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Abstract—In high-frequency string extraction, there exists 
enormous time and memory waste in taking statistics of 
tremendous low-frequency strings, which causes low 
efficiency. Based on the incremental n-gram model, this 
paper puts forward Hierarchical Pruning Algorithm (HPA) 
to filter out low-frequency garbage strings and to extract 
candidate repeats for reducing I/O reading-writing times 
and enhancing efficiency of memory usage. On the basis of 
candidate repeats, external sort method is applied to merge 
all of them in order to obtain the final repeat set. For 
improving the efficiency of candidate repeats merging, this 
paper proposes to employ improved Radix Sort method to 
process strings in O(dn). With 32 gigabyte plain text corpus, 
experiments show that the relationship between I/O 
reading-writing times of HPA and the corpus size is nearly 
linear, and the algorithm can efficiently extract repeats 
from corpus whose size is much larger than that of memory. 
 
Index Terms—repeats, hash table, low-frequency string, 
hierarchical pruning algorithm 

I. INTRODUCTION 

With the progress of era, Chinese new words and 
phrases come forth constantly. For example: “ 非

典”(SARS), “超女”(super girl) and so on. New words 
and phrases provide lots of convenience for 
conversations; at the same time, they also bring some 
difficulties[1] for automatic language processing. As the 
main feature of new words and phrases is the high 
frequency of occurrence, they belong to High-Frequency 
Strings (HFS). If HFS in Large-Scale Corpus (LSC) can 
be extracted quickly, we can efficiently find lots of new 
words and phrases, which are very helpful in Natural 
Language Processing (NLP). HFS extraction is an 
important technology for the fields of NLP such as 
Chinese Unknown Words Identification (UWI), 
information retrieval and information extraction etc. For 
example, the extracted HFS from LSC is regarded as 
candidate words [2-4] in repeat-based UWI. 

Let Σ  be a limited character set, and S be a character 
sequence nccccS 321= , whose length is n. ][iS  denotes 
the ith character in S where ni ≤≤1 , and ],[ jiS  
denotes a string in sequence S. 

mSSSST ### 321= denotes a text corpus, where “#” is a 

Symbol of Text End (STE) used to indicate the end of a 
piece of text, for example, “!”, “?”and “。” etc. can be 
taken as STEs. Let kcccR 21=  be a string, and 
there is no STE in R. If there are at least two positions 

1p  and 2p  in corpus T, which meet 
]1,[]1,[ 2211 −+=−+= kppTkppTR , string R is called 

repeat[5]. If the occurrence frequency of string R is equal 

to or higher than predefined thresholdλ , R is called 
high-frequency string. The extraction of high-frequency 
strings is to find various lengths of repeats whose 
frequencies are equal to or higher than λ . For example, 
if there is conditions: }'','','','{' dcba=Σ , 
S=“adbca”, and T=“adbca#db#ccc”, we have S[2]= 
“d”, S[1,4]= “adbc” and R=“db” with frequency 2. 
If 2=λ , the string R=“db” will be extracted as a 
high-frequency string. Here the so-called high-frequency 
is a relative definition. 

The main difficulty for HFS extraction is the statistics 
of repeats, in which most of time and memory are spent 
in taking statistics of low-frequency strings resulting in 
low efficiency and high memory usage, which is difficult 
to meet the requirement of fast extraction for repeats. 

In this paper, we put forward a pragmatic HFS 
extraction algorithm, in which the mass of memory usage 
for once is converted to trifle usage for multi-times 
through scanning text corpus multi-times in order to 
effectively process LSC whose size is greater than that of 
memory. The specific ideas are as follows. First, we 
construct Pruning Characters Set (PCS) by scanning 
corpus once. The PCS includes characters whose 
frequency is less than the predefined threshold λ , which 
is used to filter out low-frequency garbage strings at the 
level of character. Second, hierarchical pruning method is 
employed to remove low-frequency garbage strings 
based on incremental n-gram model. That is, when 
extracting long repeats, the adjacent-length short repeat 
set as well as PCS is used to filter them for further 
improving efficiency. And finally, the external sort 
method is adopted to achieve the final set of repeats of 
the whole corpus. 

The remainder of this paper is organized as follows: 
section 2 describes the Hierarchical Pruning Algorithm 
(HPA), which is used to filter and extract high-frequency 
strings; section 3 carries out experiments and discussions; 
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section 4 introduces the related studies; in the end of this 
paper, we present the conclusions and future works. 

II. RELATED STUDIES 

So far there are many repeat extraction algorithms, 
which typically include sequitur algorithm, the suffix 
index based algorithm and incremental n-gram algorithm. 

The main idea of sequitur algorithm[8] is to employ 
production rules, which represent repeat structure in 
corpus, and to construct rule library of grammar and 
extract repeats from rule library. The current rule library 
must be adjusted when a character is read. The rules in 
the rule library of grammar must satisfy two principles as 
follows: (1) any rule made of adjacent characters must be 
unique; (2) the application times of any rule must be 
more than once. Sequitur algorithm commences with the 
starting-point of corpus, reads character one by one, and 
adds character to the right end of current string. After that, 
the rule library should be adjusted in order to make all 
rules satisfy the above two principles. Sequitur algorithm 
is used to find hierarchical structure of corpus quickly 
and both its time and space complexity is O(n). However, 
sequitur algorithm might omit some repeats with special 
structure[3], which is the main problem that affects its 
application in repeat extraction. 

Suffix index-based algorithm includes suffix tree and 
suffix array[9]. Let ntttT 21= denote the text corpus, 
and ],[)( niTTCi = denote the suffix starting from index i 
of corpus T. For corpus ntttT 21= , there are n 
non-empty suffixes:

nCCC 21 , , such as 

nnn tttCtttCtttC 433322211 ,, === etc. The all 
non-empty suffixes can construct the suffix tree from 
which the repeats can be extracted by finding the longest 
common sub-strings. However, the constructing time has 
a non-linear relationship with the size of character set. 
Moreover, as the space needed to construct suffix tree 
is )log( ΣnO , it will be inefficient to process language 
of large character set, such as Chinese. Someone had 
proposed to replace the suffix tree with the suffix array. 
So far, the suffix array algorithm, whose complexity for 
both time and space is O(n)[10], is a efficient algorithm 
used to extract repeats. The main problem of suffix index 
based algorithms is that they need corpus size much less 
than that of memory, but in practice the corpus size is 
generally much greater than memory capacity, which 
results in the failure of this kind of methods. 

For the naïve incremental n-gram algorithm, it first 
extracts two-character strings within the scope of the 
whole corpus, then extracts three-character strings, until 
n-character strings. This algorithm is simple and easy to 
implement, but inefficient. The time complexity of this 
algorithm is )( 2nO , which will cause difficult to process 
LSC. 

According to the above discussion, the three kinds of 
algorithms cannot effectively deal with corpus with size 
greater than memory capacity. Researchers have tried a 
number of corpus partition methods to resolve this 

problem. Martin et al.[11] presented a viable corpus 
partition method, in which the corpus was scanned 
multi-times and for each scanning all the suffixes 
beginning with certain character were added to the suffix 
tree. The time complexity of constructing tree is )( 2nΘ  
for this method. Chen et al.[12] first sequentially scanned 
the corpus and generated the temporary files to store all 
the suffixes, then sorted them and established suffix trees 
for each group respectively. This method can handle LSC, 
but the workload of suffix sort is very huge. Based on 
Martin’s algorithm, Schumann and Stoye[13] put forward 
clustered algorithm and employed hash function to locate 
the position of sub-tree. Clustered algorithm is faster than 
[11], but it demands several-times of memory available, 
at least several more times volume than the size of corpus. 
Clifford and Sergot[14] proposed the distributed suffix tree, 
which copied corpus to different nodes and used Martin’s 
method to construct suffix tree beginning with certain 
character for each node. 

Tian et al.[15] proposed Partition and Write Only Top 
Down (PWOTD) algorithm, in which they used inverted 
index to store all the positions of characters in corpus. 
When constructing suffix tree, all suffixes beginning with 
a certain character were obtained based on the appearing 
positions of character in the inverted index and added 
into suffix tree in turn. Gong et al.[5] made some 
improvements on PWOTD method. They divided all 
suffixes of LSC into many groups according to the first 
characters, and constructed an independent suffix tree for 
each group. Based on the above operations, the final set 
of repeats was obtained by merging all repeats from each 
independent suffix tree. The inverted index was used to 
partition the corpus. If some character x appears in 
position p, the Postlist of character x will be added the 
suffix beginning with character x in position p. The 
difference between Gong’s and Tian’s is that the Postlist 
of Gong’s directly stores the suffixes rather than the 
emergence positions, by which the algorithm can reduce 
tremendous overhead of I/O operations for reading the 
suffixes into memory. 

Though the above two algorithms can effectively 
decrease the memory usage, they need frequent and 
tremendous I/O operations. For Tian’s method, it needs 
rather frequent I/O operations to load suffixes into 
memory because Postlist stores only the positions of 
characters; for Gong’s, it requires reading the corpus as 
many times as the size of the character set, because 
obtaining suffixes beginning with a certain character 
needs to scan the whole corpus once. When the size of 
corpus is becoming greater and the memory cannot 
accommodate the suffixes beginning with a single 
character, the times of I/O operations will increase 
exponentially, which leads to difficulty in dealing with 
LSC. 

.Ⅲ  REPEAT EXTRACTION BASED ON HIERARCHICAL 
PRUNING ALGORITHM (HPA) 

The aim of HPA is to filter out as many low-frequency 
garbage strings as possible in order to improve the 
memory and time efficiency for repeats extraction. 
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Hierarchical pruning algorithm includes three steps, 
low-frequency character pruning, cascade pruning and 
candidate repeats merging. 

A. Low-Frequency Strings Filtration Based on 
Low-Frequency Character Pruning 

For incremental n-gram model, it will inevitably 
generate a large number of garbage strings whose 
frequency is less than threshold if directly used to extract 
repeats without any improvements. The garbage strings 
waste large mass of memory and debase the efficiency of 
repeat extraction. According to the characteristic of 
repeats, for string 1 2 kS c c c= , if there is ( )f S λ≥ , there 
must be λλλ ≥≥≥ )(,,)(,)( 21 kcfcfcf , where 
function )(xf  indicates the occurrence frequency of 
string x and value λ  denotes the predefined threshold 
used to restrict the minimum frequency of repeats. 

However, this proposition is difficult to judge whether 
a string is a low-frequency garbage string or not. The 
equivalence of the above proposition is if there is 

Σ∈< ii ccf ,)( λ , there must exist λ<)(Sf . Through 
scanning the corpus once, we can obtain the set of 
characters which satisfy the condition Σ∈< ii ccf ,)( λ . 
The set of these characters is called Pruning Character 
Set (PCS) 0∑ , which is used to pre-filter low-frequency 

strings. For any character xc  in candidate string S, if 
there is 0∑∈xc , the string S can be discarded because 
there must be λ<)(Sf . According to the method 
proposed above, we can accomplish the filtration of 
low-frequency strings at the level of character and can 
effectively reduce the usage of memory by simple and 
fast operations. 

For example, giving candidate string ""自然语言=S , 
if 0'' ∑∈然 , then λ<)"("自然语言f . As a result, the 
candidate string S will be discarded without follow-up 
processing. 

B. Low-Frequency Strings Filtration Based On Cascade 
Pruning 

By studying the relationship among strings, we find 
that long strings can be filtered by adjacent-length short 
strings. For example, we can employ 2-character repeats 
to filter 3-character candidate strings. The proof is 
described as follows. 

If the length and frequency of string S are k and m 
respectively, for string ScX i=  or 

jScX =  whose length 

and frequency are k+1 and 'm  where ∑∈∑∈ ji cc , , 

there must be mm ≤' . i.e., the frequency of a string is 
lower than or equal to the frequency of its sub-string. 
Further, if the frequency of S is less than predefined 
thresholdλ , i.e. λ<m , the frequency of X must be also 
less thanλ , i.e. λ<′m . It is obvious that if sub-string 
S is a garbage string whose frequency is less thanλ , 
string X must be a low-frequency garbage string. 
According to above discussions, it is feasible to filter 

candidate strings by adjacent-length short strings whose 
frequency is less than threshold λ . Here λ is the 
predefined threshold used to restrict the minimum 
frequency of high-frequency strings. 

Let set Ω  denote the set of all the strings with length 
k in corpus, set ϕ  denote the set of strings with 
frequency bellow threshold λ  in set Ω , and set 
ϕ ϕ= Ω−  denote the set of repeats with frequency above 
or equal to λ  inΩ . Because there exists Ω∈R  and 

φϕϕ =∩ , one of the conclusions between ϕ∈R  
and ϕ∈R  must be held. According to this mutex 
relationship, as there exists ϕϕ <<  when 2≥k , we 
consider replacing ϕ  with ϕ  to perform filtration of 
low-frequency strings in order to save memory and 
accelerate repeat extraction. The filtering principle is that, 
for string X whose structure is 1ScX i=  and

jcSX 2=  
where ∑∈ji CC ,  and Ω∈21,SS , if ϕ∈1S  and ϕ∈2S , 
string X is taken as a candidate repeat, otherwise 
discarded as a garbage string.  

For example, concerning candidate 
string ""自然语言=X , there exists ""1 然语言=S  
and ""2 自然语=S . If ϕ∈1S  and ϕ∈2S , string 

""自然语言=X  will be regarded as a candidate repeat, 
otherwise, it will be discarded immediately. 

C. The Repeats Merging Based on External Sort 
To process corpus whose size is much greater than that 

of memory, we need to partition the corpus into blocks to 
find repeats within memory capacity. In this paper, the 
corpus is simply divided into blocks whose size is below 
a certain scale, and the repeats are extracted from each 
block one by one. Based on the two pruning methods 
discussed in previous sections, we can effectively remove 
the low-frequency strings and facilitate the follow-up 
works. 

The candidate repeats from each block are stored in an 
independent temporary file to reduce memory usage, but 
they are only a part of the entire repeats of the whole 
corpus. Therefore all candidate repeats from blocks need 
to be merged to achieve the final set of repeats. In this 
paper, external sort method is employed to merge all 
candidate repeats. 

The external sort includes two stages, internal sort and 
external merging. We employ an efficient method to 
enhance the speed of internal sort. For incremental 
n-gram model based repeat extraction, it only uses a 
fixed-length window to scan the whole corpus for a 
certain length of repeats. According to this characteristic, 
we propose to use the Radix Sort to improve the 
efficiency of internal sort. Radix Sort[6, 7], whose time 
complexity is O(dn), has higher efficiency, but it is only 
suitable for sorting numerical data with identical digit. 
For applying this method to strings, we consider taking 
integer arrays, whose length is identical to that of 
Chinese strings, to represent Chinese strings. As each 
string is corresponding to a unique integer array, if radix 
sort for integer arrays comes into realization, so does for 
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Chinese strings. 

D. The Implementation Frame for Hierarchical Pruning 
Algorithm 

According to the foregoing descriptions of HPA, here 
gives the implementation frame of the algorithm, shown 
in Figure Ⅰ. 

FigureⅠ. Frame of High-Frequency String Extraction Algorithm 

Module 1 is used to scan the whole corpus to obtain 
the pruning characters whose frequency is less than 
predetermined threshold λ ; Module 2 is used to control 
loop of incremental n-gram algorithm to obtain various 
lengths of repeats through scanning the whole corpus 
multi-times. The modules from module 3 to module 6, 
being inner loop, are used to extract a certain length of 
candidate repeats from every text blocks in the whole 
corpus. Module 7 is used to merge all candidate repeats 
of a certain length to obtain the final repeat set by 
external sort method, and the final repeat set of a certain 
length is taken as cascade pruning set used to filter 
adjacent-length long strings. When the entire repeats of 
the corpus are obtained, the total works are done. 

E. Analysis for Time Complexity of HPA 
The time consumption of HPA consists of three parts. 

The first comes from module 1 in which the PCS is 
constructed through scanning the whole corpus once; the 
second is from extracting candidate repeats in the whole 
corpus and storing them in temporary files after sorting; 
the last comes from merging all candidate repeats to 
constitute the final repeat set by external sort. 

For the first part, let the size of the whole corpus be N, 
as the time complexity of retrieval and insertion of hash 
structure is O(1), the time consumption of this part is: 
N×O(1)+Fr(N) =O(N)+Fr(N),where Fr(N) is the time 

complexity of reading data of size N from files. 
For the second part, the time consumption is 

composed of candidate repeats extracting, sorting and 
storing. For length k, the time consumption of candidate 
repeats extracting is N×O(1)+Fr(N)=O(N)+Fr(N) 
because the frequency statistics of strings is based on the 
hash structure. Let the amount of candidate repeats be M, 
and the maximum of M is N-k+1, where k is the length of 
current extracting repeats. By hierarchical pruning, there 
must exist M<<N and O(M) <<O(N). As the efficiency 
of radix sort is O(dn) for data with size n and length d, 
the time consumption of sort for candidate repeats of 
length k is O(kM)[17]. After accomplishing sorting, the 
candidate repeats will be written into temporary files. As 
a whole, the above operations need to be performed K-1 
times, where K is the Maximum of Length of Repeats 
(MLR). So the total time consumption of this part is:  
(O(N)+Fr(N)+O(kM))×(K-1)+γ×Fw(M) 
=O(N)+(K-1)×Fr(N)+ γ ×Fw(N), 
where Fw(N) is the time complexity of writing data of 
size N into files and γ needs to be determined by 
experiments. 

For the third part, it merges all candidate repeats by 
external sort, which needs lots of I/O reading-writing 
operations. As the time consumption has close relations 
with the size of corpus and the length of strings, it cannot 
be evaluated independently. We give the total time 
consumption for this part as: α×Fr(N)+ β×Fw(N), 
where the parameters α, β are determined by 
experiments. 

So the time complexity of the high-frequency string 
extraction is the sum of above 3 parts, that is: 
O(N)+Fr(N)+O(N)+(K-1)×Fr(N)+ γ ×Fw(N)+ α ×Fr(N)+β×Fw(N) 
=O(N)+K×Fr(N)+ α ×Fr(N)+ (γ +β)×Fw(N) 
=O(N)+K×Fr(N)+ α ×Fr(N)+ ×′β Fw(N)      (1) 

In formula (1), the parameters βα ′,,K are the times 
of reading or writing the whole corpus. As the time 
complexity of I/O reading-writing is much greater than 
that of memory-based operations, the times of I/O 
reading-writing becomes the key to extract 
high-frequency strings. If an algorithm can effectively 
reduce the times of I/O reading-writing in extracting 
strings, it will achieve better performance. 

IV. EXPERIMENTS AND DISCUSSIONS 

A. The Conditions of Experiments 
Based on the above descriptions of HPA, we 

implement the repeat extraction algorithm in computer. 
The computing environment is as follows: the main 
frequency of CPU is 2.66GHz, the memory size is 
2GByte and the operating system is Windows XP. The 
corpus used in experiments is provided by Sogou Lab 
and it is composed of tremendous web pages in 
compressing style. On this basis, we obtain 32 gigabyte 
plain text corpus from about 800 gigabyte web pages. 
The predefined frequency thresholdλ  is 100 and MLR 
is 10 in experiments. 

B. Analysis and Discussion on Experimental Data 
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In order to analyze the effects of HPA, taking None 
Filtration (NF) repeat extraction method as the baseline, 
we carry out a number of parallel experiments with 
incremental size of corpora. The results are shown in 
Table Ⅰ. 

TABLE Ⅰ. 
COMPARATIVE EXPERIMENTS BETWEEN TWO 

METHODS WITH INCREMENTAL SIZE OF CORPORA 
Size 
(GB) method reading 

bytes 
writing 
bytes FR 

1 
NF 30597850261 19945043593 

91.9%
HPF 12264013408 1612032424 

2 
NF 69105021161 47532297464 

90.1%
HPF 26284318853 4712245955 

4 
NF 149180690491 105981792558 

87.9%
HPF 56020756684 12822498097 

8 
NF 320093118126 234164934675 

85.6%
HPF 119697130280 33776558000 

Note: NF denoting None Filtration method, HPF denoting Hierarchical 
Pruning Filtration method and FR denoting Filtration Ratio. 

From Table Ⅰ, the use of HPA can significantly 
reduce bytes of I/O reading-writing compared with the 
baseline method for the same size of corpus. As the 
difference of writing bytes between two methods can 
well measure the function of HPA, we define Filtration 
Ratio (FR) to facilitate analysis as follow. 
FR=(Writing bytes of NF method – Writing bytes of HPF 
method)/( Writing bytes of NF method)×100%                 (2) 

According to the data of FR in Table Ⅰ, the method 
based on HPA can filter more than 85% of low-frequency 
strings out, which shows that the filtration effect of HPA 
is very significant. However, FR will gradually decrease 
with the growth of corpus size. We think it reasonable 
because the increment of the corpus size brings both 
higher complexity of character combinations and more 
low-frequency strings into the set of candidate repeats. It 
is just the low-frequency strings which are not filtered 
out that decreased the filtration effect of HPA. We 
believe that FR will remain constant if the corpus size is 
large enough. For middle-scale corpus, the function of 
HPA is very significant. 

To verify the overall performance of HPA, we carry 
out some comparative experiments with incremental size 
of corpora. The data are shown in Table Ⅱ. 

TABLE Ⅱ.  
DATA OF EXPERIMENTS OF I/O OPERATION 

Size 
(GB) 

reading 
bytes 

writing 
bytes 

reading 
times 

Writing
times grads

1 12256691564 1612032136 11.4 1.5 ---- 

4 56013080572 12822437898 13.0 3.0 0.533

6 87476205463 22809723148 13.6 3.5 0.300

8 119697130280 33776558000 13.9 3.9 0.150

12 187937434348 58817845729 14.6 4.6 0.175

16 258507654500 86408517723 15.0 5.0 0.100

20 332442393465 116739061731 15.4 5.4 0.100

26 445600056347 165308069442 15.9 5.9 0.083

32 561839627606 216958530202 16.3 6.3 0.067

Note: reading times denoting the times of reading the whole corpus and 

writing times denoting the times of writing the whole corpus 
As can be seen in Table Ⅱ, the times of I/O 

reading-writing is increasing with the growth of corpus 
size, but growth rate gradually slows down. From the 
trend of grads, we think that the writing times will 
converge to a constant when the size of corpus becomes 
large enough. It means that all kinds of combinations 
among characters have all emerged for a certain 
frequency threshold and the amount of repeats will keep 
invariant with the growth of corpus size. 

Moreover, for each size of the corpus, the reading 
times is associated with the writing times, and the 
difference between them is MLR (in this paper is 10). i.e., 
there will exist βα ′=  and K=MLR in formula (1). 
Why? To obtain all repeats, the corpus must be scanned 
MLR times, while the redundant reading times is caused 
by reading the extra written data. The relationship 
between reading times and writing times is shown in 
Figure Ⅱ, which can obviously reveal above conclusion. 
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Figure Ⅱ. Relationship between I/O Reading-Writing Times and 
Incremental Size of Corpora 

From Figure Ⅱ, the relationship between the reading 
times (or writing times) and the size of corpus is nearly 
linear (when size greater than 12 gigabyte), and the grads 
between them is very small, about 0.1, even much 
smaller.  

C. Comparisons with Other Works 
The method of Gong et al.[5] is a classical method used 

to extract repeats from LSC in Chinese. However, it is 
not comparable between Gong’s method and HPA in a 
quantitative style because the conditions and corpus are 
not comparable. Some qualitative comparisons are given 
as follows. 

The times of I/O reading-writing are the key factor to 
decide the efficiency of repeat extraction because the 
speed of I/O operations is much slower than that of 
memory operations. For the method of Gong et al., when 
the size of corpus is greater than that of memory, the 
times of reading the whole corpus will be the size of 
character set, for example, if processing Chinese corpus, 
the reading times will be more than 6000; When the size 
of corpus is much greater than memory capacity, the I/O 
reading-writing times of Gong’s method would increase 
exponentially, while that of HPA is nearly linear with the 
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size of corpus, for example, the reading times of HPA is 
16.3 when the size of corpus is 32 gigabytes. 

On the other side, the method of Gong et al. has better 
parallel and extensible performance, but HPA is difficult 
to be parallelized because it requires knowing the final 
set of short repeats before processing long strings. 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, we put forward hierarchical pruning 
algorithm to extract high-frequency strings. By HPA, the 
extraction method can effectively decrease the usage of 
memory, greatly reduce the times of I/O reading-writing, 
and improve the efficiency of repeat extraction in LSC. 
Experiments have shown that HPA can filter more than 
85% low-frequency garbage strings out and the times of 
I/O reading-writing for the whole corpus has a nearly 
linear relationship with the corpus size. As a practical 
application, HPA has been employed in the Unknown 
Words Identification (UWI) system of our lab, and it can 
provide repeats as candidate words effectively. 

Through a large number of studies, we have gotten a 
bold prediction: though the number of character 
combinations is theoretically infinite, when the size of 
corpus grows to a tremendous threshold size, the total 
amount of repeats will remain constant, i.e., the set of 
repeats has contained all reasonable combinations among 
characters. The reason for this is that, the combinations 
of Chinese characters must follow Chinese language 
habits, which leads to the finite number of repeats. 
Accordingly, for the restriction of corpus size, repeats 
that we have obtained are just a subset of total set of 
repeats under the current circumstance. 

Though the efficiency of repeat extraction is improved 
by HPA, concerning the filtration effects of 
low-frequency strings there still is some room for 
improvement, especially in large-scale corpus. For the 
merging of candidate repeats from blocks, there may be 
some room for reducing the times of I/O reading-writing 
further. Among our future work, we will research into a 
new data structure to further decrease the memory usage 
in candidate string filtration without debasing extraction 
efficiency. We also want to study even larger corpus in 
order to exploit the new laws and trends which have not 
been found so far.  
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