and it was developed to
address the attribute-independence problem of the Naive
Bayes classifier, it can reduce the requirement of the
independence between the attributes. The other is HNB
(Hidden Naive Bayes), in this technique, a hidden parent
is created for each attribute which can combine the
influences from all other attributes. This technique solves
the assumption of the independence between attributes
and combines the merits of Bayes and Bayes network,
therefore it has been succesfully used in many real world
applications.

Nearest neighbor classifier is a lazy classifier, it do not
use the training data to train the classifier, but to predict
directly by using training data. Therefore it can be easily
interfered by noises. This technique projects each instance
into a point in d-dimension space and determines which
class it belongs to by voting of the nearest neighbors.
KNN (K-nearest neighbor) is one of the classical nearest
neighbor classifiers, it uses the k-nearest neighbors to
determine the class which the point belongs to.

III. OUR APPROACH

In this section, we will introduce the framework of our
approach used for test case execution schedule in detail.

A. Preliminaries

Before introducing our approach, we formalize some
concepts in this subsection.

Let T = {t1, t2, · · · , tm} be the test suite, V0 =
{m1,m2, · · · ,ml} be the original version, where mk rep-
resent k-th program entity. In our research, we treat each
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function as a program entity. Let V = {V1, V2, · · · , Vn}
be the version set and each version was performed a code
change operation on the original version V0.

Based on code change analysis and test case running
result analysis, we can construct two matrices: code
change matrix (CCM) and running result matrix (RRM).
Code change matrix can denote the change information
between the base version V0 and the i-th version Vi. In this
binary matrix, columns correspond to program entities
and rows correspond to versions in V . If the j-th program
module is modified in Version Vi, the value of ci,j is
1, otherwise the value of ci,j is 0. Typical code change
operators can be summarized into three categories: code
addition operators, code modification operators, and code
deletion operators.

CCMn×l =


m1 m2 · · · ml

V1 c1,1 c1,2 · · · c1,l
V2 c2,1 c2,2 · · · c2,l
· · · · · · · · · · · · · · ·
Vn cn,1 cn,2 · · · cn,l


Running result matrix can denote the running result

of each test case in different versions in V . In this
binary matrix, columns correspond to test cases and rows
correspond to versions in V . If the j-th test case is passed
in Version Vi, the value of ri,j is 1. Otherwise the j-th
test case is failed in Version Vi, the value of ri,j is 0.

RRMn×m =


t1 t2 · · · tm

V1 r1,1 r1,2 · · · r1,l
V2 r2,1 r2,2 · · · r2,l
· · · · · · · · · · · · · · ·
Vn rn,1 rn,2 · · · rn,l


Based on these two matrices, for the test case ti, we

can construct a collection of records which can be used
as training data. The attribute set of the record can be
gathered from matrix CCM, and the class label (i.e., target
attribute) can be gathered from matrix RRM. The final
records can be shown as follows:


m1 m2 · · · ml class

1 c1,1 c1,2 · · · c1,l r1,i
2 c2,1 c2,2 · · · c2,l r2,i
· · · · · · · · · · · · · · · · · ·
n cn,1 cn,2 · · · cn,l rn,i


When considering a new version Vnew, we can con-

struct a vector (cnew,1, cnew,2, · · · , cnew,l) by analyzing
the difference between Vnew and V . Then we can use
this vector and the trained classifier to estimate the fault
detection probability of ti in Vnew.

B. The Framework of Our Approach

Before introducing our approach, we mainly make the
following two assumptions.

Assumption 1: After performing a code change op-
eration, developers often inevitably introduce new faults.

Test suite

Code change and 

running result 

analysis

Training data 

construction

Training

data
Classifier

training
Classifier

New

versions
Fault detection 

ability estimation

Test case 

execution schedule 

report

Previous

Versions

Figure 1. The Framework of Our Approach

Therefore we should perform regression testing to guar-
antee that no fault is introduced in the new version.

Assumption 2: The code change operation is not
complex. When the software becomes stable, in most
cases, developers often change only one program module.
Therefore the new version is almost the same as the
previous version.

We use Figure 1 to show the framework of our ap-
proach. From this figure, we can find that our approach
mainly consists of three phases.

Phase 1. Training data construction: In this phase,
we will collect the versions’ change information and the
running results of each test case in previous versions.
Based on these data, we can construct training data of
each test case for the Phase 2.

Phase 2. Classifier training: In this phase, we can
train a classifier for each test case based on the training
data, which is constructed in Phase 1. In our empirical
studies, we will use different classification algorithms.

Phase 3. Test case execution schedule report gener-
ation: In this phase, for each test case, we will use both
the corresponding classifier and the change information in
the new version to estimate the fault detection probability
of each test case. By using the fault detection probability,
we can prioritize these test cases in the descending order
and finally return the test case execution schedule report.

IV. EMPIRICAL STUDY

To investigate the effectiveness of our approach, we
conducted an empirical study and wanted to answer the
following three research questions:

RQ1: How about the effectiveness of our novel clas-
sification algorithm based approach when comparing a
random approach?

RQ2: Which classification algorithm is more suitable
for our approach in the empirical study?

RQ3: Which characteristic of empirical subject is more
suitable for our approach in the empirical study?

A. Independent Variables and Dependent Variables

In the design of empirical studies, we usually control
or change certain factors to investigate the relationships
between these factors and experimental results. These
factors are called independent variables. In this paper, we
only consider one independent variable (i.e., classification
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TABLE I.
THE SUMMARY INFORMATION OF EXPERIMENTAL SUBJECTS

Subject Name LOC #Methods #Versions #Tests
printtokens 726 18 7 4130
printtokens2 570 19 10 4110

schedule 412 18 9 2650
schedule2 374 16 10 2710

replace 564 21 32 5542
totinfo 565 7 23 1052

tcas 173 9 41 1608

algorithms in our approach). In empirical studies, we use
dependent variables to measure the final experimental
results. In this paper, we only consider M1 metric and
the detail is illustrated in Section II.

B. Experimental Subjects, Test Suits, and Faults

We use seven open-source subjects in Table 1, these
subjects were developed by Siemens researchers [13]
and further developed by Rothermel et al. to make sure
that each executable statement, definition-use pair, or
branch should be covered at least by 30 test cases.
These seven subjects are also called Siemens suite and
they are commonly used in empirical studies of software
testing [2]–[4], [7], [14], [15]. Table I shows the summary
information of these seven subjects, such as lines of code
(LOC), the number of methods the each subject has, the
number of mutant versions, and the size of test pool. Each
subject has a original version and the number of mutant
versions ranges from 7 to 41. In the mutant versions, the
mutant is seeded by researchers who have rich project
development experience. Most of the mutant operators
just modify only one line.

In our experimental studies, we randomly generated
100 test suits from the original test case pool, the size
of each test suite is set to 100. Then we will apply our
approach to each test suite to verify the effectiveness of
our approach.

C. Experimental Setup

As show in Figure 1, our framework contains three
phases. These phases are training data construction, clas-
sifier training, and test case execution schedule report gen-
eration in sequence. In this subsection, we will explain the
implementation details in these three phases respectively.

Phase 1. Training data construction: In this phase, we
mainly perform code change analysis and running result
analysis. During code change analysis, we use Adiff tool
1 to help us to construct CCM, which is defined in Section
III. Adiff is an automatic differentiation utility and can be
used to collect version change information between two
different versions. During running result analysis, we run
each test case on different versions in the version set V
and then construct RRM, which is defined in Section III.
When the test case outputs an expected value, we call it
a passed test case, else we call it a failed test case.

1http://mathforum.org/library/view/70812.html, Accessed in Aug.
2013

Phase 2. Classifier training: In this phase, we choose
WEKA (Waikato Enironment for Knowledge Analysis) 2

as our classifier training tool. This tool is developed by
the University of Waikato in New Zealand and now is
widely used for data mining by many researchers. In our
empirical studies, we chose five typical classifiers such
as HNB, AODE ,IBk, ADTree, and BFTree. The previous
two classifiers (i.e., HNB and AODE) are based on Bayes
classification, IBk is a classifier based on nearest neighbor
classification, and BFTree is a classifier based on decision
tree classification.

Phase 3. Test case execution schedule report gen-
eration: In this phase, we will use the trained specific
classifier to predict the fault detection probability of each
test case in the new version. When we get the fault
detection probability of all the test cases, we can use a
specific sorting algorithm to schedule test case execution
order in the descending way. In our study, we use quick
sorting algorithm.

D. Data Analysis

In this subsection, we summarize all the data gathering
from the empirical study and answer the three research
questions.

In the empirical study, we use a leave-one-out method
to evaluate the performance of our approach. In particular,
in i-th run, we use Vi as new version, and V − Vi

as the previous versions. This procedure is repeated n
times. Therefore when choosing a specific classification
algorithm, we can get n different M1 values for each
subject. If version Vi is chosen as the new version,
the value of M1 is denoted as M j

1 . Finally we can
compute the mean value to evaluate the performance of
our approach and the formula is:

M1 =

∑n
j=1 M

j
1

n
(2)

1) Effectiveness of Our Approach: To answer RQ1, we
compare our approach with a random approach. When us-
ing the random approach, we schedule test case execution
order randomly. Since there exist 100 different test suites
for each subject, the distribution of M1 value is shown
in Figure 2. Except for one exceptional case (i.e., use
ADTree classifier for schedule2 subject, the M1 value of
our approach is smaller than the random approach), our
approach can perform better than the random approach.
From Figure 2, we can find that when using the random
approach, the mean value of M1 is about 0.5. However,
when using our approach, the mean value of M1 ranges
from 0.5 to 0.9. Especially, when analyzing subjects
printtokens2, totinfo, replace, and tcas, the M1 value is
significantly better than the random approach which can
indicate that if using our approach, we can as early as
possible to find out more faults.

2http://www.cs.waikato.ac.nz/ml/weka/, Accessed in Aug. 2013
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Figure 2. The M1 distribution for each subject
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2) Effectiveness of Different Classification Algorithms:
To answer RQ2, we use Table II to record the mean
value of M1. In Table II, we add ”Optimal” column.
Since this is a controlled experimental study, we can
know the running result of each test case on the new
version in advance. Therefore we can get an optimal test
case execution order and compute the corresponding M1

value. The last row shows the mean value of M1 for each
classification algorithm over all the subjects.

According to the summary data of Table II, we can
find that HNB and AODE perform better than other
classification algorithms. IBk is the second, and ADTree
and BFTree perform worst among these algorithms. If we
use HNB and AODE , the M1 values can achieve more
than 10% higher than other classification algorithms. We
can find that the M1 is nearly 0.79 if we use HNB and
AODE, and is nearly 0.73 if we use IBk, and is nearly
0.60 if we use ADTree and BFTree. In summarization, in
most subjects Bayes classifiers are the most suitable for
our approach, nearest neighbor classifiers are less suitable
for our approach, and decision tree classifiers are worst
for our approach.

3) Effectiveness of Different Characteristics of Sub-
jects: After answering RQ2 we can find that the Bayes
classifiers maybe the most suitable for our approach than
other classifiers. Therefore we will further analyze the
effectiveness of different subjects in our approach based
on the classification algorithms HNB and AODE. As
we can find from Figure 2, our approach can perform
better in the subjects, such as replace, schedules2, tcas,
and totinfo. Table III shows the relationship between the
mean value of M1, which is on HNB and AODE, and
the attributes of subjects. Here column ”LOC/method”
(LOCM) denotes the average LOC of each method. From
this table, we can find that three subjects (i.e., replace,
schedules2, and totinfo) which performs better usually
have larger LOCM. The value of LOCM is all more than
25. However, we also note that the LOCM of tcas is
the smallest, but our approach can still perform well on
this subject. We conjecture the reason is that the mutant
number of this subject is larger than other subjects. Since
when we use the classification algorithms, we know that
the more number of training data, the better classification
models we can get. In summarization, from Table III, we
can find that the subjects with more mutant number or
larger LOCM maybe the most suitable for our approach.

The findings of RQ2 and RQ3 can provide a guideline
for achieving cost-effective test case execution schedule
when using our proposed approach.

E. Threats to Validity

In this section, we mainly discuss the potential threats
to validity of our research.

Threats to external validity are about whether the
observed experimental results and conclusion can be
generalized to other subjects. One external threat is that
the subjects we have used are all written by C pro-
gramming language. Therefore the conclusion may not be

applicable to other subjects written by other programming
languages. However these subjects are widely used by
other researchers in their empirical studies [2]–[4], [7].
Another external threat is the chosen classification algo-
rithms. There maybe exist other classification algorithms
which can perform better then the chosen classification
algorithms in our research work. However our chosen
classification algorithms is the most classical in traditional
data mining textbooks.

Threats to internal validity are mainly concerned with
the uncontrolled internal factors that might have influence
on the experimental results. The main internal threat is
the process of information collection and the correct-
ness of our programs. To avoid these issues, we firstly
downloaded all the subjects, mutant versions, and test
cases from SIR repository3. We secondly examined the
results carefully and wrote additional verifying programs
to guarantee the correct implementation of our approach.

Threats to construct validity are about whether the met-
rics used in the experimental study reflect the real-world
situation. In previous research, researchers mainly use
APFD (average percentage of fault detection) to assess
the effectiveness of their proposed approach. However
this metric is particular suitable for the general test case
prioritization issue. In this issue, testers want to prioritize
test cases and hope to be useful on a set of modified
versions. While in the specific test case prioritization
issue, we hope that the test case prioritization is useful
on a specific version and in this paper we mainly focus
on this issue and use M1 as our experimental metric.

V. RELATED WORK

Regression testing is frequently performed to guarantee
the correctness of software under test as it continuously
evolves. In practice, software tester can use test case
repair, test case selection, test suite augmentation, test
suite reduction, and test case prioritization to improve the
quality of regression test suite [16]–[19]. In this paper,
we mainly focus on test case prioritization, this technique
aims to schedule test case execution order to improve the
early fault detection rate of the original test suite. Except
for traditional software testing, the achievement of this
issue has also been applied to other specific application
domains, such as configurable software [20], [21], GUI
[22], Web application [23], [24], Web service [25], and
fault localization [26].

The existing research work on traditional software
testing can be summarized into three categories: (1)
greedy algorithm based, (2) machine learning based, and
(3) expert knowledge based. Greedy algorithm based ap-
proaches aim to prioritize test cases based on the coverage
ability of program entities. Commonly adopted program
entity includes statement, branch, method, or MC/DC
(Modified Condition/Decision Coverage) [2]–[4], [6], [7],
[27]. Based on whether using feedback, the prioritization
strategies can be divided into total strategies and addi-
tional strategies [2], [3]. Some researchers use machine

3http://sir.unl.edu/portal/index.php, Accessed in Aug. 2013

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2519

© 2014 ACADEMY PUBLISHER



TABLE II.
THE MEAN VALUE OF M1 FOR EACH CLASSIFICATION ALGORITHM

Subject Optimal HNB AODE IBk ADTree BFTree Random
printtokens 0.9916 0.6779 0.6782 0.6728 0.5689 0.5960 0.4967

printtokens2 0.9728 0.8619 0.8459 0.8234 0.7135 0.6278 0.4968
schedule 0.9832 0.6868 0.6864 0.6455 0.5688 0.5686 0.4942

schedule2 0.9442 0.7717 0.7717 0.7668 0.3669 0.6202 0.5022
replace 0.9439 0.8409 0.8311 0.7878 0.6962 0.6637 0.4978
totinfo 0.9598 0.8259 0.8246 0.7819 0.5342 0.6247 0.4988

tcas 0.9762 0.8198 0.8146 0.6819 0.5342 0.6247 0.5045
AVG 0.9674 0.7836 0.7789 0.7372 0.5690 0.6180 0.4987

TABLE III.
THE RELATIONSHIP BETWEEN M1 VALUE AND SUBJECTS’ ATTRIBUTES

Subject M1 LOC #Methods #Versions LOC/method
printtokens 0.6780 726 18 7 40.33
printtokens2 0.8359 570 19 10 30.00

schedule 0.6866 412 18 9 22.89
schedule2 0.7717 374 16 10 23.38

replace 0.8360 564 21 32 26.86
totinfo 0.8253 565 7 23 80.71

tcas 0.8172 173 9 41 19.12

learning approach to schedule test case execution. For
example, Li et al. used hill climbing and genetic algorithm
[7], [28]. Mirarab and Tahvildari used Bayesian network
[9], [10]. Leon and Podguski used cluster analysis [14].
Carlson further considered code coverage information,
code complexity, and previous fault detection information
of test cases in their cluster analysis [29]. Researchers also
notice that when scheduling test case execution order,
we can use expert knowledge to further improve the
effectivness. Tonella et al. proposed a case-based ranking
approach [30]. Yoo et al. incorporated expert knowledge
into cluster analysis [15].

In some software testing scenarios, the testing budget
for software is limited to running all the test cases.
Researchers named this issue as time-aware test suite
prioritization. Kim and Porter firstly research this issue
[11]. Then Walcott et al. used genetic algorithm [31] and
Zhang et al. used integer linear programming [32] to solve
this issue respectively. Do et al. further analyzed how the
time constraint affects the existing test case prioritization
techniques [33].

Based on the summarization of related work, we find
that Mirarab and Tahvildari also used a classifier to assist
test case execution schedule, but they (1) constructed
training data by considering source code changes, soft-
ware fault-proneness, and test coverage data, however
gathering these data is computational expensive. (2) u-
tilized Bayesian Networks as their classifier which its
structure is complex and needs setting more parameter
values. Different from their research, we firstly pro-
pose a classifier based framework which only uses code
change information and running result of each test case
in previous versions. These information can be easily
obtained in real software testing process. Moreover, we
chose different lightweight classification algorithms, such
as decision tree classifier, Bayes classifier, and nearest
neighbor classifier. Finally we designed and performed

an empirical study to verify the effectiveness of our
framework and further analyzed the influencing factors
in this framework.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a classification based test
suite prioritization technique and conducted a set of em-
pirical studies to verify the effectiveness of our approach.

As a preliminary research, there are some issues needed
to be solved. In the future work, we firstly want to
consider more classification algorithms to augment our
proposed framework. Secondly we want to conduct more
experimental studies. In particular, we want to adopt
more subjects written by other programming languages or
more subjects coming from real world development. Last
but not the least, we want to incorporate our proposed
framework into reality software development process.
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