
A Cost-driven Approach for Metamorphic
Testing

Jing Chena, Fei-Ching Kuob, Xiaoyuan Xieb, Lu Wanga
a Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Jinan 250014,

China
Email: {chenj, wanglu}@sdas.org

b Faculty of Information and Communication Technologies, Swinburne University of Technology, Hawthorn, VIC
3122, Australia

Email: {dkuo, xxie}@swin.edu.au

Abstract— Metamorphic testing has been applied in various
systems from different domains. Many studies showed that
the selection of metamorphic relations greatly affected the
effectiveness of metamorphic testing. However, these studies
mainly focused on the fault-detection effectiveness. Theydid
not consider the cost that metamorphic relations involved,
such as the number of test inputs. Good metamorphic
relations should have high fault-detection effectivenesswith
a low cost. In this paper, we propose a cost-driven approach
for metamorphic testing. The key idea is to design meta-
morphic relations sharing the same test inputs to reduce
the testing cost. We conduct a case study on a bank system
and compare the cost-effectiveness of metamorphic relations
derived from this approach and those constructed by the
conventional approach. The experimental results show that
metamorphic relations derived from our approach are more
cost-effective. We also find that this approach not only
reduces the cost of metamorphic testing, but also helps to
construct different metamorphic relations to detect different
types of faults.

Index Terms— software testing, metamorphic testing, meta-
morphic relation, cost-effectiveness

I. I NTRODUCTION

Currently, software has been extensively used in various
domains of the world. Along with it, massive disasters
arise due to the failure of software products. As a
consequence, software quality assurance becomes more
and more critical. Thus, effective testing techniques are
required to assure software quality in the software devel-
opment. Many techniques have been proposed to guide
the process of software testing, such as the selection
of test cases, test automation and so on. Among these
techniques, metamorphic testing (MT) [1] provides an
effective mechanism to verify software outputs. It makes
use of the relations over multiple inputs and their outputs
to test programs without the need of oracles. To date,
the studies on metamorphic testing involve two major
directions. The first one is to apply MT in various systems
from different domains, such as machine learning [2], [3],

This work was supported in part by the subproject of the Na-
tional High Technology Research and Development Program ofChina
(GrantNo.2012AA011202), the Australian Research CouncilLink-
age Grant(GrantNo.ARC LP100200208), the scholarship of Shandong
Provincal Education Association for International Exchanges.

bioinformatics [4], middleware-based applications [5],
[6], embedded software [7], online search services [8] and
web services [9], [10]. The other research direction is the
integration of MT and other software testing and analysis
techniques, such as fault-based testing [11], program slice
[12] and symbolic execution [13].

In MT, metamorphic relations (MRs) are the funda-
mental part. Based on MRs, follow-up test inputs are
generated, and outputs of source and follow-up test inputs
are compared to decide test results. Thus, the selection of
metamorphic relations has a great impact on the effec-
tiveness of MT. Some researchers studied the selection
of good metamorphic relations [14], [15]. However, these
studies mainly focused on the fault-detection effectiveness
of metamorphic relations. They did not take account of
the cost, such as the number of test inputs involved in
the selected MRs. Good metamorphic relations should
not only be able to detect faults, but also be cost-effective,
that is, they should have high fault-detection effectiveness
with a low cost. Obviously, the more test inputs are
involved in the MRs, the more time is required to set
up tests and run software. Previous studies that focused
only on fault-detection ability usually generated different
MRs that involved different test inputs. Thus, the cost
of MT is increased with the number of MRs. Actually,
it is more intuitive to generate different MRs that share
the same source and follow-up test inputs. With such
MRs, the time of execution will not be increased with the
number of MRs. As a consequence, the cost-effectiveness
of MT can be enhanced. Therefore, in this paper, we will
show how to design metamorphic relations sharing the
same test inputs and compare the cost-effectiveness of
these metamorphic relations and those constructed by the
conventional approach.

The rest of this paper is organized as follows. Section
II introduces the background information of metamorphic
testing. Section III presents a cost-driven approach for
metamorphic testing. Section IV reports a case study on
a bank system. And the results are discussed in Section
V. Section VI discusses the threats to validity in our
study. Section VII introduces related work. Section VIII
concludes this paper.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2267

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.2267-2275

II. M ETAMORPHIC TESTING

Metamorphic testing is a property-based approach.
It makes use of the properties of software under test
to construct metamorphic relations and applies these
metamorphic relations to verify the correctness of test
outputs. SupposeIs is one input of a systemP . The
corresponding output isP (Is). Given another inputIf ,
the corresponding output isP (If). If there exists one
relation RI between Is and If and another relation
RO betweenP (Is) andP (If), such thatRO is always
satisfied wheneverRI is satisfied, that is,

RI(Is, If) → RO(P (Is), P (If))

This property is called a metamorphic relation.Is is called
source test input, whileIf is follow-up test input. Then,
given an implementationP

′

, if RI(Is, If) does not lead
to the relationRO(P

′

(Is), P
′

(If)), there must exist at
least one fault inP

′

.
From the above definition, we can see that a metamor-

phic relation mainly includes two parts.

• Input relation. An input relationRI specifies how
the follow-up test input is constructed from the
source test input.

• Output relation. RO describes the relation between
the outputs of the source and follow-up test inputs
whenRI is satisfied.

The general procedure of applying metamorphic testing
consists of the following steps.

• Identify properties. Testers must identify the prop-
erties from the specification. These properties may
be derived from a subsystem or the whole system.

• Design metamorphic relations.Based on the iden-
tified properties, different metamorphic relations are
designed to detect software faults.

• Generate test inputs. MT involves two types of
test inputs. Source test inputs can be generated by
using traditional testing techniques, such as random
testing and fault-based testing. Follow-up test inputs
are constructed from the source test inputs, based on
RI of the MRs.

• Execute test inputs.All the source and follow-up
test inputs are executed and the corresponding test
outputs are obtained.

• Compare test outputs.The outputs of the source
and follow-up test inputs are compared to verify
whether they violate the output relationRO of the
corresponding MR. IfRO is violated, one or more
faults are revealed.

One simple example that calculates the average value
of a set of numbers is given to illustrate how MT works.
The calculation formulaavg(x1, x2..., xn) = (x1 + x2 +
... + xn)/n is the key software property listed in the
requirement specification. If we permute the order of the
elements, the result should remain unchanged. We can
randomly generate a set of numbers as the source test
input Is, and construct the follow-up test inputIf based
on RI (permutation of elements) of this MR. We then

execute the program with the source and follow-up test
inputs and compare their outputs againstRO of this MR.
If their outputs violateRO : P

′

(If) = P
′

(Is), a failure
is detected.

Metamorphic testing has many advantages. First of all,
it provides an effective test result verification mechanism
when an oracle is unavailable. Test results can be checked
using metamorphic relations instead of the oracles. Cer-
tainly, MT can also be applied when the program is free
from the oracle problem. Secondly, MT is independent
of any programming language. It has been widely used
in various applications. Finally, MT is automatable [16]–
[18]. A large number of follow-up test inputs can be
automatically generated and test results can be easily
compared using test scripts.

As a reminder, a challenge to the application of MT is
the generation of MRs. It usually requires that the testers
have good domain knowledge to get enough necessary
properties, from which MRs can be defined accordingly.

III. A C OST-DRIVEN APPROACH FORMETAMORPHIC

TESTING

In software industry, many large systems are composed
of multiple subsystems and involve many terminals and
massive data, such as traffic charge system and bank
transaction system. When these systems are tested, it
usually takes testers a great deal of time to input test
data through the screens of terminals. And testers have to
wait a long time to get the response because these input
data may be sent to multiple subsystems to be validated
and calculated for security and accuracy. Sometimes, it
may take even more than 10 minutes to get a response
of a test input. Moreover, since a large number of test
inputs are always required to test such systems, the test
cost could be very high. For example, for some industrial
systems, it may take several weeks to finish all test inputs
[19]. In MT, impacts from the long execution time of
each test input and the large number of total test inputs
are magnified because MT requires multiple executions.
Moreover, in MT, multiple MRs are usually adopted. Let
us consider the following example.

R1
I(I

1
s , I

1
f) → R1

O(P (I1s), P (I1f))

R2
I(I

2
s , I

2
f) → R2

O(P (I2s), P (I2f))

Suppose there are two MRs adopted to test a system
and the source and follow-up test inputs involved in these
two MRs are different (i.e. (I1s , I1f) is different from (I2s ,
I2f)). Then, to finish one MT with these two MRs, we need
execute four different test inputs. For the above-mentioned
systems with long execution time of each test input and a
large number of test inputs, the cost of testing significantly
increases. Actually, in a more general case, where more
MRs are usually adopted, the cost is even much higher.
Therefore, there is always a desire to reduce the cost
of metamorphic testing. Obviously, one straightforward
method is to reuse the same test inputs for different MRs.

In this study, we propose a cost-driven method of
metamorphic testing. In our method, instead of generating

2268 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

MRs with no restriction, we propose to generate different
MRs, which share the same source and follow-up test
inputs (Is, If). By using such MRs, we still can detect
different faults as traditional MT, but save a lot of
execution time via the reuse of the test inputs.

Here is an example of sine function, which can demon-
strate that MRs sharing the same test inputs can also
detect different faults. There are two basic properties for
sine function as follows.

• property 1:sin(−x) = −sin(x)
• property 2:−1≤sin(x)≤1

We can design the following MRs sharing the same test
inputs based on these two properties.

• MR1: sin(x) + sin(−x) = 0
• MR2: sin(x)− sin(−x)≤2

This way of designing MRs makes these MRs sharing
the same test inputs, hence it can reduce the number of
test inputs and the number of test executions. Although
these MRs share the same source test inputx and the
follow-up test input−x, they are distinct MRs having
different fault-detection effectiveness. For instance, there
are two faulty versions of the program. One versionV
always returnssin(x)+ 2 and another versionV

′

always
returns2sin(x). With any test inputx, MR1 can kill V
but can never killV

′

. MR2 can never killV , but can kill
V

′

with some test inputs (e.g.x = 50◦). As a reminder,
this example may be unable to demonstrate the good cost-
effectiveness of this method, since the execution time of
sine function is not a problem. However, for the real-life
system where the execution time is very long, such MRs
can significantly save the cost of MT.

Let us illustrate the difference between our cost-driven
MT and traditional MT. Without loss of generality we
assume that in each MR, one metamorphic test group
involves one source and one follow-up test inputs.

……

��������	
��
�����	����	

�����������	��	���

���
����	� ���
����	� ���
����	�

�����	��	���	��������	

���	��
��

��� ��� ���……

�	�������
���	���	

����
	�����	�	�����	

���	�	�� �!"�
	���	

��
��#

……

$%�����	��	���	

��
��	

&�����	����	��	���	�	

���
��	�� �����	

������	���

……

$%�����	��	���	

��
��	

$%�����	��	���	

��
��	……

�	�������
���	���	

����
	�����	�	�����	

���	�	�� �!"�
	���	

��
��#

�	�������
���	���	

����
	�����	�	�����	

���	�	�� �!"�
	���	

��
��#

&�����	����	��	���	�	

���
��	�� �����	

������	���

&�����	����	��	���	�	

���
��	�� �����	

������	���

Figure 1. Traditional MT

……

��������	
��
�����	����	

�����������	��	���

���
����	� ���
����	� ���
����	�

�����	��	������	���	

���	���	��
��	

��� ��� ���……

�������	��	���	��
��	

�	�������
���	���	

����
	 �!�!	�	�����	���	

�	��""�#$�
	���	��
��%

&�����	����	��	���	�	

���
��	��"�����	

������	���

……

&�����	����	��	���	�	

���
��	��"�����	

������	���

&�����	����	��	���	�	

���
��	��"�����	

������	���

Figure 2. A cost-driven approach for MT

Figure 1 shows the process of traditional MT, where
designing MRs has no restriction. Figure 2 is our cost-
driven method. Suppose we havem MRs generated from
n properties and for each MR, we executek metamorphic
test groups, that is,k source test inputs andk follow-
up test inputs. Then, the traditional MT requires2k ∗m
executions and our method requires only2k executions.
It is obvious that whenm andk is very large, our method
can significantly save the cost of MT.

The key idea of our method is to design the MRs
sharing the same test inputs. Figure 3 shows the procedure
of designing the metamorphic relations sharing the same
test inputs.

……

��� ������

���	
���� ���	
����

�
�
����

��
��
���
�
������

����
��
���
�
��

��	����

……

���	
����

�
�������

�

�

��
�
�����
��
�

������
����

��
��
�
�����
���

��
�������
����

Figure 3. The procedure of designing MRs sharing the same test inputs

Based onn basic properties identified from the speci-
fication, we can design the correspondingm MRs. Then,
we determine whether these MRs can share the same
test inputs. If these MRs can share the same source and

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2269

© 2014 ACADEMY PUBLISHER

follow-up test inputs, they will be used in our method.
Such MRs may be derived from one, two or more prop-
erties(i.e.n = 1, 2, ...). As a reminder, not any arbitrary
type of properties can help to derive such MRs. In the
following section, we will use a case study to investigate
the advantages and limitations of the approach.

IV. A C ASE STUDY

A. Test Subject: a Bank System

Figure 4 shows the process of an inter-bank transaction
between two banks (the acquier and the issuer). The
acquirer receives the card transaction details from the
terminals, such as ATM and counter of bank, passes
these data received to the issuer through an intermediate
process system (CUPS). The issuer which issues this card
processes the transaction data and responds to the ac-
quirer. The program under test is a simplified bank system
from the issuer. This system offers two features, such
as processing inter-bank ATM withdrawal and processing
inter-bank counter deposit.

������

�����	
��

����

���	�������

������� ����

Figure 4. The process of an inter-bank transaction

The input of inter-bank ATM withdrawal is 5-tuple
(CN,A,CA,CB,B), where

• CN denotes the card number.
• A denotes the transaction amount.
• CA andCB denote the city code of the acquirer and

the city code of the issuer, respectively. Furthermore,
CA=CB indicates that the transaction occurs within
the same city as the issuer, whileCA6=CB indicates
the transaction from different city.

• B denotes the balance of a card.
The input of inter-bank counter deposit is a 3-tuple
(CN,A,B), whereCN , A andB have the same meaning
as those of inter-bank ATM withdrawal. The new balance
NB is the output of both inter-bank ATM withdrawal
and inter-bank counter deposit. According to the rules of
banks, the inputs and output should satisfy the following
constraints.

• As the inputs, both transaction amount and balance
should be positive.

• All the inputs and output involving money, such as
transaction amount, balance and new balance, should
be accurate to the second decimal place. Rounding
off is used in the calculation of bank transactions.

• The transaction amount should not be greater than
5000 and must be the multiple of50 for any ATM
withdrawal.

• The transaction amount can not exceed200000 for
any deposit.

TABLE I.
TRANSACTION FEE CRITERION

Transaction Input Condition Transaction Fee
ATM withdrawal CA = CB 2

CA 6= CB 2 + 0.01A
0 < A ≤ 3000 3

counter deposit 3000 < A < 50000 0.001A
50000 ≤ A ≤ 200000 50

For inter-bank ATM withdrawal, the new balanceNB
is calculated based on the formulaNB = B − A −
F , whereF denotes the transaction fee. For inter-bank
counter deposit, the new balanceNB is calculated by the
formulaNB = B + A− F . Each withdrawal or deposit
can involve different transaction fee which is calculated
based on different input condition shown in Table I. There
are two types of transaction fees for inter-bank ATM
withdrawal, which refer to the transaction within the same
city and the transaction from different city, respectively.
For inter-bank counter deposit, three types of transaction
fees are listed according to transaction amount.

B. Metamorphic Relations of a Bank System

In order to design metamorphic relations, we firstly
specify the basic properties of inter-bank ATM withdrawal
as follows.

• For the transaction within the same city, the calcula-
tion of the new balanceNB is based on the formula
NB = B −A− 2.

• For the transaction from different city, the calculation
of the new balanceNB is based on the formula
NB = B − 1.01A− 2.

In the same way, we can identify the basic properties
of inter-bank counter deposit.

• If the transaction amount is not greater than3000,
then the calculation formula of the new balanceNB
should beNB = B +A− 3.

• If the transaction amount is not less than50000, then
the new balanceNB should be calculated by the
formulaNB = B +A− 50.

• If the transaction amount is between3000 and50000,
then we can calculate the new balanceNB according
to the formulaNB = B + 0.999A.

1) Metamorphic relations constructed by the conven-
tional approach: For mathematical functions, metamor-
phic relations are normally constructed based on some
input transformation rules [20], such as addition and
multiplication. These metamorphic relations can involve
different test inputs and different test executions.

With respect to inter-bank ATM withdrawal, sup-
pose a source test inputIs=(CN,A,CA,CB,B).
We can generally construct one follow-up test in-
put If1=(CN,K∗A,CA,CB,K∗B) by multiplying the
transaction amountA and multiplying the balanceB both
by a positive integerK, and another follow-up test input
If2=(CN,A+C,CA,CB,B+C) by adding a positive
integerC (a multiple of 50) to the transaction amount
A and the balanceB. If CA=CB, we can get the

2270 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

following metamorphic relations based on the property
NB=B −A− 2.
MR1.1c:P (If1) = K ∗ P (Is) + 2(K − 1).
MR1.2c:P (If2) = P (Is).
Similarly if CA6=CB, the following metamorphic rela-
tions can be constructed based on the propertyNB=B−
1.01A− 2.
MR2.1c:P (If1) = K ∗ P (Is) + 2(K − 1).
MR2.2c:P (If2) = P (Is)− 0.01C.

In the same way, for inter-bank counter de-
posit, suppose a source test inputIs=(CN,A,B).
We can normally construct one follow-up test input
If1=(CN,K∗A,K∗B) by multiplying the transaction
amount A and multiplying the balanceB both by
a positive integerK. Another follow-up test input
If2=(CN,A+C,B+C) can be constructed by adding a
constantC to the transaction amountA and the balance
B. If A, K∗A andA+C are all within the range(0, 3000],
we can derive the following metamorphic relations from
the propertyNB = B +A− 3.
MR3.1c:P (If1) = K ∗ P (Is) + 3(K − 1).
MR3.2c:P (If2) = P (Is) + 2C.
Similarly if A, K∗A andA+C are all within the range
[50000, 200000], the following metamorphic relations can
be derived from the propertyNB = B +A− 50.
MR4.1c:P (If1) = K ∗ P (Is) + 50(K − 1).
MR4.2c:P (If2) = P (Is) + 2C.
If A, K∗A and A+C are all within the range
(3000, 50000), two metamorphic relations can be ob-
tained based on the propertyNB = B + 0.999A.
MR5.1c:P (If1) = K ∗ P (Is).
MR5.2c:P (If2) = P (Is) + 1.999C.

Using this approach, we generate five pairs of MRs.
2) Metamorphic relations sharing the same test inputs:

To demonstrate our approach, we will take MR1.1c,
MR2.1c, MR3.1c, MR4.1c and MR5.1c as bases and
design MRs sharing their test inputs.

For inter-bank ATM withdrawal and the property
NB=B−A−2, we can design one different metamorphic
relation as follows.
MR1.1s:P (If1) = P (Is) + (K − 1) ∗ (B −A).
This MR and MR1.1c share the same test inputsIs and
If1 but they involve different output relationsP (If1) =
P (Is) + (K − 1) ∗ (B − A) andP (If1) = K ∗ P (Is) +
2(K − 1), respectively. Similarly regarding the property
NB=B − 1.01A− 2, we can get the following different
MR.
MR2.1s:P (If1) = P (Is) + (K − 1) ∗ (B − 1.01A).

For inter-bank counter deposit and the propertyNB =
B + A − 3, we can design one different metamorphic
relation as follows.
MR3.1s:P (If1) = P (Is) + (K − 1) ∗ (B +A).
Accordingly, the following metamorphic relation can be
derived from the propertyNB = B +A− 50.
MR4.1s:P (If1) = P (Is) + (K − 1) ∗ (B +A).
Based on the propertyNB = B + 0.999A, we can also
get one different MR as follows.
MR5.1s:P (If1) = P (Is) + (K − 1) ∗ (B + 0.999A).

TABLE II.
PAIRS OF METAMORPHICRELATIONS

pair MRs included pair MRs included
Gc

1
MR1.1c Gs

1
MR1.1c

MR1.2c MR1.1s
Gc

2
MR2.1c Gs

2
MR2.1c

MR2.2c MR2.1s
Gc

3
MR3.1c Gs

3
MR3.1c

MR3.2c MR3.1s
Gc

4
MR4.1c Gs

4
MR4.1c

MR4.2c MR4.1s
Gc

5
MR5.1c Gs

5
MR5.1c

MR5.2c MR5.1s

TABLE III.
NUMBER OF TEST INPUTSINVOLVED FOR EACH PAIR OFMRS

pair number of test inputs pair number of test inputs
Gc

1
source: 50 Gs

1
source: 50

follow-up: 2*50 follow-up: 50
Gc

2
source: 50 Gs

2
source: 50

follow-up: 2*50 follow-up: 50
Gc

3
source: 200 Gs

3
source: 200

follow-up: 2*200 follow-up: 200
Gc

4
source: 200 Gs

4
source: 200

follow-up: 2*200 follow-up: 200
Gc

5
source: 200 Gs

5
source: 200

follow-up: 2*200 follow-up: 200

When paring MRx.1c and MRx.1s, we can obtain an-
other five pairs of MRs for1≤x≤5, each of them sharing
the same test inputs. These ten pairs of metamorphic
relations are shown in Table II.Gc

1-Gc
5 are composed

of metamorphic relations constructed by the conven-
tional approach, whileGs

1-Gs
5 are those sharing the same

test inputs. For MR1.2c, MR2.2c, MR3.2c, MR4.2c and
MR5.2c, we can also design MR1.2s, MR2.2s, MR3.2s,
MR4.2s and MR5.2s with our approach. However, we will
only use ten pairs in Table II in the experiment. Therefore
we will not list these unused MRs here.

C. Test Input Generation

We firstly use the random testing technique [21] to
generate source test inputs forGs

1-Gs
5. Considering the

constraints of inputs mentioned in Section IV-A, we
generate50 and 200 source test inputs for each pair
of MRs of inter-bank ATM withdrawal and inter-bank
counter deposit, respectively.Gc

i uses the same source test
inputs asGs

i for 1≤i≤5. Based on the source test inputs,
the follow-up test inputs are constructed according to the
metamorphic relations. Table III shows the number of test
inputs involved for each pair of metamorphic relations.
For instance,Gc

1 involves50 source test inputs and100
follow-up test inputs, whileGs

1 only involves50 source
test inputs and50 follow-up test inputs.

D. Mutant Generation

Mutation analysis technique has been widely used to
measure the effectiveness of test methods. It mainly
employs some mutation operators to seed various faults
into the source code of the program. A program with one
or multiple faults is called a mutant. Previous research has

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2271

© 2014 ACADEMY PUBLISHER

shown that generated mutants using mutation operators
are similar to real faults [22].

We use the mujava tool [23] to automatically generate
mutants. There are two levels of mutation operators
for JAVA programs: method-level operators and class-
level operators. The method-level operators generate the
mutants at method level, while the class-level operators
usually inject the structural faults at class level. In this
paper, our target is to test the faults for which the
program produces the incorrect outputs, such as errors
in calculation, logic and condition. Hence, we select the
method-level operators to generate mutants, each of which
involves one single fault, either inter-method or intra-
method fault. We then exclude the mutants which cause
exceptions. We run these mutants with our MRs and test
inputs, and analyse the data for the killable mutants (i.e.
non-equivalent mutants [24]). At the end, we identify 63
and 50 killable mutants for inter-bank ATM withdrawal
and inter-bank counter deposit, respectively.

E. Measurement

1) Metrics: In MT, if a mutant causes the outputs of
the source and follow-up test inputs to violate a MR,
we can declare that the mutant is killed by this MR and
the corresponding test inputs. Researchers normally use
the metric of mutation score (MS) to measure the fault-
detection effectiveness of a test method. It is defined as
the ratio of the number of killed mutants over the number
of non-equivalent mutants.

MS(S, T,MRs) =
Nk

Nn

whereS refers to the system under test,T refers to test
inputs,MRs refers to metamorphic relations,Nk refers
to the number of killed mutants,Nn refers to the number
of non-equivalent mutants.

Besides, we propose another metric to measure the
cost-effectiveness of a test method. It is defined as the
mutation score over the number of test inputs.

CMS(S, T,MRs) =
MS

NT

whereNT refers to the number of test inputs.
2) Imprecision:When we compare test outputs against

RO, the problem of accuracy may come due to the im-
precision in floating point operations and rounding errors.
The typical loss of precision in floating point operations
for JAVA could cause test outputs to deviate from the ex-
pected values, even if the calculation is actually correct.It
could lead to a false decision when we check whether test
outputs violate aRO with an equality. Rounding off can
also cause errors. For example, for MR5.1c of inter-bank
counter deposit, if we deposit3123.52 to an account with
a balance1000.00, we will get a new balance4120.40. If
we deposit6247.04 to an account with a balance2000.00,
the new balance should theoretically be twice as much as
that of the previous deposit. However, the actual result is
only 8240.79 because of the rounding error. This violate

MR5.1c. We may think that the program is faulty though
it is not.

Although errors due to the imprecision of floating point
operations and rounding errors are not the actual faults,
they can cause false positives. To address these problems,
we set thresholds for the comparison of outputs inRO.
It means that test outputs are “approximately equal” and
no violation of the metamorphic relation is reported if the
difference between them is within the threshold.

V. RESULTS

A. Evaluation of Cost-effectiveness

We execute all source and follow-up test inputs and
verify whether their outputs violate metamorphic relations
or not.

Table IV summarizes the MS and CMS of each pair of
metamorphic relations. We can see that each pair of meta-
morphic relations derived from our approach has the same
mutation score as that constructed by the conventional
approach. For instance,Gc

1 kills 66.67% of all mutants,
and Gs

1 also kills the same number of mutants. They
appear to have the same fault-detection effectiveness.
So do Gc

2 and Gs
2, Gc

3 and Gs
3, Gc

4 and Gs
4, Gc

5 and
Gs

5. However, we also find that they have different cost-
effectiveness. Each pair of metamorphic relations derived
from our approach is more cost-effective than that con-
structed by the conventional approach. For instance,Gs

1

achieves the CMS of0.67%, while Gc
1 is relatively poor

only with the CMS of0.44%. Gs
2 is more cost-effective

thanGc
2. So doGs

3, Gs
4 andGs

5 outperformGc
3, Gc

4 and
Gc

5, respectively. It can be seen that our approach not
only achieves the same fault-detection effectiveness as the
conventional approach, but also reduces the cost of MT by
sharing the same test inputs and test executions. Though
two metamorphic relations designed by our approach
share the same test inputs and test executions, they are
different as discussed in Section III. We will investigate
their difference in terms of fault-detection effectiveness.

TABLE IV.
MS AND CMS OF EACH PAIR OFMETAMORPHICRELATIONS

pair MS CMS
Gc

1
66.67% 0.44%

Gc

2
82.54% 0.55%

Gc

3
52% 0.09%

Gc

4
70% 0.12%

Gc

5
88% 0.15%

Gs

1
66.67% 0.67%

Gs

2
82.54% 0.83%

Gs

3
52% 0.13%

Gs

4
70% 0.18%

Gs

5
88% 0.22%

B. Fault-detection Effectiveness of Metamorphic Rela-
tions Sharing the Same Test Inputs

Table V summarizes the mutation score of each MR
from Gs

1-Gs
5. We find that two metamorphic relations

sharing the same test inputs have different fault-detection

2272 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

TABLE V.
MS OF EACH MR FROMGs

1
-Gs

5

pair MR MS
Gs

1
MR1.1c 47.62%
MR1.1s 39.68%

Gs

2
MR2.1c 63.49%
MR2.1s 50.79%

Gs

3
MR3.1c 46.00%
MR3.1s 30.00%

Gs

4
MR4.1c 64.00%
MR4.1s 30.00%

Gs

5
MR5.1c 64.00%
MR5.1s 52.00%

effectiveness. For instance, MR1.1c kills47.62% of the
mutants, while MR1.1s only kills39.68% of the mutants.
MR2.1c is more effective than MR2.1s in killing mu-
tants. The same phenomenon also exists in other pairs
of metamorphic relations sharing the same test inputs.
We further investigate how these metamorphic relations
exhibit different fault-detection capabilities. For instance,
if a mutant changes the formula of inter-bank ATM
withdrawal fromNB=B − A − 2 to NB=B + A − 2,
MR1.1s can kill this mutant but MR1.1c cannot kill it.
Similarly, if another mutant changes this formula into
NB=B − A − 1. Then MR1.1c can kill this mutant,
but MR1.1s cannot kill it. This investigation shows that
these metamorphic relations have different sensitivities
to different mutants and hence exhibit different fault-
detection effectiveness.

VI. T HREATS TOVALIDITY

A. Internal Validity

The main threat to internal validity is the correctness
of the implementation for metamorphic relations, such
as test input generation, test execution and comparison
of outputs. To assure the quality of the experiments, we
tested the implementation thoroughly at unit level and
system level.

B. External Validity

A possible threat to external validity is the representa-
tiveness of the program under test. Our program is small
in size and the properties of algorithm are simple. And
strictly speaking, this program does not have the oracle
problem. However, we feel that the scale of program and
the availability of oracle should not affect the applicability
of our method. Although our case study focuses on
mathematical functions, our experimental results are still
meaningful. As a preliminary study, these results demon-
strate the feasibility and the effectiveness of our method.
In our future study, we will conduct more experimental
studies which cover various types of properties.

Another threat is about mutants. Although we used
the mujava tool to automatically generate mutants, the
mutants can be restricted in types and be different from
the actual faults. However, this method which uses mujava
to generate mutants has been widely used in the literature
and provided trustworthy result [22].

C. Construct Validity

The main threat to construct validity is the measure-
ment. We use mutation score as one metric to measure
the fault-detection effectiveness of metamorphic relations.
It has been widely used, so this threat is acceptably
alleviated. In addition, we use the ratio between mutation
score and the number of test inputs as another metric to
measure the cost-effectiveness of metamorphic relations.
Such a metric is meaningful as this study focuses on cost
of MRs.

VII. R ELATED WORK

Some researchers have studied how to select good
metamorphic relations. Chen et al. [14] conducted two
case studies to select good metamorphic relations from
black-box and white-box perspectives. They compared
various metamorphic relations derived from the programs
of shortest path and critical path, and attempted to dis-
tinguish more effective metamorphic relations in detect-
ing faults. Their study showed that different MRs had
different fault-detection effectiveness and only theoreti-
cal understanding of the applications was insufficient to
identify good MRs. The structure of algorithm should be
taken into consideration before designing metamorphic
relations. Furthermore, they proposed a guideline that
good metamorphic relations should be those which make
the executions of the source and follow-up test inputs as
different as possible. Mayer and Guderlei [15] conducted
an experimental study on determinant computation to
check the fault-detection effectiveness of different MRs.
They not only found that the MRs with rich semantics
had high fault-detection effectiveness, but also suggested
based on their experiment results that the source test input
and the follow-up test input of a MR should better not
to execute the same part of code in order to improve the
fault-detection effectiveness of this MR.

Murphy et al. [20] proposed some input transformation
rules for mathematical functions, such as permutation,
addition, multiplication and etc. Based on these rules,
some specific metamorphic relations can be constructed.
Their experiments also showed different metamorphic
relations had different fault-detection effectiveness in
killing mutants. Asrafi et al. [25] attempted to find the
relationship between code coverage and fault-detection
effectiveness. However, their studies showed high code
coverage could not always guarantee high fault-detection
effectiveness. Code coverage can be a good indicator for
fault-detection effectiveness, but not the only one. It is
necessary to consider other factors. Our experiment results
show that though metamorphic relations sharing the same
test inputs have the same executions, that is, they have the
same code coverage, they appear different fault-detection
effectiveness in killing mutants because of different output
relations.

These studies above mainly focused on the fault-
detection effectiveness of metamorphic relations. They
did not consider the cost of test input generation and
test execution. Liu et al. [26] proposed a new method

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2273

© 2014 ACADEMY PUBLISHER

of constructing composite metamorphic relations based
on original metamorphic relations. And they conducted
a case study on a phylogenetic program and compared
the cost-effectiveness of composite MRs and original
MRs. Their study indicated that composite metamorphic
relations had higher cost-effectiveness than original meta-
morphic relations. And their approach involved fewer
metamorphic relations and test executions. In this paper,
we improve the cost-effectiveness of metamorphic testing
by designing MRs sharing the same test inputs and
the same test executions. This is a novel approach to
designing metamorphic relations.

VIII. C ONCLUSION

Metamorphic testing is an effective property-based
approach. The selection of metamorphic relations has a
great impact on the effectiveness of MT. Previous studies
mainly focused on fault-detection effectiveness, while the
cost was seldom studied. In this paper, we propose a novel
approach for metamorphic testing, which can construct
different metamorphic relations sharing the same test
inputs to reduce the testing cost. We conduct a case study
on a bank system and compare the cost-effectiveness of
metamorphic relations derived from our approach and
those constructed by the conventional approach. The
experimental results show that the metamorphic relations
derived from our approach are more cost-effective. And
more importantly, we further find that these metamorphic
relations appear different fault-detection effectiveness and
kill different mutants though they involve the same test
inputs and test executions.

Our approach of designing metamorphic relations is
suitable for all mathematical functions. For instance,
we are testing a program implementing a function
f(x1, ..., xn). This function can be presented in multiple
forms as follows.

f(x1, ..., xn) = f(x
′

1, ..., x
′

n) + h(x
′

1, ..., x
′

n) + c1

f(x1, ..., xn) = k ∗ f(x
′

1, ..., x
′

n) + l(x
′

1, ..., x
′

n) + c2

f(x1, ..., xn) = (k−1)∗f(x
′

1, ..., x
′

n)+w(x
′

1, ..., x
′

n)+c3

......, etc.
Thus we can get multiple metamorphic relations shar-

ing the same test inputs and the same test executions.
However, if there exist too much input parameters and
complex calculations in the equationsh, l, w and etc,
the output relations will become very complex and thus
it is error-prone when test outputsf(x1, ..., xn) and
f(x

′

1, ..., x
′

n) are compared. In real life, many systems
involve mathematical functions. Therefore, this approach
is useful in practical software testing. We shall further
study this issue for various systems and explore more
complicated properties in our future work.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for
their valuable comments and suggestions to improve the
presentation of this paper.

REFERENCES

[1] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic
testing: A new approach for generating next test cases,”
Department of Computer Science, Hong Kong University
of Science and Technology, Tech. Rep. HKUST-CS98-01,
1998.

[2] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y.
Chen, “Testing and validating machine learning classifiers
by metamorphic testing,”Journal of Systems and Software,
vol. 84, pp. 544–558, 2011.

[3] C. Murphy, G. Kaiser, L. Hu, and L. Wu, “Properties
of machine learning applications for use in metamorphic
testing,” inSEKE’08, Proceedings of the 20th International
Conference on Software Engineering and Knowledge En-
gineering, 2008, pp. 867–872.

[4] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie, “An
innovative approach for testing bioinformatics programs
using metamorphic testing,”BMC Bioinformatics, vol. 10,
pp. 24–35, 2009.

[5] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen,
“Testing context-sensitive middleware-based software ap-
plications,” in COMPSAC’04, Proceedings of the 28th
Annual International Conference on Computer Software
and Applications, 2004, pp. 458–466.

[6] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau,
“Integration testing of context-sensitive middleware-based
applications: a metamorphic approach,”International Jour-
nal of Software Engineering and Knowledge Engineering,
vol. 16, no. 5, pp. 677–703, 2006.

[7] F.-C. Kuo, T. Y. Chen, and W. K. Tam, “Testing embedded
software by metamorphic testing: A wireless metering
system case study,” inLocal Computer Networks, 36th
Annual IEEE Conference on, 2011, pp. 291–294.

[8] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-
C. Kuo, and T. Y. Chen, “Automated functional testing of
online search services,”Software Testing,Verification and
Reliability, vol. 22, pp. 221–243, 2012.

[9] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung, “A
metamorphic testing approach for online testing of service-
oriented software applications,”International Journal of
Web Services Research, vol. 4, no. 2, pp. 61–81, 2007.

[10] C. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen,
“A metamorphic relation-based approach to testing web
services without oracles,”International Journal of Web
Services Research, vol. 9, no. 1, pp. 51–73, 2012.

[11] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing
without the need of oracles,”Information and Software
Technology, vol. 45, pp. 1–9, 2003.

[12] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu, “Metamorphic
slice: An application in spectrum-based fault localization,”
Information and Software Technology, vol. 55, pp. 866–
879, 2013.

[13] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Semi-proving:
An integarated method for program proving, testing, and
debugging,”Software Engineering, IEEE Transactions on,
vol. 37, no. 1, pp. 109–125, 2011.

[14] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou,
“Case studies on the selection of useful relations in meta-
morphic testing,” inJIISIC’04, Proceedings of the 4th
Ibero-American Symposium on Software Engineering and
Knowledge Engineering, 2004, pp. 569–583.

[15] J. Mayer and R. Guderlei, “An empirical study on the se-
lection of good metamorphic relations,” inCOMPSAC’06,
Proceedings of the 30th Annual International Computer
Software and Application Conference, 2006, pp. 475–484.

[16] C. Murphy, K. Shen, and G. Kaiser, “Automatic system
testing of programs without test oracles,” inISSTA’09,
Proceedings of the 2009 ACM International Symposium
on Software Testing and Analysis, 2009, pp. 189–199.

2274 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

[17] A. Gotlieb and B. Botella, “Automated metamorphic test-
ing,” in COMPSAC’03, Proceedings of the 27th Annual
International Computer Software and Applications Con-
ference, 2003, pp. 34–40.

[18] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-
Cortes, “Automated metamorphic testing on the analyses
of feature models,”Information and Software Technology,
vol. 53, pp. 245–258, 2011.

[19] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,”Software
Engineering, IEEE Transactions on, vol. 27, no. 10, pp.
929–948, 2001.

[20] C. Murphy, “Metamorphic testing techniques to detect
defects in applications without test oracles,” Departmentof
Computer Science, Columbia University, Tech. Rep. cucs-
010-10, 2010.

[21] J. W. Duran and S. C. Ntafos, “An evaluation of random
testing,” Software Engineering, IEEE Transactions on,
vol. 10, no. 4, pp. 438–444, 1984.

[22] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation
an appropriate tool for testing experiments,” inICSE’05,
Proceedings of the 27th International Conference on Soft-
ware Engineering, 2005, pp. 402–411.

[23] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: An auto-
mated class mutation system,”Journal of Software Testing,
Verification and Reliability, vol. 15, no. 2, pp. 97–133,
2005.

[24] D. Schuler and A. Zeller, “Covering and uncovering
equivalent mutants,”Software Testing, Verification and
Reliability, vol. 23, pp. 353–374, 2013.

[25] M. Asrafi, H. Liu, and F.-C. Kuo, “On testing effectiveness
of metamorphic relations: A case study,” in2011 Fifth
International Conference on Secure Sofeware Integration
and Relaibility Improvement, 2011, pp. 147–156.

[26] H. Liu, X. Liu, and T. Y. Chen, “A new method for
constructing metamorphic relations,” inQSIC’12, 2012
12th International Conference on Quality Software, 2012,
pp. 59–68.

Jing Chen received her B.S. degree in applied physics from
Qingdao University, China in July 2001 and M.S. degree in op-
tical engineering from Beijing Institute of Technology, China in
March 2004. She is currently an associate professor workingin
Shandong Computer Science Center, China. Her current research
interests focus on software testing and cloud computing.

Fei-Ching Kuo(member of IEEE Computer Society) received
her Bachelor of Science Honours in Computer Science and
PhD in Software Engineering, both from Swinburne University
of Technology, Australia. She was a lecturer at University of
Wollongong, Australia. She is currently a Senior Lecturer at
Swinburne University of Technology, Australia. She is alsothe
Program Committee Chair for the 10th International Conference
on Quality Software 2010 (QSIC’10) and Guest Editor of a
Special Issue for the Journal of Systems and Software, special
issue for Software Practice and Experience, and special issue for
International Journal of Software Engineering and Knowledge
Engineering. Her current research interests include software
analysis, testing and debugging.

Xiaoyuan Xie received her Bachelor and Master degrees in
Computer Science from Southeast University, China in 2005
and 2007, respectively. And she received her PhD degree in
Computer Science from Swinburne University of Technology,
Australia in 2012. She is now working as the postdoctoral

research fellow in Swinburne University of Technology. Her
research interests include software analysis and testing,fault
localization, debugging, search-based software engineering.

Lu Wang received his B.S. degree in computer science and
technologies and M.S. degree in software engineering from
Shandong University, China in 2004 and 2007, respectively.He
is currently an researcher at Shandong Computer Science Center,
China. His research interests include software testing andcloud
computing.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2275

© 2014 ACADEMY PUBLISHER

