
Aspect-Oriented Programming to Improve
Modularity of Object-Oriented Applications

Jose M. Felix

Principality of Asturias, Computer Science Department, Oviedo, Spain
Email: jmanuelfr@princast.es

Francisco Ortin

University of Oviedo, Computer Science Department, Oviedo, Spain
Email: ortin@lsi.uniovi.es

Abstract— The separation of concerns design principle
improves software reutilization, understandability,
extensibility and maintainability. By using the object-
oriented paradigm, it is not always possible to separate into
independent modules the different concerns of an
application. The result is that the source code of crosscutting
concerns are tangled and scattered across the whole
application. Aspect-oriented programming offers a higher
level of modularity, providing a solution for the code
tangling and scattering problem. To show how aspect-
oriented programming can be used as a suitable mechanism
to improve the modularity of object-oriented applications,
this divulgative article presents the implementation of a
typical design pattern following both the object- and aspect-
oriented paradigms. The two approaches are compared
from the modularity perspective, establishing a discussion
on the benefits provided and is current use.

Index Terms—aspect-oriented programming, modularity,
crosscutting concerns, AspectJ, separation of concerns

I. INTRODUCTION

Designing modular systems is fundamental for
managing software complexity and improving its
reusability, understandability, extensibility and
maintainability [1]. At the implementation level,
programming languages provide mechanisms to perform
this modularization. Some common features of object-
oriented languages used to facilitate the modularization of
application abstractions are methods, classes, packages,
namespaces and annotations. There exist some other
modularization mechanisms, not directly supported by
programming languages, which provide a higher level of
abstraction. Examples of these mechanisms are
components, design patterns, application frameworks,
and architectural patterns.

In the software development process, there are cases
when some system abstractions cannot be directly
modularized with the mechanisms provided by a
programming language [2]. A vector sorting algorithm
can be implemented in a unique class method. However,
functionalities such as error detection and correction,
logging, persistence and security cannot be directly

modularized with the mechanisms provided by common
object-oriented languages [3].

The different (functional and non-functional)
requirements demanded to an application are called
software concerns [4]. The Separation of Concerns (SoC)
design principle is aimed at separating a computer
application into distinct modules, such that each one
addresses a separate concern [4].

Some concerns cannot be directly modularized in
classic object-oriented languages because those languages
have not sufficient expressiveness to implement them in
independent modules. In that case, the implementations
of those concerns cut across multiple abstractions in a
program. For this reason, these concerns are said to be
crosscutting [5]. Figure 1 shows a real example. This
figure presents the modularization of the Apache Tomcat
application server implementation [6]. Each vertical bar
shows one implementation module, and its size is
proportional to the number of lines of code. The left-hand
side of Figure 1 shows in red the lines of code whose
concern is XML document parsing. It can be seen how
that functionality is placed in one single module. The
right-hand side of Figure 1 shows the source code
distribution of the logging concern. This is an example of
a crosscutting concern: its source code is not placed in a
unique module (code scattering), and every module,
including XML parsing, contains code of this concern
(code tangling). This code scattering and tangling issues
indicate that the implementation-level modularization is
not appropriate, leading to reusability, understandability
and maintainability limitations [4].

The main contribution of this divulgative paper is a
practical analysis of how Aspect-Oriented Programming
(AOP) provides an alternative mechanism to solve the
code tangling and scattering problems in the
implementation of crosscutting concerns. In order to do
that, Section II introduces the main AOP concepts and
AspectJ, one of the most widely used AOP tools
nowadays [7]. Section III presents an example of a
common design problem, comparing the object- and
aspect-oriented implementations. Afterwards, the
suitability of AOP for improving modularity is discussed

2454 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.24454-2460

in Section IV, and the conclusions and future work are
presented in Section V.

II. ASPECT-ORIENTED PROGRAMMING

Separating the different concerns of an application is
an objective in all the steps of the software development
process. Aspect-orientation is a particular mechanism to
achieve the SoC goal. Aspect-Oriented Software
Development (AOSD) focuses on the identification,
specification and representation of cross-cutting concerns
and their modularization in all the steps of the software
development process. Therefore, aspect-orientation can
be applied to requirement engineering, business process
management, system architecture, modelling and design
[8]. In this article we focus on aspect-oriented
programming, which is centered on the programming
techniques and tools to support the modularization of
concerns at the level of the application source code [4].

As shown in Figure 2, the different concerns of an
application are identified from its requirements. Before
its implementation, the application concerns are
conceptually separated. These concerns comprise both
functional (i.e., problem domain) and non-functional (e.g.,
persistence or logging) requirements. The objective of
AOP is to modularize all these concerns. The aspect
weaver is the tool that takes the different concerns of an
application and generates the target program. If the final
application is coded in an object-oriented language, such
as Java or C#, the target code of the different concerns
may be tangled and scattered. Figure 2 shows how the
final implementations of the functional concerns 1 and 2
are placed in one single module, tangled with the code of

other concerns (e.g., logging). However, the rest of
concerns are scattered among multiple modules, and
tangled with the code of other concerns. Therefore, AOP
raises the level of abstraction, offering the programmer a
modularization mechanism superior to that provided by
object orientation. The aspect weaver is the tool that
translates the aspect-oriented abstractions into the object-
oriented ones.

There exist two approaches for representing concerns
in AOP. Asymmetric AOP distinguishes the base code
(traditional classes in the classical object orientation)
from the aspects. Aspects represent crosscutting concerns
that, due to the aspect weaver, can be modularized.
Therefore, in asymmetric AOP, an aspect must be used to
be woven with a class (or another aspect). AspectJ is an
example tool that provides asymmetric AOP [7]. On
contrary, symmetric AOP is based on the unique concept
of class/aspect. Any class can act as an aspect and be
woven with any other class (or aspect). Hyper/J is an
example of symmetric AOP [9].

In general, aspect weaving is performed statically,
before application execution. AspectJ also provides load-
time aspect weaving, when classes are about to be loaded
into memory by the virtual machine. There are also AOP
tools that allows aspect weaving and unweaving at
runtime, when the application is being executed [10].
These dynamic weavers adapt running applications at
stable points of execution. Examples of these dynamic
AOP tools are the JAsCo, PROSE and DSAW platforms
[11].

Aspect-oriented programming has been included in
widespread application server frameworks such as JBoss
or Spring. There are other implementations, such as JAC,

a) Distribution of the XML parsing concern b) Distribution of the logging concern

Figure 1. Distribution of concerns (source code per module) in the implementation of Apache Tomcat [6].

Modules of the
Final ApplicationConcerns

Logging Concern
Persistence Concern

Weaver

Functional Concern 1
Functional Concern 2

Functional Concern 3

Requirements

Figure 2. Weaving the different concerns identified from the application requirements.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2455

© 2014 ACADEMY PUBLISHER

aimed at developing an aspect-oriented middleware layer.
Another criterion to classify AOP tools is their domain.
They could be used for general purposes, such as AspectJ,
Compose* or CaesarJ; or specific for one domain: DiSL,
for dynamic program analysis; AGOL, for multi-agent
systems; and LLDSAL for dynamic code-generation and
program modification.

III. A HIGHER LEVEL OF MODULARITY

We show an example of how AOP provides a higher
level of modularity compared with object-oriented
programming. For this purpose, we first identify the
different concerns in a classical design problem, and
implement them in the Java programming language
(Section III.A). Afterwards, we solve the same problem
in AOP using AspectJ, comparing the modularization of
this approach with the object-oriented one (Section III.B).

A. The Observer Design Pattern
The Observer design pattern defines a one-to-many

dependency between objects so that when one object
changes state, all its dependents are notified and updated
automatically [12]. Figure 3 shows an example instance
of the Observer design pattern. The Timer class plays the
role of the object which state changes (called Subject in
the design pattern). Timer is associated to a collection of
Observers. Timer objects execute their tick method
every second.

There are two types of Observers. Clock objects
increment their state (hour, minute and second) in one
second every time the incrementOneSecond method is
called. An Alarm object utilizes one Clock to check the
current time. When that Clock reaches the hour,
minute and second saved as the state of the Alarm
object, the corresponding message is shown in the
console.

Each Subject holds a collection of Observers by
means of the observers field, and the addObserver
and removeObserver methods. Although there may be
different types of Subjects, in this example we only
consider the Timer class. Whenever a change in the state
of a Subject occurs, this object notifies the associated
Observers of this change by calling the
updateObservers method. As shown in Figure 3,
Timer performs this notification at the end of the tick
method implementation (every second). The execution of
updateObservers implies passing the update message
to each of the associated Observer objects registered for
that particular Subject. For Clocks, update means
incrementing its current time in one second; for Alarms,
the time of its clock is compared with its own state and, if
both are equal, its message is shown in the console (i.e.,
the alarm is triggered).

In the Observer design pattern, the Subjects trigger
the events that may occur dynamically
(updateObservers), and each type of the registered
Observer defines how to respond to these events
(implementation of the update method). These are the
functional concerns we have identified in this example:

1. The Timer, Clock and Alarm domain entities,
modularized in different classes.

2. The Subject and Observer roles, to be played
by the existing entities of the problem domain. In
the object-oriented approach presented, these roles
are modularized in two interfaces (Figure 3).
However, the identification of the roles played by
each entity requires a subtle modification of each
entity module: declaring that the entity (class)
implements the role (interface).

3. The collection of Observers associated to a
Subject. The concern of managing this
collection is modularized inside the Timer class

«interface»
Observer

+ update()

Clock

- hour: int
- minute: int
- second: int

+ incrementOneSecond()
+ update()

Alarm

- hour: int
-

message: String
-

minute: int

-
second: int

+ checkAlarm()
+ update()

«interface»
Subject

+ addObserver(Observer)
+ removeObserver(Observer)
+ updateObservers()

Timer

+ addObserver(Observer)
+ removeObserver(Observer)
+ tick()
+ updateObservers()

for(Observer observer:observers)
observer.update();

System.out.println("Tick");
this.updateObservers();

this.incrementOneSecond();
System.out.println(this);

this.checkAlarm();

-observers

*

-clock

1

Figure 3. Object-oriented implementation of the Observer design pattern.

2456 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

(the observers field, and the addObserver and
removeObserver methods). The implementation
of this concern could be placed in an abstract class,
and be inherited by those classes requiring it.
Although this technique is widely used, the class
will not be able to derive from another different
class (Java is a single-inheritance object-oriented
language).

4. Event notification, modularized in the Timer class.
In this class, the updateObservers invocation
(event notification) is tangled with the functional
concerns of the Timer entity (e.g., the tick
method).

5. Responses to events. The different responses to
the events triggered are implemented in the
modules playing the Observer role (Timer and
Alarm), by overriding the update method.

B. Aspect-Oriented Implementation
In the previous example, the different concerns

identified in the problem were not modularized separately
using the Java object-orientated language. The different
concerns of the Observer design pattern, such as event
triggering and the distinct responses to these events, are
tangled with the functionalities of the domain entities. In
this section, we show how a higher level of
modularization can be achieved by using AspectJ. We
present the domain entities, an aspect implementing the
Observer pattern, and an instantiation of this pattern for
the particular scenario described in Section III.A.

Figure 4 shows how AOP provides the modularization
of the domain entities (concern 1 in Section III.A),
without including any of the concerns of the design

pattern (concerns 2 to 5). In Figure 4, the Timer class has
no concern related to the observer collection management
(observers, addObserver and removeObserver in
Figure 3) or to event notification (updateObservers);
neither Clock nor Alarm describe their response to
events (update in Figure 3); and roles are not specified
by means of interface implementation. With AOP, each
concern is placed in a separate module.

Figure 5 shows an implementation of the Observer
design pattern using AspectJ. The
ObserverDesignPattern aspect is declared as
abstract (line 6), because it models a generalization of
the Observer design pattern (not an instance of that
pattern for a specific scenario). Later on, we will see how
to use inheritance to apply this abstract aspect for a
particular problem (Figure 6). Lines 8-24 in Figure 5
define the members that the aspect weaver will add to the
classes derived from Observer: observers,
addObserver, removeObserver and
updateObservers. In this way, the
ObserverDesignPattern aspect modularizes the
observer collection management (concern 3) and the
event notification (concern 4) concerns identified in
Section III.A. These two concerns could have been
implemented in two separate aspects, but we have merged
them in the same aspect for the sake of simplicity.

Before describing the rest of the code in Figure 5, we
define the concepts of join point, pointcut and advice
used in AspectJ [4]. A join point is a point of execution in
the control flow of a program. A join point specifies
when, in the execution of a program, the aspect code
should be executed. Example join points offered to the

Clock

- hour: int
- minute: int
- second: int

+ incrementOneSecond() : void

Alarm

- hour: int
-

message: String
-

minute: int

-
second: int

+ checkAlarm() : void

Timer

+ tick() : void -clock

1

Figure 4. Domain entities without concerns of the Observer design pattern.

01: package observer.aspectj.aspects;
02:
03: import java.util.Set;
04: import java.util.HashSet;
05:
06: abstract aspect ObserverDesignPattern {
07:
08: private Set<Observer> Subject.observers =

 new HashSet<Observer>();
09:
10: public synchronized void Subject.addObserver(

 Observer observer) {
11: if (this!=null) {
12: this.observers.add(observer);
13: observer.setSubject(this);
14: }
15: }
16:

17: public synchronized void
 Subject.removeObserver(Observer observer) {

18: this.observers.remove(observer);
19: }
20:
21: public synchronized

 void Subject.updateObservers() {
22: for(Observer observer:observers)
23: observer.update();
24: }
25:
26: abstract pointcut stateChanges(Subject s);
27:
28: after(Subject subject) returning :

 stateChanges(subject) {
29: subject.updateObservers();
30: }
31: }

Figure 5. Aspect-oriented implementation of the Observer design pattern.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2457

© 2014 ACADEMY PUBLISHER

AspectJ programmer are method invocation (call),
method execution (execution), object creation (new),
field access (get and set) and exception handling
(handler). A pointcut is a set of join points specified
with some syntax, commonly including regular
expressions. Whenever the program execution reaches
one of the join points described in a pointcut, a piece of
code associated to that pointcut is executed. These pieces
of Java code are called advice. An advice also indicates if
its code should be executed before, after or instead of
(around) the intercepted join point.

The AspectJ code in lines 26-30 (Figure 5) shows how
events are notified (concern 4 in Section III.A). Line 26
defines the stateChanges pointcut. This pointcut is
abstract, meaning that derived aspects will define the
particular join points associated to this pointcut. Lines 28-
30 implement the advice for event notification: the
updateObservers method of the Subject must be
invoked after executing the join points defined by the
stateChanges pointcut.

The source code in Figure 5 is the implementation of
an aspect representing a generalization of the Observer
design pattern. Figure 6 shows how to use that aspect for
the particular scenario described in Section III.A. In line
3, TimerAspect inherits from the
ObserverDesignPattern. Lines 4-6 indicate the role
that each domain entity will play in the Observer pattern
(concern 2). The Subject and Observer interfaces
(Figure 7) are implemented in the
observer.aspectj.aspects package, as part of the
aspect-oriented implementation of the design pattern.
They are used as a mechanism to implement the pattern,
but they are not included in the problem domain model.
With the aspect-oriented approach, the domain entities
(Figure 4), the two roles identified in the design pattern
(Figure 7), and the assignment of the roles played by each

entity (lines 4-6 in Figure 6) are implemented in different
modules.

Lines 8-10 define the event that triggers the update of
the Observers associated to a Subject. The abstract
stateChanges pointcut is instantiated with a concrete
join point: the tick method call of any Timer instance
(concern 4). Lines 12-15 and 17-19 implement the event
responses of the Clock and Alarm objects, respectively
(concern 5).

The last part of Figure 6 (lines 21-29) shows how
Observers are registered in the Subjects. In our
example, one instance of the Timer class is created (line
21). All the instantiated Observers will be registered in
that Timer upon creation. The observerCreation
pointcut embodies those execution points representing the
creation (execution of the constructor, i.e. new) of an
instance derived from Observer (+ indicates derived
from). The advice in lines 27-29 registers all the
Observers in the Timer instance created in line 21,
after their construction (the observerCreation
pointcut).

IV. DISCUSSION

The example presented in Section III illustrates how
AOP provides a higher level of modularization, compared
to object-orientation. AOP allows modularizing concerns
that commonly cut across different abstractions in an
object-oriented program. AOP provides meta-
programming mechanisms to indicate how existing
classes should be extended. These meta-programming
services supported by the aspect weaver are the basis for
providing a higher level of abstraction and modularity.

A discussion to be established about the use of AOP –
and AspectJ in particular– is regarding the complexity
derived from modularizing crosscutting concerns. New
programming elements such as join point, pointcut and

01: import observer.aspectj.components.*;
02:
03: aspect TimerAspect extends ObserverDesignPattern {
04: declare parents: Timer implements Subject;
05: declare parents: Clock implements Observer;
06: declare parents: Alarm implements Observer;
07:
08: pointcut stateChanges(Subject subject):
09: target(subject) &&
10: call(void Timer.tick());
11:
12: public void Clock.update() {
13: this.incrementOneSecond();
14: System.out.println(this);
15: }
16:

17: public void Alarm.update() {
18: this.checkAlarm();
19: }
20:
21: private Timer = new Timer();
22:
23: pointcut observerCreation(Observer observer) :
24: execution(Observer+.new(..)) &&
25: this(observer);
26:
27: after(Observer observer) returning :

 observerCreation(observer) {
28: timer.addObserver(observer);
29: }
30: }

Figure 6. Implementation of a particular aspect using the Observer design pattern.

package observer.aspectj.aspects;

public interface Subject {
 void addObserver(Observer observer);
 void removeObserver(Observer observer);
 void updateObservers();
}

package observer.aspectj.aspects;

public interface Observer {
 void update();
 void setSubject(Subject subject);
 Subject getSubject();
}

Figure 7. The two roles identified in the Observer design pattern.

2458 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

advice, plus a new language syntax, must be understood
by the AspectJ programmer. The inherent complexity of
these new programming elements has raised doubts about
whether this additional complexity is worth the benefits
obtained [13]. This complexity, together with the
execution of the advice code associated to the intercepted
join points, can make it difficult to debug aspect-oriented
applications [14]. Another problem derived from join
point interception is the conflict resolution of multiple
advice intercepting the same join point [15]. Therefore,
the impact of the aspect-oriented paradigm has not been
as significant as initially expected [16]. However, its
current use in enterprise applications (Spring), Web and
application servers (OSGi), application frameworks
(Spring Roo) and monitoring tools (Glassbox) is evident
[17].

Currently, different dynamic programming languages
support meta-programming features, improving their
modularity capabilities. For example, introspection (the
reflective inspection of program structure) allows
implementing generic code to process any first-class
entity (object, class, module…) regardless its type [18].
Intercession (dynamic modification of program structure)
allows modifying the program entities at runtime [19], as
done by the aspect weaver [20]. Dynamic code generation
facilitates the extension and adaptation of a running
application [21]. These meta-programming features
supported by different languages provide a higher level of
modularity than AOP [20].

However, most of the languages that provide the meta-
programming features mentioned above are dynamically
typed (e.g., Python, Ruby or JavaScript). These kind of
languages commonly detect few type errors at compile
time [22], and usually show a lower runtime performance
[23]. Therefore, statically typed AOP tools such as
AspectJ can be somehow considered as a balance
between both approaches. They are not as flexible and
expressive as reflective dynamic languages; but they
provide a good level of modularity, with earlier type error
detection and better runtime performance than dynamic
languages.

V. CONCLUSIONS AND FUTURE WORK

Aspect-oriented programming provides a mechanism
to improve the modularization of object-oriented
applications. It avoids the code tangling and scattering
problems caused by crosscutting concerns. By analyzing
a typical design problem, we have seen how the different
crosscutting concerns in a Java object-oriented
implementation have been modularized with the use of
AspectJ. In order to achieve this goal, new programming
concepts such as join point, pointcut and advice are
introduced. AspectJ also defines an extended syntax.
However, these new elements may lead to a higher
complexity in the implementation of applications.
Compared to reflective dynamic languages, statically
typed AOP tools represent a good trade-off between
meta-programming capabilities, and compile-time type
error detection and runtime performance.

We are currently working in the design of an aspect-
oriented API for Java, which allows programmatic aspect
weaving at runtime. The first benefit is providing aspect
weaving without introducing a new syntax. It is
symmetric, establishing no distinction between classes
and aspects. Weaving is performed at runtime, making
use of the JINDY library [24]. This library provides access
to the new Java invokedynamic opcode from the Java
language, obtaining a significant performance benefit
compared with reflection [21]. We are also performing a
performance evaluation of weaving [25], using the
DSAW aspect weaving tool for .NET [26].

The source code of the two implementations used in
this article are available for download at
www.reflection.uniovi.es/dsaw/download/2014/iccet.zip

ACKNOWLEDGMENT

This work has been funded by the Department of
Science and Innovation (Spain) under the National
Program for Research, Development and Innovation.
Project TIN2011-25978, entitled Obtaining Adaptable,
Robust and Efficient Software by Including Structural
Reflection in Statically Typed Programming Languages.

REFERENCES

[1] B. Meyer, Object-Oriented Software Construction, 2nd
edition, Prentice-Hall, ISBN 0-13-629155-4, 1997.

[2] D.L. Parnas, “On the criteria to be used in decomposing
systems into modules,” Communications of ACM, vol. 15,
issue 12, pp. 1053-1058, 1972.

[3] F. Ortin, B. Lopez, J. B. G. Perez-Schofield, “Separating
Adaptable Persistence Attributes through Computational
Reflection,” IEEE Software, vol. 21, issue 6, November
2004.

[4] W.L Hürsch, and C.V. Lopes, “Separation of concerns,”
Technical Report NU-CCS-95-03, Northeastern University,
Boston, February 1995.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.M. Loingtier, and J. Irwin, “Aspect-Oriented
Programming,” in European Conference on Object-
Oriented Programming (ECOOP), Jyväskylä, Finland, pp.
220-242, June 1997.

[6] G. Kiczales, “The fun has just begun,” in Aspect-Oriented
Software Development (AOSD), Boston, Massachusetts,
March 2003.

[7] The Eclipse Foundation, “AspectJ, crosscutting objects for
better modularity,” http://www.eclipse.org/aspectj,
November 2013.

[8] Aspect-Oriented Software Association, “Aspect-Oriented
Software Development,” http://www.aosd.net, November
2013.

[9] H. Ossher, and P. Tarra, “Hyper/J: Multi-dimensional
separation of concerns for Java,” in International
Conference in Software Engineering (ICSE), Toronto,
Canada, pp. 821-822, May 2001.

[10] F. Ortin, L. Vinuesa, and J.M. Felix, “The DSAW aspect-
oriented software development platform,” International
Journal of Software Engineering and Knowledge
Engineering, vol. 21, issue 7, pp. 891-929, November 2011.

[11] L. Vinuesa, F. Ortin, J.M. Felix, and F. Alvarez, “DSAW -
A Dynamic and Static Aspect Weaving Platform,” in
International Conference on Software and Data

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2459

© 2014 ACADEMY PUBLISHER

Technologies (ICSOFT), Porto, Portugal, pp. 55-62, July
2008.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: elements of reusable object-oriented software,
Addison-Wesley Professional, ISBN 0-20-163361-2, 1994.

[13] F. Steimann, “The paradoxical success of aspect-oriented
programming,” in ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA), Portland, Oregon, pp. 481-497
October 2006.

[14] M. Eaddy, A. Aho, W. Hu, P. McDonald, and J. Burger,
“Debugging aspect-enabled programs,” in International
Conference on Software Composition, Braga, Portugal, pp.
200-215, March 2007.

[15] R. Duoence, P. Fradet, and M. Südholt, “Detection and
resolution of aspect interactions,” Technical Report No.
4435, INRIA, France, ISSN 0249-6399, 2002.

[16] A. Popovici, “The impact of aspect-oriented programming
on future application design,” Information and
Communication Research Group Seminar, ETH Zurich,
January 2001.

[17] R. Laddad, “A real-world perspective of AOP,”
Transactions on Aspect-Oriented Software Development
vol. VIII, pp. 108-115, 2011.

[18] F. Ortin, M. Garcia, J.M. Redondo, and J. Quiroga,
“Achieving multiple dispatch in hybrid statically and
dynamically typed languages,” Advances in Intelligent
Systems and Computing, vol. 206, pp. 703-713, 2013.

[19] F. Ortin, D. Diez, “Designing an Adaptable Heterogeneous
Abstract Machine by means of Reflection,” Information
and Software Technology, vol. 47, issue 2, pp. 81-94,
February 2005.

[20] F. Ortin, J.M. Cueva, “Dynamic Adaptation of Application
Aspects,” Journal of Systems and Software, vol. 71, issue 3,
pp. 229-243, May 2004.

[21] F. Ortin, P. Conde, D. Fernandez-Lanvin, R. Izquierdo,
“Runtime Performance of invokedynamic: Evaluation
through a Java Library,” IEEE Software, in press,
doi.ieeecomputersociety.org/10.1109/MS.2013.46, April
2013.

[22] F. Ortin, M. Garcia, “Union and intersection types to
support both dynamic and static typing,” Information
Processing Letters, vol. 111, issue 6, pp. 278-286,
February 2011.

[23] F. Ortin, J.M. Redondo, J.B.G. Perez-Schofield, “Efficient
virtual machine support of runtime structural reflection,”
Science of Computer Programming, vol. 74, issue 10, pp.
836-860, August 2009.

[24] P. Conde, F. Ortin, “Jindy: a Java library to support
invokedynamic,” Computer Science and Information
Systems, in press, October 2013.

[25] M Garcia, F. Ortin, D. Llewellyn-Jones, and Madjid
Merabti, “Performance cost evaluation of aspect weaving,”
in Australasian Computer Science Conference (ACSC),
Adelaide, Australia, pp. 79-86, February 2013.

[26] M. Garcia, D. Llewellyn-Jones, F. Ortin, M. Merabti,
“Applying dynamic separation of aspects to distributed
systems security: a case study,” IET Software, vol. 6, issue
3, pp. 231-248, June 2012.

Jose Manuel Felix, 1972, is a part-time
PhD student that works as a civil servant
for the Computer Science Department of
the Spanish Principality of Asturias. He
received his BSc degree in Computer
Science in 1994. In 1998 he was
awarded an MSc in Computer
Engineering, and an MSc in Web
Engineering in 2008. His PhD thesis is
focused on defining, DSAW, an aspect-

oriented platform for .NET that supports both dynamic and static
weaving with important runtime performance optimizations.

Francisco Ortin, 1973, is an Associate
Professor of the Computer Science
Department at the University of Oviedo,
Spain. He is the head of the
Computational Reflection research
group (http://www.reflection.uniovi.es).
He received his BSc in Computer
Science in 1994, and his MSc in
Computer Engineering in 1996. In 2002
he was awarded his PhD entitled A

Flexible Programming Computational System developed over a
Non-Restrictive Reflective Abstract Machine. He has been the
principal investigator of different research projects funded by
Microsoft Research and the Spanish Department of Science and
Innovation. His main research interests include dynamic
languages, type systems, aspect-oriented programming,
computational reflection, and runtime adaptable applications.
Contact him at http://www.di.uniovi.es/~ortin

2460 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

