

Algorithm for Fast Finding High-Frequency
Strings from Large-Scale Corpus1

Haijun Zhang
School of Computer Science and Technology Xinjiang Normal University, Urumqi China, 830054

Email: ustczhj@mail.ustc.edu.cn

Abstract—In high-frequency string extraction, there exists
enormous time and memory waste in taking statistics of
tremendous low-frequency strings, which causes low
efficiency. Based on the incremental n-gram model, this
paper puts forward Hierarchical Pruning Algorithm (HPA)
to filter out low-frequency garbage strings and to extract
candidate repeats for reducing I/O reading-writing times
and enhancing efficiency of memory usage. On the basis of
candidate repeats, external sort method is applied to merge
all of them in order to obtain the final repeat set. For
improving the efficiency of candidate repeats merging, this
paper proposes to employ improved Radix Sort method to
process strings in O(dn). With 32 gigabyte plain text corpus,
experiments show that the relationship between I/O
reading-writing times of HPA and the corpus size is nearly
linear, and the algorithm can efficiently extract repeats
from corpus whose size is much larger than that of memory.

Index Terms—repeats, hash table, low-frequency string,
hierarchical pruning algorithm

I. INTRODUCTION

With the progress of era, Chinese new words and
phrases come forth constantly. For example: “ 非

典”(SARS), “超女”(super girl) and so on. New words
and phrases provide lots of convenience for
conversations; at the same time, they also bring some
difficulties[1] for automatic language processing. As the
main feature of new words and phrases is the high
frequency of occurrence, they belong to High-Frequency
Strings (HFS). If HFS in Large-Scale Corpus (LSC) can
be extracted quickly, we can efficiently find lots of new
words and phrases, which are very helpful in Natural
Language Processing (NLP). HFS extraction is an
important technology for the fields of NLP such as
Chinese Unknown Words Identification (UWI),
information retrieval and information extraction etc. For
example, the extracted HFS from LSC is regarded as
candidate words [2-4] in repeat-based UWI.

Let Σ be a limited character set, and S be a character
sequence nccccS 321= , whose length is n.][iS denotes
the ith character in S where ni ≤≤1 , and],[jiS
denotes a string in sequence S.

mSSSST ### 321= denotes a text corpus, where “#” is a

Symbol of Text End (STE) used to indicate the end of a
piece of text, for example, “!”, “?”and “。” etc. can be
taken as STEs. Let kcccR 21= be a string, and
there is no STE in R. If there are at least two positions

1p and 2p in corpus T, which meet
]1,[]1,[2211 −+=−+= kppTkppTR , string R is called

repeat[5]. If the occurrence frequency of string R is equal

to or higher than predefined thresholdλ , R is called
high-frequency string. The extraction of high-frequency
strings is to find various lengths of repeats whose
frequencies are equal to or higher than λ . For example,
if there is conditions: }'','','','{' dcba=Σ ,
S=“adbca”, and T=“adbca#db#ccc”, we have S[2]=
“d”, S[1,4]= “adbc” and R=“db” with frequency 2.
If 2=λ , the string R=“db” will be extracted as a
high-frequency string. Here the so-called high-frequency
is a relative definition.

The main difficulty for HFS extraction is the statistics
of repeats, in which most of time and memory are spent
in taking statistics of low-frequency strings resulting in
low efficiency and high memory usage, which is difficult
to meet the requirement of fast extraction for repeats.

In this paper, we put forward a pragmatic HFS
extraction algorithm, in which the mass of memory usage
for once is converted to trifle usage for multi-times
through scanning text corpus multi-times in order to
effectively process LSC whose size is greater than that of
memory. The specific ideas are as follows. First, we
construct Pruning Characters Set (PCS) by scanning
corpus once. The PCS includes characters whose
frequency is less than the predefined threshold λ , which
is used to filter out low-frequency garbage strings at the
level of character. Second, hierarchical pruning method is
employed to remove low-frequency garbage strings
based on incremental n-gram model. That is, when
extracting long repeats, the adjacent-length short repeat
set as well as PCS is used to filter them for further
improving efficiency. And finally, the external sort
method is adopted to achieve the final set of repeats of
the whole corpus.

The remainder of this paper is organized as follows:
section 2 describes the Hierarchical Pruning Algorithm
(HPA), which is used to filter and extract high-frequency
strings; section 3 carries out experiments and discussions;

1 This work is supported by Xinjiang Uygur Autonomous Region
Natural Science Foundation Under grant NO. 2012211A057.

2154 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.8.2154-2159

section 4 introduces the related studies; in the end of this
paper, we present the conclusions and future works.

II. RELATED STUDIES

So far there are many repeat extraction algorithms,
which typically include sequitur algorithm, the suffix
index based algorithm and incremental n-gram algorithm.

The main idea of sequitur algorithm[8] is to employ
production rules, which represent repeat structure in
corpus, and to construct rule library of grammar and
extract repeats from rule library. The current rule library
must be adjusted when a character is read. The rules in
the rule library of grammar must satisfy two principles as
follows: (1) any rule made of adjacent characters must be
unique; (2) the application times of any rule must be
more than once. Sequitur algorithm commences with the
starting-point of corpus, reads character one by one, and
adds character to the right end of current string. After that,
the rule library should be adjusted in order to make all
rules satisfy the above two principles. Sequitur algorithm
is used to find hierarchical structure of corpus quickly
and both its time and space complexity is O(n). However,
sequitur algorithm might omit some repeats with special
structure[3], which is the main problem that affects its
application in repeat extraction.

Suffix index-based algorithm includes suffix tree and
suffix array[9]. Let ntttT 21= denote the text corpus,
and],[)(niTTCi = denote the suffix starting from index i
of corpus T. For corpus ntttT 21= , there are n
non-empty suffixes:

nCCC 21 , , such as

nnn tttCtttCtttC 433322211 ,, === etc. The all
non-empty suffixes can construct the suffix tree from
which the repeats can be extracted by finding the longest
common sub-strings. However, the constructing time has
a non-linear relationship with the size of character set.
Moreover, as the space needed to construct suffix tree
is)log(ΣnO , it will be inefficient to process language
of large character set, such as Chinese. Someone had
proposed to replace the suffix tree with the suffix array.
So far, the suffix array algorithm, whose complexity for
both time and space is O(n)[10], is a efficient algorithm
used to extract repeats. The main problem of suffix index
based algorithms is that they need corpus size much less
than that of memory, but in practice the corpus size is
generally much greater than memory capacity, which
results in the failure of this kind of methods.

For the naïve incremental n-gram algorithm, it first
extracts two-character strings within the scope of the
whole corpus, then extracts three-character strings, until
n-character strings. This algorithm is simple and easy to
implement, but inefficient. The time complexity of this
algorithm is)(2nO , which will cause difficult to process
LSC.

According to the above discussion, the three kinds of
algorithms cannot effectively deal with corpus with size
greater than memory capacity. Researchers have tried a
number of corpus partition methods to resolve this

problem. Martin et al.[11] presented a viable corpus
partition method, in which the corpus was scanned
multi-times and for each scanning all the suffixes
beginning with certain character were added to the suffix
tree. The time complexity of constructing tree is)(2nΘ
for this method. Chen et al.[12] first sequentially scanned
the corpus and generated the temporary files to store all
the suffixes, then sorted them and established suffix trees
for each group respectively. This method can handle LSC,
but the workload of suffix sort is very huge. Based on
Martin’s algorithm, Schumann and Stoye[13] put forward
clustered algorithm and employed hash function to locate
the position of sub-tree. Clustered algorithm is faster than
[11], but it demands several-times of memory available,
at least several more times volume than the size of corpus.
Clifford and Sergot[14] proposed the distributed suffix tree,
which copied corpus to different nodes and used Martin’s
method to construct suffix tree beginning with certain
character for each node.

Tian et al.[15] proposed Partition and Write Only Top
Down (PWOTD) algorithm, in which they used inverted
index to store all the positions of characters in corpus.
When constructing suffix tree, all suffixes beginning with
a certain character were obtained based on the appearing
positions of character in the inverted index and added
into suffix tree in turn. Gong et al.[5] made some
improvements on PWOTD method. They divided all
suffixes of LSC into many groups according to the first
characters, and constructed an independent suffix tree for
each group. Based on the above operations, the final set
of repeats was obtained by merging all repeats from each
independent suffix tree. The inverted index was used to
partition the corpus. If some character x appears in
position p, the Postlist of character x will be added the
suffix beginning with character x in position p. The
difference between Gong’s and Tian’s is that the Postlist
of Gong’s directly stores the suffixes rather than the
emergence positions, by which the algorithm can reduce
tremendous overhead of I/O operations for reading the
suffixes into memory.

Though the above two algorithms can effectively
decrease the memory usage, they need frequent and
tremendous I/O operations. For Tian’s method, it needs
rather frequent I/O operations to load suffixes into
memory because Postlist stores only the positions of
characters; for Gong’s, it requires reading the corpus as
many times as the size of the character set, because
obtaining suffixes beginning with a certain character
needs to scan the whole corpus once. When the size of
corpus is becoming greater and the memory cannot
accommodate the suffixes beginning with a single
character, the times of I/O operations will increase
exponentially, which leads to difficulty in dealing with
LSC.

.Ⅲ REPEAT EXTRACTION BASED ON HIERARCHICAL
PRUNING ALGORITHM (HPA)

The aim of HPA is to filter out as many low-frequency
garbage strings as possible in order to improve the
memory and time efficiency for repeats extraction.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2155

© 2014 ACADEMY PUBLISHER

Hierarchical pruning algorithm includes three steps,
low-frequency character pruning, cascade pruning and
candidate repeats merging.

A. Low-Frequency Strings Filtration Based on
Low-Frequency Character Pruning

For incremental n-gram model, it will inevitably
generate a large number of garbage strings whose
frequency is less than threshold if directly used to extract
repeats without any improvements. The garbage strings
waste large mass of memory and debase the efficiency of
repeat extraction. According to the characteristic of
repeats, for string 1 2 kS c c c= , if there is ()f S λ≥ , there
must be λλλ ≥≥≥)(,,)(,)(21 kcfcfcf , where
function)(xf indicates the occurrence frequency of
string x and value λ denotes the predefined threshold
used to restrict the minimum frequency of repeats.

However, this proposition is difficult to judge whether
a string is a low-frequency garbage string or not. The
equivalence of the above proposition is if there is

Σ∈< ii ccf ,)(λ , there must exist λ<)(Sf . Through
scanning the corpus once, we can obtain the set of
characters which satisfy the condition Σ∈< ii ccf ,)(λ .
The set of these characters is called Pruning Character
Set (PCS) 0∑ , which is used to pre-filter low-frequency

strings. For any character xc in candidate string S, if
there is 0∑∈xc , the string S can be discarded because
there must be λ<)(Sf . According to the method
proposed above, we can accomplish the filtration of
low-frequency strings at the level of character and can
effectively reduce the usage of memory by simple and
fast operations.

For example, giving candidate string ""自然语言=S ,
if 0'' ∑∈然 , then λ<)"("自然语言f . As a result, the
candidate string S will be discarded without follow-up
processing.

B. Low-Frequency Strings Filtration Based On Cascade
Pruning

By studying the relationship among strings, we find
that long strings can be filtered by adjacent-length short
strings. For example, we can employ 2-character repeats
to filter 3-character candidate strings. The proof is
described as follows.

If the length and frequency of string S are k and m
respectively, for string ScX i= or

jScX = whose length

and frequency are k+1 and 'm where ∑∈∑∈ ji cc , ,

there must be mm ≤' . i.e., the frequency of a string is
lower than or equal to the frequency of its sub-string.
Further, if the frequency of S is less than predefined
thresholdλ , i.e. λ<m , the frequency of X must be also
less thanλ , i.e. λ<′m . It is obvious that if sub-string
S is a garbage string whose frequency is less thanλ ,
string X must be a low-frequency garbage string.
According to above discussions, it is feasible to filter

candidate strings by adjacent-length short strings whose
frequency is less than threshold λ . Here λ is the
predefined threshold used to restrict the minimum
frequency of high-frequency strings.

Let set Ω denote the set of all the strings with length
k in corpus, set ϕ denote the set of strings with
frequency bellow threshold λ in set Ω , and set
ϕ ϕ= Ω− denote the set of repeats with frequency above
or equal to λ inΩ . Because there exists Ω∈R and

φϕϕ =∩ , one of the conclusions between ϕ∈R
and ϕ∈R must be held. According to this mutex
relationship, as there exists ϕϕ << when 2≥k , we
consider replacing ϕ with ϕ to perform filtration of
low-frequency strings in order to save memory and
accelerate repeat extraction. The filtering principle is that,
for string X whose structure is 1ScX i= and

jcSX 2=
where ∑∈ji CC , and Ω∈21,SS , if ϕ∈1S and ϕ∈2S ,
string X is taken as a candidate repeat, otherwise
discarded as a garbage string.

For example, concerning candidate
string ""自然语言=X , there exists ""1 然语言=S
and ""2 自然语=S . If ϕ∈1S and ϕ∈2S , string

""自然语言=X will be regarded as a candidate repeat,
otherwise, it will be discarded immediately.

C. The Repeats Merging Based on External Sort
To process corpus whose size is much greater than that

of memory, we need to partition the corpus into blocks to
find repeats within memory capacity. In this paper, the
corpus is simply divided into blocks whose size is below
a certain scale, and the repeats are extracted from each
block one by one. Based on the two pruning methods
discussed in previous sections, we can effectively remove
the low-frequency strings and facilitate the follow-up
works.

The candidate repeats from each block are stored in an
independent temporary file to reduce memory usage, but
they are only a part of the entire repeats of the whole
corpus. Therefore all candidate repeats from blocks need
to be merged to achieve the final set of repeats. In this
paper, external sort method is employed to merge all
candidate repeats.

The external sort includes two stages, internal sort and
external merging. We employ an efficient method to
enhance the speed of internal sort. For incremental
n-gram model based repeat extraction, it only uses a
fixed-length window to scan the whole corpus for a
certain length of repeats. According to this characteristic,
we propose to use the Radix Sort to improve the
efficiency of internal sort. Radix Sort[6, 7], whose time
complexity is O(dn), has higher efficiency, but it is only
suitable for sorting numerical data with identical digit.
For applying this method to strings, we consider taking
integer arrays, whose length is identical to that of
Chinese strings, to represent Chinese strings. As each
string is corresponding to a unique integer array, if radix
sort for integer arrays comes into realization, so does for

2156 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

Chinese strings.

D. The Implementation Frame for Hierarchical Pruning
Algorithm

According to the foregoing descriptions of HPA, here
gives the implementation frame of the algorithm, shown
in Figure Ⅰ.

FigureⅠ. Frame of High-Frequency String Extraction Algorithm

Module 1 is used to scan the whole corpus to obtain
the pruning characters whose frequency is less than
predetermined threshold λ ; Module 2 is used to control
loop of incremental n-gram algorithm to obtain various
lengths of repeats through scanning the whole corpus
multi-times. The modules from module 3 to module 6,
being inner loop, are used to extract a certain length of
candidate repeats from every text blocks in the whole
corpus. Module 7 is used to merge all candidate repeats
of a certain length to obtain the final repeat set by
external sort method, and the final repeat set of a certain
length is taken as cascade pruning set used to filter
adjacent-length long strings. When the entire repeats of
the corpus are obtained, the total works are done.

E. Analysis for Time Complexity of HPA
The time consumption of HPA consists of three parts.

The first comes from module 1 in which the PCS is
constructed through scanning the whole corpus once; the
second is from extracting candidate repeats in the whole
corpus and storing them in temporary files after sorting;
the last comes from merging all candidate repeats to
constitute the final repeat set by external sort.

For the first part, let the size of the whole corpus be N,
as the time complexity of retrieval and insertion of hash
structure is O(1), the time consumption of this part is:
N×O(1)+Fr(N) =O(N)+Fr(N),where Fr(N) is the time

complexity of reading data of size N from files.
For the second part, the time consumption is

composed of candidate repeats extracting, sorting and
storing. For length k, the time consumption of candidate
repeats extracting is N×O(1)+Fr(N)=O(N)+Fr(N)
because the frequency statistics of strings is based on the
hash structure. Let the amount of candidate repeats be M,
and the maximum of M is N-k+1, where k is the length of
current extracting repeats. By hierarchical pruning, there
must exist M<<N and O(M) <<O(N). As the efficiency
of radix sort is O(dn) for data with size n and length d,
the time consumption of sort for candidate repeats of
length k is O(kM)[17]. After accomplishing sorting, the
candidate repeats will be written into temporary files. As
a whole, the above operations need to be performed K-1
times, where K is the Maximum of Length of Repeats
(MLR). So the total time consumption of this part is:
(O(N)+Fr(N)+O(kM))×(K-1)+γ×Fw(M)
=O(N)+(K-1)×Fr(N)+ γ ×Fw(N),
where Fw(N) is the time complexity of writing data of
size N into files and γ needs to be determined by
experiments.

For the third part, it merges all candidate repeats by
external sort, which needs lots of I/O reading-writing
operations. As the time consumption has close relations
with the size of corpus and the length of strings, it cannot
be evaluated independently. We give the total time
consumption for this part as: α×Fr(N)+ β×Fw(N),
where the parameters α, β are determined by
experiments.

So the time complexity of the high-frequency string
extraction is the sum of above 3 parts, that is:
O(N)+Fr(N)+O(N)+(K-1)×Fr(N)+ γ ×Fw(N)+ α ×Fr(N)+β×Fw(N)
=O(N)+K×Fr(N)+ α ×Fr(N)+ (γ +β)×Fw(N)
=O(N)+K×Fr(N)+ α ×Fr(N)+ ×′β Fw(N) (1)

In formula (1), the parameters βα ′,,K are the times
of reading or writing the whole corpus. As the time
complexity of I/O reading-writing is much greater than
that of memory-based operations, the times of I/O
reading-writing becomes the key to extract
high-frequency strings. If an algorithm can effectively
reduce the times of I/O reading-writing in extracting
strings, it will achieve better performance.

IV. EXPERIMENTS AND DISCUSSIONS

A. The Conditions of Experiments
Based on the above descriptions of HPA, we

implement the repeat extraction algorithm in computer.
The computing environment is as follows: the main
frequency of CPU is 2.66GHz, the memory size is
2GByte and the operating system is Windows XP. The
corpus used in experiments is provided by Sogou Lab
and it is composed of tremendous web pages in
compressing style. On this basis, we obtain 32 gigabyte
plain text corpus from about 800 gigabyte web pages.
The predefined frequency thresholdλ is 100 and MLR
is 10 in experiments.

B. Analysis and Discussion on Experimental Data

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2157

© 2014 ACADEMY PUBLISHER

In order to analyze the effects of HPA, taking None
Filtration (NF) repeat extraction method as the baseline,
we carry out a number of parallel experiments with
incremental size of corpora. The results are shown in
Table Ⅰ.

TABLE Ⅰ.
COMPARATIVE EXPERIMENTS BETWEEN TWO

METHODS WITH INCREMENTAL SIZE OF CORPORA
Size
(GB) method reading

bytes
writing
bytes FR

1
NF 30597850261 19945043593

91.9%
HPF 12264013408 1612032424

2
NF 69105021161 47532297464

90.1%
HPF 26284318853 4712245955

4
NF 149180690491 105981792558

87.9%
HPF 56020756684 12822498097

8
NF 320093118126 234164934675

85.6%
HPF 119697130280 33776558000

Note: NF denoting None Filtration method, HPF denoting Hierarchical
Pruning Filtration method and FR denoting Filtration Ratio.

From Table Ⅰ, the use of HPA can significantly
reduce bytes of I/O reading-writing compared with the
baseline method for the same size of corpus. As the
difference of writing bytes between two methods can
well measure the function of HPA, we define Filtration
Ratio (FR) to facilitate analysis as follow.
FR=(Writing bytes of NF method – Writing bytes of HPF
method)/(Writing bytes of NF method)×100% (2)

According to the data of FR in Table Ⅰ, the method
based on HPA can filter more than 85% of low-frequency
strings out, which shows that the filtration effect of HPA
is very significant. However, FR will gradually decrease
with the growth of corpus size. We think it reasonable
because the increment of the corpus size brings both
higher complexity of character combinations and more
low-frequency strings into the set of candidate repeats. It
is just the low-frequency strings which are not filtered
out that decreased the filtration effect of HPA. We
believe that FR will remain constant if the corpus size is
large enough. For middle-scale corpus, the function of
HPA is very significant.

To verify the overall performance of HPA, we carry
out some comparative experiments with incremental size
of corpora. The data are shown in Table Ⅱ.

TABLE Ⅱ.
DATA OF EXPERIMENTS OF I/O OPERATION

Size
(GB)

reading
bytes

writing
bytes

reading
times

Writing
times grads

1 12256691564 1612032136 11.4 1.5 ----

4 56013080572 12822437898 13.0 3.0 0.533

6 87476205463 22809723148 13.6 3.5 0.300

8 119697130280 33776558000 13.9 3.9 0.150

12 187937434348 58817845729 14.6 4.6 0.175

16 258507654500 86408517723 15.0 5.0 0.100

20 332442393465 116739061731 15.4 5.4 0.100

26 445600056347 165308069442 15.9 5.9 0.083

32 561839627606 216958530202 16.3 6.3 0.067

Note: reading times denoting the times of reading the whole corpus and

writing times denoting the times of writing the whole corpus
As can be seen in Table Ⅱ, the times of I/O

reading-writing is increasing with the growth of corpus
size, but growth rate gradually slows down. From the
trend of grads, we think that the writing times will
converge to a constant when the size of corpus becomes
large enough. It means that all kinds of combinations
among characters have all emerged for a certain
frequency threshold and the amount of repeats will keep
invariant with the growth of corpus size.

Moreover, for each size of the corpus, the reading
times is associated with the writing times, and the
difference between them is MLR (in this paper is 10). i.e.,
there will exist βα ′= and K=MLR in formula (1).
Why? To obtain all repeats, the corpus must be scanned
MLR times, while the redundant reading times is caused
by reading the extra written data. The relationship
between reading times and writing times is shown in
Figure Ⅱ, which can obviously reveal above conclusion.

0 5 10 15 20 25 30 35
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

tim
es

 o
f r

ea
d-

w
rit

e
w

ho
le

 c
or

pu
s

size of corpus(GB)

 times of reading whole corpus
 times of writing whole corpus

Figure Ⅱ. Relationship between I/O Reading-Writing Times and
Incremental Size of Corpora

From Figure Ⅱ, the relationship between the reading
times (or writing times) and the size of corpus is nearly
linear (when size greater than 12 gigabyte), and the grads
between them is very small, about 0.1, even much
smaller.

C. Comparisons with Other Works
The method of Gong et al.[5] is a classical method used

to extract repeats from LSC in Chinese. However, it is
not comparable between Gong’s method and HPA in a
quantitative style because the conditions and corpus are
not comparable. Some qualitative comparisons are given
as follows.

The times of I/O reading-writing are the key factor to
decide the efficiency of repeat extraction because the
speed of I/O operations is much slower than that of
memory operations. For the method of Gong et al., when
the size of corpus is greater than that of memory, the
times of reading the whole corpus will be the size of
character set, for example, if processing Chinese corpus,
the reading times will be more than 6000; When the size
of corpus is much greater than memory capacity, the I/O
reading-writing times of Gong’s method would increase
exponentially, while that of HPA is nearly linear with the

2158 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

size of corpus, for example, the reading times of HPA is
16.3 when the size of corpus is 32 gigabytes.

On the other side, the method of Gong et al. has better
parallel and extensible performance, but HPA is difficult
to be parallelized because it requires knowing the final
set of short repeats before processing long strings.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we put forward hierarchical pruning
algorithm to extract high-frequency strings. By HPA, the
extraction method can effectively decrease the usage of
memory, greatly reduce the times of I/O reading-writing,
and improve the efficiency of repeat extraction in LSC.
Experiments have shown that HPA can filter more than
85% low-frequency garbage strings out and the times of
I/O reading-writing for the whole corpus has a nearly
linear relationship with the corpus size. As a practical
application, HPA has been employed in the Unknown
Words Identification (UWI) system of our lab, and it can
provide repeats as candidate words effectively.

Through a large number of studies, we have gotten a
bold prediction: though the number of character
combinations is theoretically infinite, when the size of
corpus grows to a tremendous threshold size, the total
amount of repeats will remain constant, i.e., the set of
repeats has contained all reasonable combinations among
characters. The reason for this is that, the combinations
of Chinese characters must follow Chinese language
habits, which leads to the finite number of repeats.
Accordingly, for the restriction of corpus size, repeats
that we have obtained are just a subset of total set of
repeats under the current circumstance.

Though the efficiency of repeat extraction is improved
by HPA, concerning the filtration effects of
low-frequency strings there still is some room for
improvement, especially in large-scale corpus. For the
merging of candidate repeats from blocks, there may be
some room for reducing the times of I/O reading-writing
further. Among our future work, we will research into a
new data structure to further decrease the memory usage
in candidate string filtration without debasing extraction
efficiency. We also want to study even larger corpus in
order to exploit the new laws and trends which have not
been found so far.

ACKNOWLEDGEMENT

This work is supported by Xinjiang Uygur
Autonomous Region Natural Science Foundation
(2012211A057).

REFERENCES

[1] Huang C, Zhao H. Chinese Word Segmentation: A Decade
Review. Journal of Chinese Information Processing. 2007,
21(3): 8-19.

[2] Zheng J, Li W. A Study on Automatic Identification for
Internet New Words According to Word-Building Rule.
Journal of Shanxi University(Nat Sci Ed). 2002, 25(2):

115-119.
[3] Zou G. Research on Chinese New Words and Expressions

Identification. Beijing: Graduate University of Chinese
Academy of Sciences; 2004.

[4] Cui S, Liu Q, Meng Y et al. New Word Detection Based
on Large-Scale Corpus. Journal of Computer Research
and Development. 2006, 43(5): 927-932.

[5] Gong C, He M, Chen H et al. Frequent-Pattern
Discovering Algorithm for Large-Scale Corpus. Journal of
Communications. 2007, 28(12): 161-166.

[6] Cormen TH, Leiserson CE, Rivest RL et al. In
Introduction to Algorithms (2nd Ed). Cambridge MA:
MIT Press; 2001.

[7] Lu K. In Introduction to Computer Algorithms: Design &
Analysis (Second Edition). Beijing Tsinghua University
Press; 1996.

[8] Nevill-Manning CG, Witten IH. Identifying Hierarchical
Structure in Sequences: A Linear-Time Algorithm. Journal
of Artificial Intelligence Research. 1997: 67-82.

[9] Yamamoto M, Churcht KW. Using Suffix Arrays to
Compute Term Frequency and Document Frequency for
All Substrings in a Corpus. Computational Linguistics,
2001, MIT Press. 2001.

[10] Larsson NJ, Sadakane K. Faster Suffix Sorting. Lund,
Sweden: Department of Computer Science, Lund
University; 1999.

[11] Martin F-C, Paolo F, S M. On The Sorting Complexity of
Suffix-Tree Construction. Journal of ACM. 2000, 47(6):
987-1011.

[12] Chen Z, Fowler R, Fu AW-C et al. Fast Construction of
Genaralized Suffix Trees over A Very Large Alphabet. In
Proc. Proceedings of International Conference on
Computing and Cobinatorics;Big Sky,MT; 2003. pp.
284-293.

[13] Schurmann K-B, Stoye J. Suffix Tree Construction and
Storage with Limited Main Memory. Bielefeld, Germany:
University of Bielefeld; 2003.

[14] Clifford R, Sergot M. Distributed and Paged Suffix-Trees
for Large Genetic Databases. In Proc. Proceedings of 14th
Annual Symposium on Combinatorial Pattern Matching;
2003. pp. 70-82.

[15] Tian Y, Tata S, Hankins RA et al. Practical Methods for
Constructing Suffix Trees. The VLDB Journal. 2005,
14(3): 281-299.

[16] Anisa AH, Maxime C, Lucian I et al. A comparison of
index-based lempel-Ziv LZ77 factorization
algorithms[J].ACM COMPUTING SerVey,2012,45(1):5.

[17] Zhang HJ, Pan WM, Munina,.A String Sort Algorithm in
Custom Character Order [J]. Journal of Chinese Computer
Systems,2012,33(9):1968-1971.

Haijun Zhang is a member of Chinese
Information Processing Society of China.
He is an associate professor of the school
of computer science and technology,
Xinjiang Normal University and got his
doctoral degree at the school of computer
science and technology, University of
Science and Technology of China in
2011. His research interests mainly focus

on natural language processing, new words identification and
terms extraction from Uygur-Han bilingual languages.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2159

© 2014 ACADEMY PUBLISHER

