
Efficient Method for Mining Patterns from
Highly Similar and Dense Database based on

Prefix-Frequent-Items

Meng Han1,2，Zhihai Wang1, Jidong Yuan1
1School of Computer and Information Technology

 Beijing Jiaotong University, Beijing, 100044, P.R. China
2School of Computer Science and Engineering

Beifang University of Nationalities, Yinchuan, 750021, P.R. China
Email: compute2006_2@126.com

Abstract—In recent years, there are a great deal of efforts
on sequential pattern mining, but some challenges have not
been resolved, such as large search spaces and the
ineffectiveness in handling highly similar, dense and long
sequences. This paper mainly focuses on how to design some
effective search space pruning methods to accelerate the
mining process. We present a novel structure, Prefix-
Frequent-Items Graph (PFI-Graph), which presents the
prefix frequent items of other items in sequential patterns.
An efficient algorithm PFI-PrefixSpan (Prefix-Frequent-
Items PrefixSpan) based on PFI-Graph is proposed in this
paper. It avoids redundant data scanning, and thus can
effectively speed up the discovery process of new patterns.
Extensive experimental results on some synthetic and real
sequence datasets show that the proposed novel structure is
substantially more efficient than PrefixSpan with physical-
projection and pseudo-projection, especially for dense and
highly similar sequence databases.

Index Terms—sequential pattern mining; dense database;
highly similar sequence; long sequence; prefix frequent
items

I. INTRODUCTION

Sequential pattern mining discovers frequent
subsequences as patterns in a sequence database, and the
subsequences whose occurrence frequency in the set of
sequences is no less than minimum support threshold
(called min_sup). It is an important data mining problem
with broad applications [1-4], including the analysis of
customer purchase patterns or Web access patterns[5,6],
the analysis of sequencing or time related processes such
as scientific experiments, natural disasters, and disease
treatments [7,8], the analysis of DNA sequences [9-12]
and so on.

Many previous studies have contributed to the efficient
mining of long sequence. Algorithms SPAM [13] and
LAPIN [14] with sequence-extended sequence and

itemset-extended sequence, FP-growth [15] with FP-tree
and PrefixSpan [1] with projection-based are efficient for
mining long sequence. Some studies contributed to
mining highly similar sequence, such as SeqBDD [16]
with binary decision diagram.

In this paper, we present an efficient method of dense
and highly similar sequential pattern mining called PFI-
PrefixSpan (Prefix Frequent Items based PrefixSpan). It
is based on the Prefix-Frequent-Items Graph (PFI-Graph)
which is used to assist in early pruning and avoid
duplicated projections. FPI-Graph is a directed acyclic
graph and presents the prefix frequent items of other
items in sequential patterns. This novel algorithm can
reduce the scale of projected databases and the time of
building projected databases through adding the pruning
steps and reducing the scanning of certain specific
sequential patterns production.

The rest of this paper is organized as follows: Section
2 reviews PrefixSpan algorithm. Section 3 discusses the
novel structure: PFI-Graph and the algorithm PFI-
PrefixSpan. Section 4 shows the experimental results of
sequential pattern mining. Finally, the conclusion is
provided in Section 5.

II. PREFIXSPAN ALGORITHM

The key advantage of PrefixSpan, an algorithm that
examines the prefix subsequences and projects only their
corresponding suffix subsequences into projected
databases, is that it does not generate any candidates and
only counts the frequency of local items. It utilizes a
divide-and-conquer framework by creating subsets of
sequential patterns that can be further divided when
necessary [19].

TABLE I.
A SEQUENCE DATABASE

Sequence id Sequence
10 (1)(1 2 3)(1 3)(4)(3)
20 (1 4)(3)(2 3)(1 5)
30 (5)(1 2)(4)(3)(2)
40 (5)(1)(3)(2)(3)

Project supported by Fundamental Research Funds for the Central
Universities (No. 2013YJS032), Scientific Research Funds for the
Ningxia Universities (No. NGY2013094), and Beijing Natural Science
Foundation (No. 4142042).

2080 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.8.2080-2086

TABLE II.
PROJECTED DATABASE AND SEQUENTIAL PATTERNS

prefix projected
database
<sequenceid:
sequence>

pseudoprojected
database
<sequenceid:
index_position>

pseudoprojected
database
<sequenceid,
index_elements>

sequential patterns

1 10: (1 2 3)(1
3)(4)(3),
10: (_2 3)(1
3)(4)(3),
10: (_3)(4)(3),
20: (_4)(3)(2
3)
20: (1 5),
20: (_5),
30:
(_2)(4)(3)(2),
40: (3)(2)(3)

10: 1, 2, 5
20: 1, 6
30: 2
40: 2

10: 0, 1, 2
20: 0, 3
30: 1
40: 1

(1), (1 2), (1 2)(3),
(1 2)(4),
(1)(2), (1)(2 3),
(1)(3),
(1)(1), (1)(4), (1
2)(4)(3),
(1)(2 3)(1),
(1)(2)(3),
(1)(2)(1), (1)(4)(3),
(1)(3)(2),(1)(3)(3),
(1)(3)(1)

2 10: (_3)(1
3)(4)(3),
20: (_3)(1 5),
30: (4)(3)(2),
40: (3)

10: 3
20: 4
30: 3
40: 4

10: 1
20: 2
30: 1, 4
40: 3

(2), (2 3), (2 3)(1),
(2)(3), (2)(1),
(2)(4),
(2)(4)(3)

3 10: (1 3)(4)(3),
10: (4)(3),
20: (2 3)(1 5),
20: (1 5),
30 :(2),
40: (2)(3)

10: 4, 6
20: 3, 5
30: 5
40: 3

10: 1, 2
20: 1, 2
30: 3
40: 2

(3), (3)(2), (3)(3),
(3)(1)

4 10: (3),
20: (3)(2 3)(1
5),
30: (3)(2)

10: 7
20: 2
30: 4

10: 3
20: 0
30: 2

(4), (4)(2), (4)(3),
(4)(3)(2)

5 30: (1
2)(4)(3)(2),
40:
(1)(3)(2)(3)

30: 1
40: 1

30: 0
40: 0

(5), (5)(2), (5)(3),
(5)(1),
(5)(2)(3), (5)(3)(2),
(5)(1)(2), (5)(1)(3),
(5)(1)(3)(2)

The major consuming of PrefixSpan is database

projection, and the technique to reduce the size of
projected databases is pseudo projection [1]. The idea is
outlined as follows: instead of performing physical
projection, one can register the index of the
corresponding sequence and the starting position of the
projected suffix in the sequence. Pseudo projection
reduces the consuming of projection substantially when
the projected database can fit in main memory.

Instead of registering the index of the starting position
of the projected suffix in the sequence, we register the
index of the transactions (elements or events) in the
sequence. Our experiment has shown that it is faster than
the former method in finding the position. The two ways
to register the index are shown in Table 2, column 3 and
4.

For example, suppose the sequence database S is given
in Table 1 and min_sup=50% (0.5). The projection
databases and the sequential patterns are shown in Table
2. There are 53 patterns, including 4 length-1 patterns, 25
length-2 patterns, 18 length-3 patterns and 2 length-4
patterns. The first column is physical projected database,
whose two elements are sequence_id and suffix sequence.
For example, in the first row 10: (1 2 3)(1 3)(4)(3), the
sequence_id is 10, and the suffix projected sequence of
prefix 1 (the first item 1 in sequence_id 10 in initial
database) is (1 2 3)(1 3)(4)(3). The second row 10: (_2
3)(1 3)(4)(3) is the suffix projected sequence of prefix 1,
which is the second item 1 in sequence_id 10 in initial
database and the first item in second transaction. The
second column is pseudo projected database, whose two
elements are sequence_id and index_position. The
index_position is the index of the starting position of the
projected suffix in the sequence. For example, there are 3
physical suffix projected sequences of prefix 1 and
sequence_id 10, and the start position in sequence_id are

1(position of the first item 1 is 0), 2(position of the
second item 1 is 1) and 5(position of the third item 1 is 4).
The value 10: 0, 1, 2 in column 3 means that the index of
the transaction of the projected suffix sequence 10 are 0
(including the first item 1), 1(including the second item 1)
and 2(including the third item 1). The fourth column is
the sequential patterns of different prefixes.

III. NOVEL ALGORITHM

Although the efficiency of PrefixSpan algorithm is
high, it still can be further improved in some respects.
PrefixSpan algorithm constructs a projected database for
each frequent pattern, and therefore there are a large
number of projections when the frequent patterns are
huge. We find that PrefixSpan algorithm may generate
duplicated projections in the process of mining [18]. In
order to reduce the size of projected databases and reduce
memory consuming, Pei presented the pseudo projection
[1], but the counts of projected is still huge. Therefore,
we find some measures to reduce the reconstruction of
the projection database, aiming to reduce the runtime and
memory usage.

After finding a local frequent item, the PrefixSpan
algorithm constructs a sequential pattern and a projected
database. But when the size of projected database is
lower than minimum support, it is useless to construct the
projected database. Therefore, before the projected
database is created, we should test its size at first.

Figure 1. Some candidates and sequential patterns with

prefix (1) and (3)

We also find some replicated projected database, as
shown in Table 2 and Figure 1. For example, the
sequential patterns which begin with prefix (1) and the
second item is (3) are: (1)(3), (1)(3)(2), (1)(3)(3),
(1)(3)(1). Whereas the sequential patterns begin with
prefix (3) are: (3), (3)(2), (3)(3), (3)(1). Therefore, the
proceedings to find patterns (1)(3), (1)(3)(2), (1)(3)(3),
(1)(3)(1) are duplicated work to find patterns (3), (3)(2),
(3)(3), (3)(1). We call the item (1) is the Prefix Frequent
Items (PFI) of item (3), denoted as PFI(3)={1}. We also
find that the sequential patterns beginning with prefix (5)
and the second item (3) are duplicated of the patterns
beginning with (5) and the second item (1). For example,
(5)(3), (5)(3)(2), and (5)(1)(3), (5)(1)(3)(2). Because
finding all the local Prefix Frequent Items of all items
consume much time, we just consider the PFI of length-1
patterns.

Definition 1 (PFI). Given a length-1 pattern α, βi is a
frequent item that appears in the prefix of α in some
sequences. The counts(βi) is the number of sequences in
which βi appears before α. If counts(βi)=support(α), then
βi is one element of Prefix Frequent Items of α, denoted
as PFI(α)={β1,…,βi,…, βk}.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2081

© 2014 ACADEMY PUBLISHER

Definition 2 (CountsPFI). The number of elements in
PFI(α) is called CountsPFI(α). The sum of all
CountsPFI(αi) is denoted as CountsPFI.

The major cost of PrefixSpan is the construction of
projected databases. We give two ways to improve: (1)
before the projected databases are constructed, adding the
pruning step. Do not scan projected database when the
projection sequence number is less than min_sup; (2) do
not generate and scan the projected databases to some
specific sequential patterns. For example, given a pattern
α, if PFI(α)={β1,…,βi,…, βk} is not null, then do not
generate and scan the projected datasets when the
prefixes belong to prefix set {(β1)(α), ..., (βk)(α)}.
Generate the sequential patterns with regards to prefix (α),
and at the same time generate the patterns with regards to
prefix set {(β1)(α), ..., (βk)(α)}. For example, we know
that item (1) belong to PFI(3), then we do not build
projected database with regards to prefix (1)(3). We
generate the patterns with regards to prefix (1)(3) until
patterns with regards to prefix (3) generated, by adding
item (1) to the beginning of patterns (3)(…) to generate
(1)(3)(…). Therefore, our works aim to find out the
PFI(αk) of all 1-length pattern αk.

We can see that, large CountsPFI means more
duplicated works in generating patterns. Therefore, we
can reduce runtime and memory usage by avoiding these
works.

Definition 3 (FromPattern). If β belongs to Prefix
Frequent Items of α, then β is a FromPattern of α, that is
β∈FromPattern(α). If γ belongs to Prefix Frequent Items
of β, then (γ)(β) is a FromPattern of α, that is
(γ)(β)∈FromPattern(α). And so on, until no new Prefix
Frequent Items are found. The FromPattern of α is
denoted as FromPattern(α)={(β), (γ)(β), (ξ)(γ)(β), …}.

Definition 4 (ToPattern). If α belongs to Prefix
Frequent Items of β, then β is the ToPattern of α, so
β∈ToPattern(α), denoted as ToPattern(α)={(β), …}.

Figure 2. The PFI-Graph of data set new_orleans

PFI-Graph is a directed acyclic graph, and it records
CountsPFI(α) as weight of each node α. Node in the
graph is an item in sequential pattern which has
FromPattern or ToPattern , as shown in Figure 2. The
PFI-Graph of dataset new_orleans is shown in Figure 2,
and the root of the graph is Φ. The weight of a node
(denoted as α) is the CountsPFI(α), while its children
nodes are items in ToPattern(α), and its parent nodes are
items in FromPattern(α).

Figure 3. The FromPattern tree on data new_orleans

Take node (63) in Figure 2 as an example. The PFI of
item (63) are (157) and (158), that is PFI(63)= {(157),
(158)}. The weight or CountsPFI(63) of node (63) is 3.
Here,3 is understood as 2+1, while 2 refers to the item
number in PFI(63) and 1 refers to the item number in
PFI(158). Meanwhile, (158) is the parent of (63). There
are 3 links pointing to node (63) in the graph, and they
are 157-->63, 158-->63 and 157-->158-->63. So the
FromPattern(63)={(157), (158), (157)(158)} and
ToPattern(63)=null. Node (56) has FromPattern and
ToPattern, the FromPattern(56)={(78), (208)} and
ToPattern(56)={(170)}. The (170) is the most complex
node in Figure 2, and PFI(170)={(78), (56), (208)}.
There are 7 links pointing to node (170) in the graph: 7 is
equal to 3+3+1, the first value 3 refers to the item number
in PFI(170), the second value 3 refers to the item number
in PFI(56) and value 1 refers to the item number in
PFI(208). Seven links pointing to (170) are: 157-->170,
56-->170, 208-->170, 157-->56 -->170, 157-->208-->170,
208-->56-->=70, and 157-->208 -->56-->170. It is clear
that the FromPattern(170)= {(157), (56), (208), (157)(56),

(157)(208), (208)(56), (157)(208)(56)} and ToPattern
(170)=null. Therefore, when we scan the projected
databases of prefix (170) and generate some sequential
patterns (170)(αi), we can generate some more patterns,
such as:

(157)(170)(αi), (56)(170)(αi), (208)(170)(αi),
(157)(56)(170)(αi),
(157)(208)(170)(αi),
(208)(56)(170)(αi),
(157)(208)(56)(170)(αi).

Referring to the Figure 2, we can build a FromPattern
tree on data new_orleans, as shown in Figure 3. The root
node is Φ. Recursively, if (α) is a node in the tree, then its
children are all nodes (α’) such that (α’)=(β)(α) and
β∈FromPattern(α).

Based on the concepts of PFI, FromPattern and
ToPattern, algorithm Prefix Frequent Items Prefix- Span
(PFI-PrefixSpan) can be described as follows. There are
two works to do in the novel algorithm, the first one is to
build the PFI-Graph, in order to find all the

2082 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

FromPattern(α) and ToPattern(α) (α∈PFI-Graph). The
second one is to generate sequential patterns.

Algorithm PFI-PrefixSpan (PrefixSpan based on
prefix frequent items)

Input: A sequence database S, and the minimum
support threshold min_sup.
Output: The complete set of sequential patterns
Method 1: Call PFI-PrefixSpan (S).

The parameters S is the sequence database S.
Steps:

1. Scan S once, find all length-1 patterns α1, …, αN.
2. Scan S again, find all PFI(αi) (i=1,…,N) and build

PFI-Graph G.
3. For each αi
(a) Refer to G, find out ToPattern(αi) (i=1,…,N) and

FromPattern(αi) (i=1,…,N).
(b) Call PrefixSpan(αi, l, S|αi, ToPattern(αi), From-

Pattern(αi)).
Method 2: Call PrefixSpan(α, l, S|α, ToPattern, From-
Pattern).

The parameters are (a) α is a sequential pattern; (b) l is
the length of α; and (c) S|α is the α-projected database; (d)
when l=1, ToPattern is the ToPattern(α), otherwise
ToPattern is null. (e) FromPattern is the FromPattern(α).
Steps:

1. Scan S|α once, find each frequent item, b.
2. For each frequent item b,
(a) append b to α to from a sequential pattern α’, and

output a’;
(b) If FromPattern(α)≠null.
For each βi∈FromPattern(α), append βi to α’ to

from sequential patterns αi’’, and output αi’’;
(c) If b∈ToPattern(α), then stop, go to next b.
3. For each α’, construct α’-projected database S|α’,

and call PrefixSpan(a’, l+1, S|a’, null, FromPattern).
There are two problems in the algorithm PFI-

PrefixSpan. The first one is if βi∈From Pattern(α) and
γj∈FromPattern(βi), then it is needed to add all γj to αi’’.
It is a chain that γj-->βi-->α’, and so on, until there is no
new FromPattern in the chain. We can get the chain from
the PFI-Graph G. The second one is the new algorithm
reduce the runtime and memory usage of constructing
projected database than PrefixSpan, but adding the
additional consuming of building and searching PFI-
Graph.

IV. PERFORMANCE EVALUATION

In this chapter, we provide two experimental results.
The first one is using some synthetic datasets to compare
the performance of PrefixSpan with physical projection,
PrefixSpan with pseudo projection and PFI-PrefixSpan.
The purpose is to verify the performance of the second
and third algorithms are better than the first one. But the
PFI number in these synthetic datasets is small. Then we
use three real data sets which have dense and highly
similar sequences to compare pseudo projection
PrefixSpan with PFI-PrefixSpan, whereas these data sets
have big PFI number.

4.1 Test Environment and Data Sets
The experiments are performed on a 2.1 GHZ CUP

with 2GB memory, and running on Win7. All the
algorithms were coded in Java language. In our
performance study, we use two kinds of data sets:
synthetic data sets and real data sets. The synthetic data
sets are generated by a data generator similar in spirit to
the IBM data generator designed for testing sequential
pattern mining algorithms. The convention for the data
sets is as follows: C1N0.1T8S8 means that the data set
contains 1000 sequences and the number of different
items is 100. The average number of items in a
transaction is 8 and the average number of transactions in
sequence is 8.

Two real data sets new_york and new_orleans are from
UCI[19], and the number of sequence and the number of
average transactions in sequence are shown in Table 3.
These files are the data underlying the Entree system.

TABLE III.
DATA SETS

dataset #sequence #transactions/sequence

new_york 1200 8
new_orleans 327 11

4.2 Experimental Results
Firstly, we conducte our experiments of three

algorithms: (1) PrefixSpan with physical projection
(abbreviated as Phy-PrefixSpan), (2) PrefixSpan with
pseudo projection (abbreviated as Pseudo-PrefixSpan) and
(3) PrefixSpan with Prefix-Frequent-Items (PFI-Prefix-
Span) on two synthetic datasets.

The first test is on data set C1N0.1T8S8. The average
transactions number in sequence is 8, and the different
items is 100. The actual transactions number in sequence
is 7, so the distinct item recurrence rate or density [14]
m=average sequence length/different items =8/100=0.08
(or 0.07).

The memory usages of the three algorithms are shown
in the Figure 4. The support thresholds are from 0.063 to
0.075, and the CountsPFI are 2 and 3. It makes clear
distinction among three algorithms, and the memory usage
of Pseudo-PrefixSpan is about 38% lower than Phy-
PrefixSpan. Memory usage of PFI-PrefixSpan is
significantly lower than the former two algorithms when
min_sup is lower than 0.07. Figure 5 shows the processing
time of the three algorithms at different support thresholds
on data set C1N0.1T8S8. But the runtime of Pseudo-
PrefixSpan and PFI-PrefixSpan is higher than Phy-
PrefixSpan. The reason is that the time consumed for
navigating from the pseudo location to physical location
and build PFI-Graph is more than the time saved by using
PFI-Graph. Figure 6 shows the distributions of frequent
sequences, the length of frequent patterns is from 1 to 6
and length 3 and 4 patterns are the highest.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2083

© 2014 ACADEMY PUBLISHER

Figure 4. Memory usage of three algorithms on C1N0.1T8S8

Figure 5. Runtime of of three algorithms on data set C1N0.1T8S8

Figure 6. Distribution of frequent sequences of C1N0.1T8S8

Figure 7. Runtime of of three algorithms on C1N0.1T8S10

Figure 8. Memory usage of of three algorithms on C1N0.1T8S10

Figure 9. Distribution of frequent sequences of C1N0.1T8S10

The second test is on the data set C1N0.1T8S10, which
contains 1000 sequences and the different items is 100
too. The average number of items in a transaction is 8 and
the average number of transactions in a sequence is 10.
The actual transactions number in sequence is 9, so the
distinct item recurrence rate is 0.1 (or 0.09). It is denser
than C1N0.1T8S8.

Figure 7 shows the runtime of the three algorithms at
support thresholds from 0.1 to 0.12, and the CountsPFI is
4. On average, the runtime of Pseudo-PrefixSpan is about
16% lower than Phy- PrefixSpan, and PFI-PrefixSpan is
about 20% lower than the Phy-PrefixSpan. The memory
usage is shown in Figure 8, and both of PFI-PrefixSpan
and Pseudo-PrefixSpan are about 12% lower than Phy-
PrefixSpan. Figure 9 shows the distributions of frequent
sequences. The length of frequent patterns is from 1 to 7,
and length 4 pattern is the highest.

It can be seen from the experimental results that, the
memory usage of Pseudo-PrefixSpan and PFI-PrefixSpan
are significantly lower than Phy- PrefixSpan. But the
performance of Pseudo-Prefix- Span and PFI-PrefixSpan
is not very different. The reason is the small CountsPFI
of synthetic data sets. We also tried other data sets, such
as CXN0.03S8T20, CXN0.05S8T20, CXN0.03S8T30
and so on, but the CountsPFI is still less than 8, even
when the sequence number meet the minimum support as
low as 10.

TABLE IV.
SOME INFORMATION OF NEW_ORLEANS

min_sup #patterns #CountsPFI
0.13 246 7
0.12 279 7
0.11 366 9
0.1 452 11
0.09 536 11
0.08 677 11
0.07 949 14

Secondly, we make experiments of Pseudo-PrefixSpan
and PFI-PrefixSpan on three real sequence databases, in
order to verify that PrefixSpan with PFI-Graph performs
better than PrefixSpan. Both of these algorithms use
pseudo projection. The character of these data sets is
highly similar items, whereas the CountsPFI is big.

The first test real data set is new_orleans, the number
of sequence is 327 and the average number of
transactions in a sequence is 11. There is one item of a
transaction. As it is shown in Table 4, the CountsPFI is
from 7 to 14 and ascending when the min_sup decreasing.
Therefore, more duplicated work can be reduced with
small min_sup.

Figures 10 to 12 show the runtime, memory usage and
frequent sequence length of PrefixSpan and PFI-
PrefixSpan on data set new_orleans. Figure 10 shows the
runtime of two algorithms at different support thresholds,
and the runtime of PFI- PrefixSpan is 13.1% lower than
PrefixSpan. We can see that the distance between the two
broken lines is almost steadily, therefore the advantages
of the new algorithm is stable. The memory usage of two
algorithms on new_orleans is shown in Figure 11. It is
clear that the memory usage of PFI-PrefixSpan is reduced
by 5.5% than PrefixSpan on average. When minimum
support is 0.1, PFI-PrefixSpan reduces memory
consumption by 10% than PrefixSpan. Figure 12 shows
the distribution of frequent sequences of data set
new_orleans, from which we can see that the length-3
pattern is the largest number of frequent pattern, and the 3,

2084 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

is about 27.3% (that is 3/11) of average sequence length
11.

From the Figures 10 to 12, we can assume that runtime
and memory usage of PFI-PrefixSpan algorithm is lower
than PrefixSpan when the minimum support is low. But if
the minimum support is too low, the memory usage of
PFI-PrefixSpan is bigger than PrefixSpan. For example,
suppose the min_sup is 0.02, the number of sequences is
7, and the CountsPFI grows up to 34. Runtime of PFI-
PrefixSpan is about 13% lower than the PrefixSpan. But
the memory usage of the new algorithm is 6% higher than
the old one. The reason is that the memory consumed to
store and search PFI-Graph is increasing too much.

TABLE V.
SOME INFORMATION OF NEW_YORK

min_sup #patterns #CountsPFI
0.06 138 10
0.055 154 10
0.05 197 10
0.045 236 10
0.04 283 10
0.035 351 10
0.03 495 11

The second test is performed on the data set new_york.
Sequence number of new_york is 1200, and average
number of transactions in sequence is 8. Some
information is shown in Table 5, the min_sup is from
0.03 to 0.06 and the CountsPFI values are 10 and 11.
When min_sup is 0.11, the CountsPFI is 9. Therefore, the
CountsPFI is around 10 when min_sup less than 0.1.

The runtime of PFI_PrefixSpan and PrefixSpan on data
set new_york is shown in Figure 13. From this figure, we
can see the average runtime of novel algorithm is about
7% lower than PrefixSpan. The distance between the two
broken lines is almost steady. Figure 14 shows that when
the min_sup are 0.04 and 0.035, the memory usage of
PFI-PrefixSpan are 12% and 11.2% lower than
PrefixSpan. On average, the memory usage of novel
algorithm is 7% lower than PrefixSpan. Figure 15 shows
the distribution of frequent sequences of data set
new_york. We can see that the length 2 and 3 patterns are
the largest number in all frequent patterns, and the length
2 is about 25% (that is 2/8) of average sequence length 8.

From the experiment results on synthetic data sets and
real datasets we conclude that:

(1) PrefixSpan with pseudo projection algorithm uses
lower memory usage than PrefixSpan with physical
projection, especially in large sequence databases.

(2) Compared with Pseudo-PrefixSpan and Phy-
PrefixSpan, novel algorithm PFI-PrefixSpan based on
PFI-Graph can reduce the memory usage and the runtime.

(3) PFI-PrefixSpan applies to highly similar and dense
database.

(4) It is difficult to build PFI-Graph in large sequence
database, because the PFI is small and it only exists in
very low minimum support. For example, when the
min_sup=0.0005, the CountsPFI of data sets
C10N0.1T2.5S10, C10N0.1T8S8, C10N0.1T8 S10,

C10N0.05T8S8, C100N0.1T2.5S10, C100N0.1 T8S8 is 0.
When the min_sup is 0.0001 and the number of sequence
is 10, the CountsPFI of C100N0.1T2.5S10 and
C100N0.1T8S8 is only 3.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.13 0.12 0.11 0.1 0.09 0.08 0.07

ru
nt
im

e(
s)

support threshold

PrefixSpan

PFI_PrefixSpan

Figure 10. Performance of the algorithms on data set new_orleans

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

0.13 0.12 0.11 0.1 0.09 0.08 0.07

m
em

or
y u

se
ag
e(
m
bs
)

support shreshold

PrefixSpan

PFI_PrefixSpan

Figure 11. Memory usage comparison among the algorithms on data set

new_orleans

1

10

100

1000

1 2 3 4 5 6

nu
m
be

r o
f f
re
qu

en
t s

eq
ue

nc
es

length of frequent sequences

0.13

0.12

0.11

0.1

0.09

0.08

0.07

Figure 12. Distribution of frequent sequences of new_orleans

1.5

2

2.5

3

3.5

4

4.5

5

0.06 0.055 0.05 0.045 0.04 0.035 0.03

ru
nt
im

e(
s)

support threshold

PrefixSpan

PFI‐PrefixSpan

Figure 13. Performance of the algorithms on data set new_york

Figure 14. Memory usage comparison among the algorithms on data set

new_york

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2085

© 2014 ACADEMY PUBLISHER

Figure 15. Distribution of frequent sequences of new_york

Ⅴ. CONCLUSION

In order to improve the efficiency of sequential pattern
mining on dense and highly similar sequence database, a
novel algorithm PFI-PrefixSpan is provided in this paper.
It is based on Prefix Frequent Items Graph (PFI-Graph)
and it works quite well in the experiments. The memory
usage and runtime of novel algorithm are about 25% and
20% less than PrefixSpan with physical projection (Phy-
PrefixSpan) on average, respectively. It reduces about
10% runtime and 6% memory usage than PrefixSpan
with pseudo projection (Pseudo-PrefixSpan) on given real
datasets, respectively.

The novel algorithm is based on the Prefix Frequent
Items (PFI) and PFI-Graph, and it checks weather the
efforts for building a projected database is duplicated
ones to others. So, the main idea of the novel algorithm is
to avoid the duplicated projected database.

Some experiments in this paper verify that this
algorithm is suitable for highly similar and dense
sequence databases. But it is difficult to build PFI-Graph
in large and sparse database.

REFERENCES

[1] Pei J and Wang J Y et al, “Mining sequential patterns by
pattern-growth: The prefixspan approach,” IEEE
Transactions On Knowledge And Data Engineering, 2004,
16(1):1-17.

[2] Huang T C K, “Knowledge gathering of fuzzy multi-time-
interval sequential patterns. Information Sciences,” 2010,
180(1): 3316-3334.

[3] Padmaja P, Jyothi P N, and Bharagava M, “Recursive
prefix suffix pattern detection approach for mining
sequential patterns,” International Journal of Computer
Applications, 2011, 29(3): 50-53.

[4] Yang S Y, Chao C M, and Chen P Z et al, “Incremental
mining of across-streams sequential patterns in multiple
data streams,” Journal of Computers, 2011, 6(3): 449-457.

[5] Ezeife C I, and Liu Y, “Fast incremental mining of web
sequential patterns with PLWAP tree,” Data Ming and
Knowledge Discovery, 2009, 19(2): 376-416.

[6] Vasumathi D, and Govardhan A, “BC-WASPT : Web
access sequential pattern tree mining,” International
Journal of Computer Science and Network Security, 2009,
9(6): 288-293.

[7] Sartipi K, and Safyallah H, “Dynamic knowledge
extraction from software systems using sequential pattern
mining,” International Journal of Software Engineering
and Knowledge Engineering, 2009, 20(5): 1-22.

[8] Todaro M A, Kanneby T, Zotto M D, and Jondelius U.
Phylogeny of Thaumastodermatidae (gastrotricha:

macrodasyida) inferred from nuclear and mitochondrial.
PlosOne, 2011, 6(3): 1-13.

[9] Alves R, Rodriguez-Baena D S, and Aguilar-Ruiz J S,
“Gene association analysis: a survey of frequent pattern
mining from gene expression data,” Briefings in
Bioinformatics, 2010, 11(2): 210-224.

[10] Ahmed C F, Tanbeer S K, and Jeong B S, “A novel
approach for mining high-utility sequential patterns in
sequence databases,” ETRI Journal, 2010, 32(5): 676-686.

[11] Exarchos T P, Papaloukas C, and Lampros C, “Mining
sequential patterns for protein fold recognition,” Journal of
Biomedical Informatics, 2008, 41(1): 165-179.

[12] Liu H , Jiang Z and Fang X et al, “Generate gene
expression profile from high-throughput sequencing data,”
Frontiers of Thematics in China, 2011, 6(6): 1131-1145.

[13] Ayres J, Gehrke J, Yiu T, and Flannick J, “Sequential
PAttern Mining using a bitmap representation,” In:
Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining
(KDD '02, NewYork), 2002: 429-435.

[14] Yang Z, Wang Y, and Kitsuregawa M, “LAPIN: effective
sequential pattern mining algorithms by last position
induction for dense databases,” In: Proceeding of the 12th
International Conference on Database Systems for
Advanced Applications(Bangkok, Thailand, DASFAA
2007), Springer-Verlag, Berlin, Heidelberg, Vol. 4443,
2007: 1020-1023.

[15] El-Sayed M, Ruiz C, and Rundensteiner E A, “FS-Miner:
Efficient and incremental mining of frequent sequence
patterns in web logs,” In Proceedings of the 6th Annual
ACM International Workshop on Web Information and
Data Management(ACM, New York), 2004: 128-135.

[16] Elsa Loekito E, Bailey J, and Pei J, “A binary decision
diagram based approach for mining frequent
subsequences,” Knowledge And Information Systems,
2009, 24(2): 235-268.

[17] Han J W, Cheng H , Xin D, and Yan X F, “Frequent
pattern mining: current status and future directions,” Data
Mining and Knowledge Discovery, 2007, 15(1):55-86.

[18] Zhu J, “An efficient method of web sequential pattern
mining based on session filter and transaction
identification,” Journal of Networks, 2010, 5(9): 1017-
1024.

[19] Frank, A., and Asuncion, A, UCI Machine Learning
Repository, http://archive.ics.uci.edu/ml. Irvine, CA:
University of California, School of Information and
Computer Science, 2010

Meng Han is currently a candidate of Ph.D. student in Beijing
Jiaotong University (Beijing, China), and also a lecturer in
Beifang University of Nationalities (Yinchuan, China). Her
research interests include data mining and machine learning.

Zhihai Wang received his PhD in Computer Science from
Hefei University of Technology in 1998. He is now a professor
in School of Computer and Information Technology, Beijing
Jiaotong University, Beijing, China. He has published dozens of
papers in international conferences and journals. His research
interest includes data mining and artificial intelligence.

Jidong Yuan is currently a candidate of Ph.D. student in
Beijing Jiaotong University (Beijing, China). His research
interests include machine learning and data mining.

2086 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

