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Abstract—Minimal siphons play an important role in the 
development of deadlock control policies for discrete event 
system modeled by Petri net. A new algorithm based on 
depth-first search of problem decomposition process is 
proposed to compute all minimal siphons in an ordinary 
Petri net. The algorithm can reduce the number of problems 
in the problem list. The proposed algorithm can solve the 
problem of high requirement for computer memory in 
computing all minimal siphons and decrease the memory 
consumption because the computer memory size is closely 
related to the number of problems in the problem list. Some 
examples are used to illustrate the superiority of the 
proposed algorithm.  
 
Index Terms—Petri nets, Minimal siphons, Deadlock 
 

I.  INTRODUCTION 

A Petri net is a graphical and mathematical tool that is 
widely used to describe and analyze the behavior of 
discrete event systems, including flexible manufacturing 
systems (FMS) [1]-[7], workflow management system, 
and automated guided vehicles. In recent years, more and 
more researchers adopt Petri net models to handle 
deadlock control problems, which are closely related to 
siphons. Siphons are a well-known structural object in a 
Petri net, which are closely related to some basic 
behavioral properties of the net, such as deadlock-free 
and liveness. Briefly, a siphon is a set of places such that 
their input transition set is included in their output 
transition set. It remains permanently unmarked once it 
loses all tokens. As a result, if a siphon is empty, their 
output transitions become permanently disabled, causing 
a partial or total system deadlock. Therefore, siphon is 
crucial in deadlock prevention policy of Petri net. 

 
 
 
 
 
 

Deadlock control based on siphon [8] is first to 
compute minimal siphons whose efficient computation is  
fundamentally important and is much studied in the 
literature. As a result, complete or partial minimal siphon 
computation becomes necessity necessary. In the past 
two decades, researchers have proposed many methods to 
compute minimal siphons. In [9], Wang proposes a 
minimal siphons-extraction algorithm based on loop 
resource subsets. In his approach, Wang utilizes loop 
resource subsets to compute all the minimal siphons 
in S3PR. Compared with the method in [10], [11], the 
algorithm proposed by Wang has higher 
computational efficiency via many generated 
examples [12]. Moreover, it can solve some problems 
in [10].  

The methods mentioned above to compute minimal 
siphons have higher computational efficiency, but 
they can only be limited to a subclass of Petri nets 
called Systems of Simple Sequential Processes with 
Resources (S3PR). Note that the INA-based method 
and the sign matrix one can be used to compute all 
minimal siphons for an ordinary Petri net. But the 
two methods have lower computation efficiency. An 
effective method is presented in [13], [14] to compute 
minimal siphons for ordinary Petri net and it has 
significant representativeness. 

In [13], [14], Roberto Cordone and Luca Ferrarini 
have presented an interesting approach that is based 
on breadth-first search of problem decomposition. 
The approach in [13] includes two algorithms which 
mainly differ in the application of the partitioning 
procedure. The first one decomposes only the current 
problem, called local partitioning. The other one 
decomposes all problems in the unsolved problem list, 
called global partitioning. The local partitioning 
algorithm possibly generates spurious solutions, i.e., non-
minimal siphons, whereas the global one finds exactly the 
complete set of minimal siphons. The algorithm in [13] 
has higher computation efficiency in computing minimal 
siphons for an ordinary Petri net. However, with the 
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expansion of the size of the Petri net, too many problems 
need to be decomposed, leading to high requirement for 
computer memory. So, siphon computation is 
expensive. 

In this paper, a new algorithm based on depth-first 
search of problem decomposition process is proposed to 
compute all minimal siphons in an ordinary Petri net. We 
know that the computer memory size occupied by the 
developed program based on the proposed algorithm 
depends on the number of problems within the 
problem list. Similarly, the maximum requirement of 
memory occupied by the developed program depends 
on the maximum number of problems within the list. 
Therefore, the proposed algorithm can reduce the 
number of problems in the problem list and simplify 
the minimal siphon computation process, solving the 
problem of high requirement for computer memory in 
the course of computing all minimal siphons. 

The rest of this paper is organized as follows. Section 2 
presents the preliminaries used throughout this paper. 
Algorithm for finding minimal siphons is introduced in 
Section 3. Illustrative example and comparison with 
Cordone’s algorithm is given in Section 4. Section 5 
concludes this paper. 

II.  PRELLIMINARIES 

A Petri net (PN) is a 3-tuple N = (P, T, F), where P 
and T are finite, nonempty, and disjoint sets. P is the 
set of places, and T is the set of transitions. In a 
generic way, elements belonging to P ∪ T are called 
nodes. F ⊆ (P×T) ∪ (T × P) is called the flow 
relation or the set of directed arcs. The flux relation 
can be given in the form of matrices, namely the 
input (PRE), output (PST), and incidence (C = PST − 
PRE) matrices. Given a net N = (P, T, F) and a node 
x∈  P ∪ T, •x = {y∈P ∪ T|(y, x) ∈  F} is called the 
preset of node x, whereas x• = {y ∈  P ∪ T|(x, y) ∈  F} 
is called the postset of node. 

A nonempty set S ⊆ P is a siphon iff •S ⊆ S•. S is 
called a trap iff S• ⊆ •S. A trap is marked if some of 
its places have token(s). A siphon is minimal iff there 
is no siphon contained in it as a proper subset. 

Definition 1 [13]-Reduction Function: Let G = (P, 
T, F) be a PN and P~ ⊂P. Then G~ = red (G, P~ ) is a 
PN ( P~ , T~ , F~ ) iff T~ = {t∈  T|(•t ∪  t•) ∩ P~ ≠φ  and 
F~ (p, t) = F(p, t), F~ (t, p) = F(t, p) ∀ p∈ P~ , ∀ t∈  
T~ . 

Definition 2 [13]: Let G = (P, T, F) be a PN, Pin ⊆ P, 
Pout ⊆ P. Π = (G, Pin, Pout) indicates the problem of 
finding and ΣΠ indicates the set of all siphons of G 
subject to the constraints: i) ∀ S∈ΣΠ, S is a Pin-minimal 
siphon; ii) ∀ S ∈  ΣΠ, S ∩ Pout =φ .  

III.ALGORITHM FOR FINDING MINIMAL SIHONS 

In this section, the global partitioning algorithm 
proposed by Cordone [13] is presented firstly. Then, a 
new algorithm based on depth-first search is proposed to 

compute all the minimal siphons. Subsequently, an 
example is shown to illustrate the proposed algorithm. 

A.  Cordone’s Algorithm 
According to the lemmas introduced in [13], an 

iterative search algorithm can be devised to find all 
siphons solving the generic problem Π= (G, Pin, Pout). 
This algorithm is based on suitable problem-
reduction techniques (Lemmas 9 and 13) [13] and 
problem decomposition (Lemmas 2 and 12) [13] to 
explore the solution space. 

In the following, lists will be employed, with the 
following notation. A list Λ is an ordered set of 
elements Λ = (λ1, λ2, . . . , λk). The pop function 
extracts the first element of a list: pop (Λ) returns λ1 
and the list is modified to Λ = (λ2, . . . , λk). An empty 
list is denoted as Λ = (). 

Global-partitioning algorithm in [13] can be 
summarized as follows: 

 
function ΣΠ = FindAllMinimalSiphons(G) 
(ΣΠ, Pout) = SinglePlaceSiphons(G) 
Π = (G,φ , Pout) 
Λ = (Π) 
ΣΠ = ΣΠ ∪SolveList(Λ) 
 
function (ΣΠ, Pout) = SinglePlaceSiphons(G) 
ΣΠ =φ , P~ = P, Pout =φ  
while P~ ≠φ  
p = Get ( P~ ) 
  if •p =φ , then ΣΠ = ΣΠ∪{p}, Pout = Pout ∪{p} 
  endif 
P~ = P~ − {p} 
endwhile 
 
Function SinglePlaceSiphons is used to rule out 

siphons that are constituted by a single place, which 
is a minimal siphon. 

 
function ΣΠ = SolveList(Λ) 
ΣΠ =φ  
while Λ≠ () 
  Π= pop (Λ) 
  if ΣΠ =φ , then (S, Π) = FindSiphon(Π) 

else S = P 
endif 
if S≠φ , then 
  if S≠ Pin then S = FindMinimalSiphon(Π)  

endif 
ΣΠ = ΣΠ  {∪ S} 
Λ = ((Π), Λ) 
Λ = Partition (Λ, S) 
endif 

endwhile 
     

Function SolveList extracts the first problem in the 
list and searches for one generic siphon, subject to 
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the problem’s place constraints, by means of the 
FindSiphon function. 

 
function (S,Π′) = FindSiphon(Π) 
Π′ =Π 
isReducible =true 
while isReducible 
  if Pin ∩ Pout ≠φ , then S =φ , return 
  elseif Pin ∪Pout = P then 
    if •Pin ⊆  Pin• then S = Pin else S =φ , endif 
    return 
  endif 
  if Pout ≠φ , then G= red(G, P − Pout), Π′ = (G, Pin, 

φ ) 
  endif 
  (isReducible, Π′) = Reduce(Π′) 
endwhile 
S =P 
 
Function FindSiphon iteratively tests the 

conditions of Lemma 8 [13] for trivial solutions of 
the siphon search problem and if none is found, 
reduces the problem according to Lemma 9 by means 
of the function Reduce. 

 
function (isReducible, Π′) = Reduce(Π) 
Π′ =Π 
isReducible =true 
T = {t∈T, such that • t =φ }, P = T• 

T̂ = {t ∈ •Pin − Pin•, such that | • t| = 1}, P̂ = 
• T̂ ∩ (P − Pin) 

If P =φ  and P̂ =φ  then 
isReducible = false 
else Π′ = (G, Pin ∪ P̂ , Pout∪ P ) 
endif 
 
Function Reduce reduces the problem according to 

Lemma 9 [13] and returns a nonreducible siphon 
search problem and a siphon. 

 
function S = FindMinimalSiphon(Π) 
S = P, P~ = S −Pin 
while P~ ≠φ  

p = Get ( P~ ) 
  if (•t ∩ S) ⊃  {p} or t • ∩S =φ , ∀ t ∈ p• then S 

= S −{p} 
  endif 
  P~ = P~ − {p} 
endwhile 
P~  = S − Pin, P~ in =Pin 

while P~ ≠φ  

p = Get ( P~ ), G~ = red(G, S − {p}), Π~ = ( G~ , P~ ,φ ) 

( S~ , Π~ ) = FindSiphon( Π~ ) 

if S~ ≠φ  then S = S~ , P~  = S − P~ in, G = G~  

else P~ = P~ − {p}, P~ in = Pin  {∪ p} endif 
endwhile 
Function FindMinimalSiphon operates on a 

nonreducible siphon search problem, which admits at 
least one siphon, equal to the whole set of net places. 
Function Get returns an element of a set. 

 
function Λ~ = Partition(Λ, S) 
Λ~  = () 
while Λ = () 
  Π = pop (Λ) 
  P~ = S − Pin 

while P~ ≠φ  and Pout ∩ Pin = ∅ 
    p = Get ( P~ ) 
    Π = (G, Pin, Pout ∪ {p}) 
    (S, Π) = FindSiphon(Π) 
      If S≠φ  then Λ~ = ( Λ~ , (Π)) 

endif 
     P~ = P~ − {p}, Pin = Pin  {∪ p} 
    endwhile 
endwhile 
 
Function Partition applies Lemma 12[13] to 

decompose the current problem in order to exclude 
all the siphons that contain S from the solution sets of 
the generated subproblems. 
B. The Proposed Algorithm 

The proposed algorithm is listed below: 
 
function ΣΠ = FindMinimalSiphon(Π0) 
ΣΠ =φ  
Λ=φ  
(S, Π) = FindSiphon(Π) 
  If S≠φ  
  then S = FindMinimalSiphon(Π) 
  ΣΠ = ΣΠ  {∪ S} 
  Λ= (Λ, (Π, S)) 
  endif 
while(Λ≠φ ) 
(Π, S)= pop (Λ) 
p=Get(S) 
S=S-{p} 
  if S≠φ  then 
  Pin = Pin  {∪ p} 
  Λ= (Λ, (Π, S)) 
  endif 
Π = (G, Pin, Pout ∪ {p}) 
(S, Π) = FindSiphon(Π) 
  If S≠φ  then  
    If S≠ Pin then S = FindMinimalSiphon(Π) 
    endif 
    ΣΠ = ΣΠ  {∪ S} 
    Λ= (Λ, (Π, S)) 
  endif 
endwhile 
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We take a simple Petri net G as an example to 
illustrate the proposed algorithm. Consider a simple 
Petri net G in Fig.1, where P= {p1-p6} and T= {t1-t4}. 
G has three minimal siphons: S1= {p2, p4, p5, p6}, S2= 
{p3, p5}, S3= {p1, p2}. The tree obtained by the 
proposed algorithm is shown as in Fig.2, which is the 
same as the tree obtained by Cordone’s algorithm 
[13]. 

The problem and the number of problems can be 
obtained based on the proposed algorithm in the 
paper, which are shown in Table 1. 

 
 

Figure 1. A Petri net G 

φ φ φ φ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
=

−=

}6,5,4,2{1

}61{

ppppS
Pin

ppP
φ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
=

=

}5,3{2

}5,3{

ppS
Pin

ppP
φ

⎥
⎦

⎤
⎢
⎣

⎡
=

−=
}2{

}6,5,31{
pPin

ppppP
⎥
⎦

⎤
⎢
⎣

⎡
=

=
}4,2{

}2,1{
ppPin

ppP

⎥
⎦

⎤
⎢
⎣

⎡
=

=
}5,4,2{

}5,4,3,2,1{
pppPin

pppppP

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
=

=

}2,1{3
}2{

}2,1{

ppS
pPin

ppP ⎥
⎦

⎤
⎢
⎣

⎡
=

=
}3,2{

}2,1{
ppPin

ppP

φ φ φ φ  
 

Figure 2. A tree obtained by the proposed algorithm 

TABLE I.  

PROBLEM LIST AND NUMBER OF PROBLEMS IN THE LIST 

problem list # of problem 
Λ=(Π0) 1 

Λ= (Π0, Π1) 2 
Λ= (Π0, Π2) 1 

Λ= (Π0, Π2, Π21) 3 
Λ= (Π0, Π2, Π22) 3 
Λ= (Π0, Π4) 2 
Λ= ( ) 2 

 
According to the proposed algorithm, we can easily 

have the following results. 

Theorem 1: Let G = (P, T, F) be a PN and Π0 = (G, 
φ , φ ) be the associated problem of finding all 
minimal siphons. Then, if either the proposed method 
or global partitioning algorithm is applied to solve Π0, 
all minimal siphons of G are returned by the 
algorithm. 

Proof: Similar to the proof in [13]. 
Theorem 2: Let G = (P, T, F) be a PN and Π0 = (G, 

φ , φ ) be the associated problem of finding all 
minimal siphons. Then, if either the proposed method 
or global partitioning algorithm is applied to solve Π0, 
the algorithm will not return any non-minimal 
siphons of G. 

Proof: Similar to the proof in [13]. 
Theorem 3: The maximum number of problems in the 

list does not exceed the number of minimal siphons. 
Theorem 4: The maximum number of problems in 

the list is not more than the number of problem 
decomposition layer minus 1. 

Theorem 5: The number of minimal siphons is 
equal to the number of problem decomposition layer 
minus 1. 

Proof: The proof of Theorem 3 to Theorem 5 is 
obvious according to the proposed algorithm. 

The global partitioning algorithm is based on breadth-
first search. According to Theorem 1 and Theorem 2, if 
the global partitioning algorithm is applied to solve Π0, 
all minimal siphons of G are returned by the algorithm. 
The proposed algorithm is based on depth-first search. 
According to Theorem 1 and Theorem 2, if the proposed 
algorithm is applied to solve Π0, all minimal siphons of G 
are returned by the algorithm. 

IV. ILLUSTRATIVE EXAMPLE AND COMPARISON WITH 
CORDONE’S ALGORITHM 

First, a Petri net that has 36 places and 30 transitions is 
taken as an example[12] to be used to illustrate the 
difference between the two algorithms about requirement 
of computer memory in the course of computing minimal 
siphons. In Fig.3 (a), the requirement of computer 
memory is from 1.37 GB to 1.58 GB. In Fig.3 (b), the 
requirement of computer memory remains always 1.37 
GB. The result indicates that the developed program 
based on the proposed algorithm takes up a relatively 
small computer memory. 

 
Figure 3. (a) Requirement of computer memory based on 

Cordone’s algorithm 
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(b) Requirement of computer memory based on the proposed algorithm 

Then consider an example [12] of a Petri net with 
86 places and 70 transitions. In Fig.4 (a), the 
requirement of computer memory is from 1.15 GB to 
2.88 GB. The computer memory is nearly full at 107th 

seconds and the developed program based on 
Cordone’s algorithm stops running automatically. In 
Fig.4 (b), the requirements of computer memory 
remains always 1.15 GB and the developed program 
based on the proposed algorithm has been running. 

 
Figure 4. (a) Requirement of computer memory based on 

Cordone’s algorithm 

     
(b) Requirement of computer memory based on the proposed 

algorithm 

Note that the computation above is carried out on a 
2.9-GHz Pentium-III computer with 4-GB memory 
under Windows 7 operating system. 

We know that the computer memory size which the 
developed program occupied depends on the number 
of problems that need to continue to be decomposed 
within the problem list. Similarly, the maximum 
requirement of computer memory depends on the 
maximum number of problems within the list. 

Clearly, in Fig.4 (a), with the expansion of the size of 
the Petri net, the number of problems will increase 
exponentially and be far greater than the number of 
minimal siphons. Then, the more requirement of 
computer memory will be needed. Eventually, computer 
memory will be nearly full and the developed program 
will stop running. But, in Fig.4 (b), with the expansion of 
the size of the Petri net, the number of problems will be 
mutative within a certain range and does not exceed the 
number of minimal siphons. Moreover, the requirement 
of computer memory remains always constant. We can 
see that the superiority of the proposed algorithm that can 
greatly reduce the number of problems within the 
problem list is obvious. Moreover, with the expansion of 
the size of the Petri net, this superiority is more and more 
obvious. 

V.CONCLUION 

It is well know that deadlock problem [15]-[24] is 
related to minimal siphons. In the paper, a new algorithm 
based on depth-first search of problem decomposition 
process is proposed to compute all minimal siphons for 
an ordinary Petri net. Comparison with Cordone’s 
algorithm, the proposed algorithm can solve the problem 
of excessive requirement for computer memory in the 
course of computing all minimal siphons and decrease 
requirement of computer memory. Future work includes 
extending this algorithm to improve computation minimal 
siphon efficiency for ordinary Petri net. 
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