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Abstract—In recent years, there are a great deal of efforts 
on sequential pattern mining, but some challenges have not 
been resolved, such as large search spaces and the 
ineffectiveness in handling highly similar, dense and long 
sequences. This paper mainly focuses on how to design some 
effective search space pruning methods to accelerate the 
mining process. We present a novel structure, Prefix-
Frequent-Items Graph (PFI-Graph), which presents the 
prefix frequent items of other items in sequential patterns. 
An efficient algorithm PFI-PrefixSpan (Prefix-Frequent- 
Items PrefixSpan) based on PFI-Graph is proposed in this 
paper. It avoids redundant data scanning, and thus can 
effectively speed up the discovery process of new patterns. 
Extensive experimental results on some synthetic and real 
sequence datasets show that the proposed novel structure is 
substantially more efficient than PrefixSpan with physical-
projection and pseudo-projection, especially for dense and 
highly similar sequence databases.  
 
Index Terms—sequential pattern mining; dense database; 
highly similar sequence; long sequence; prefix frequent 
items  

I.  INTRODUCTION 

Sequential pattern mining discovers frequent 
subsequences as patterns in a sequence database, and the 
subsequences whose occurrence frequency in the set of 
sequences is no less than minimum support threshold 
(called min_sup). It is an important data mining problem 
with broad applications [1-4], including the analysis of 
customer purchase patterns or Web access patterns[5,6], 
the analysis of sequencing or time related processes such 
as scientific experiments, natural disasters, and disease 
treatments [7,8], the analysis of DNA sequences [9-12] 
and so on. 

Many previous studies have contributed to the efficient 
mining of long sequence. Algorithms SPAM [13] and 
LAPIN [14] with sequence-extended sequence and 

itemset-extended sequence, FP-growth [15] with FP-tree 
and PrefixSpan [1] with projection-based are efficient for 
mining long sequence. Some studies contributed to 
mining highly similar sequence, such as SeqBDD [16] 
with binary decision diagram.  

In this paper, we present an efficient method of dense 
and highly similar sequential pattern mining called PFI-
PrefixSpan (Prefix Frequent Items based PrefixSpan). It 
is based on the Prefix-Frequent-Items Graph (PFI-Graph) 
which is used to assist in early pruning and avoid 
duplicated projections. FPI-Graph is a directed acyclic 
graph and presents the prefix frequent items of other 
items in sequential patterns. This novel algorithm can 
reduce the scale of projected databases and the time of 
building projected databases through adding the pruning 
steps and reducing the scanning of certain specific 
sequential patterns production.  

The rest of this paper is organized as follows: Section 
2 reviews PrefixSpan algorithm. Section 3 discusses the 
novel structure: PFI-Graph and the algorithm PFI-
PrefixSpan. Section 4 shows the experimental results of 
sequential pattern mining. Finally, the conclusion is 
provided in Section 5. 

II.  PREFIXSPAN ALGORITHM 

The key advantage of PrefixSpan, an algorithm that 
examines the prefix subsequences and projects only their 
corresponding suffix subsequences into projected 
databases, is that it does not generate any candidates and 
only counts the frequency of local items. It utilizes a 
divide-and-conquer framework by creating subsets of 
sequential patterns that can be further divided when 
necessary [19].  

TABLE I.   
A SEQUENCE DATABASE 

Sequence id Sequence 
10 (1)(1 2 3)(1 3)(4)(3) 
20 (1 4)(3)(2 3)(1 5) 
30 (5)(1 2)(4)(3)(2) 
40 (5)(1)(3)(2)(3) 
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TABLE II.   
PROJECTED DATABASE AND SEQUENTIAL PATTERNS 

prefix projected 
database 
<sequenceid: 
sequence> 

pseudoprojected 
database 
<sequenceid: 
index_position> 

pseudoprojected 
database 
<sequenceid, 
index_elements> 

sequential patterns 

1 10: (1 2 3)(1 
3)(4)(3), 
10: (_2 3)(1 
3)(4)(3), 
10: (_3)(4)(3),  
20: (_4)(3)(2 
3) 
20: (1 5),  
20: (_5), 
30: 
(_2)(4)(3)(2),  
40: (3)(2)(3) 

10: 1, 2, 5 
20: 1, 6 
30: 2 
40: 2 

10: 0, 1, 2 
20: 0, 3 
30: 1 
40: 1 

(1), (1 2), (1 2)(3), 
(1 2)(4), 
(1)(2), (1)(2 3), 
(1)(3), 
(1)(1), (1)(4), (1 
2)(4)(3),  
(1)(2 3)(1), 
(1)(2)(3),  
(1)(2)(1), (1)(4)(3), 
(1)(3)(2),(1)(3)(3), 
(1)(3)(1) 

2 10: (_3)(1 
3)(4)(3),  
20: (_3)(1 5),  
30: (4)(3)(2), 
40: (3) 

10: 3 
20: 4 
30: 3 
40: 4 

10: 1 
20: 2 
30: 1, 4 
40: 3 

(2), (2 3), (2 3)(1),  
(2)(3), (2)(1), 
(2)(4), 
(2)(4)(3) 

3 10: (1 3)(4)(3), 
10: (4)(3),  
20: (2 3)(1 5),  
20: (1 5), 
30 :(2), 
40: (2)(3) 

10: 4, 6 
20: 3, 5 
30: 5 
40: 3 

10: 1, 2 
20: 1, 2 
30: 3 
40: 2 

(3), (3)(2), (3)(3), 
(3)(1) 

4 10: (3), 
20: (3)(2 3)(1 
5),  
30: (3)(2) 

10: 7 
20: 2 
30: 4 

10: 3 
20: 0 
30: 2 

(4), (4)(2), (4)(3),  
(4)(3)(2) 

5 30: (1 
2)(4)(3)(2), 
40: 
(1)(3)(2)(3) 

30: 1 
40: 1 

30: 0 
40: 0 

(5), (5)(2), (5)(3), 
(5)(1), 
(5)(2)(3), (5)(3)(2), 
(5)(1)(2), (5)(1)(3), 
(5)(1)(3)(2) 

 
The major consuming of PrefixSpan is database 

projection, and the technique to reduce the size of 
projected databases is pseudo projection [1]. The idea is 
outlined as follows: instead of performing physical 
projection, one can register the index of the 
corresponding sequence and the starting position of the 
projected suffix in the sequence. Pseudo projection 
reduces the consuming of projection substantially when 
the projected database can fit in main memory. 

Instead of registering the index of the starting position 
of the projected suffix in the sequence, we register the 
index of the transactions (elements or events) in the 
sequence. Our experiment has shown that it is faster than 
the former method in finding the position. The two ways 
to register the index are shown in Table 2, column 3 and 
4. 

For example, suppose the sequence database S is given 
in Table 1 and min_sup=50% (0.5). The projection 
databases and the sequential patterns are shown in Table 
2. There are 53 patterns, including 4 length-1 patterns, 25 
length-2 patterns, 18 length-3 patterns and 2 length-4 
patterns. The first column is physical projected database, 
whose two elements are sequence_id and suffix sequence. 
For example, in the first row 10: (1 2 3)(1 3)(4)(3), the 
sequence_id is 10, and the suffix projected sequence of 
prefix 1 (the first item 1 in sequence_id 10 in initial 
database) is (1 2 3)(1 3)(4)(3). The second row 10: (_2 
3)(1 3)(4)(3) is the suffix projected sequence of prefix 1, 
which is the second item 1 in sequence_id 10 in initial 
database and the first item in second transaction. The 
second column is pseudo projected database, whose two 
elements are sequence_id and index_position. The 
index_position is the index of the starting position of the 
projected suffix in the sequence. For example, there are 3 
physical suffix projected sequences of prefix 1 and 
sequence_id 10, and the start position in sequence_id are 

1(position of the first item 1 is 0), 2(position of the 
second item 1 is 1) and 5(position of the third item 1 is 4). 
The value 10: 0, 1, 2 in column 3 means that the index of 
the transaction of the projected suffix sequence 10 are 0 
(including the first item 1), 1(including the second item 1) 
and 2(including the third item 1). The fourth column is 
the sequential patterns of different prefixes. 

III.  NOVEL ALGORITHM  

Although the efficiency of PrefixSpan algorithm is 
high, it still can be further improved in some respects. 
PrefixSpan algorithm constructs a projected database for 
each frequent pattern, and therefore there are a large 
number of projections when the frequent patterns are 
huge. We find that PrefixSpan algorithm may generate 
duplicated projections in the process of mining [18]. In 
order to reduce the size of projected databases and reduce 
memory consuming, Pei presented the pseudo projection 
[1], but the counts of projected is still huge. Therefore, 
we find some measures to reduce the reconstruction of 
the projection database, aiming to reduce the runtime and 
memory usage. 

After finding a local frequent item, the PrefixSpan 
algorithm constructs a sequential pattern and a projected 
database. But when the size of projected database is 
lower than minimum support, it is useless to construct the 
projected database. Therefore, before the projected 
database is created, we should test its size at first. 

 
Figure 1.  Some candidates and sequential patterns with 

prefix (1) and (3) 

We also find some replicated projected database, as 
shown in Table 2 and Figure 1. For example, the 
sequential patterns which begin with prefix (1) and the 
second item is (3) are: (1)(3), (1)(3)(2), (1)(3)(3), 
(1)(3)(1). Whereas the sequential patterns begin with 
prefix (3) are: (3), (3)(2), (3)(3), (3)(1). Therefore, the 
proceedings to find patterns (1)(3), (1)(3)(2), (1)(3)(3), 
(1)(3)(1) are duplicated work to find patterns (3), (3)(2), 
(3)(3), (3)(1). We call the item (1) is the Prefix Frequent 
Items (PFI) of item (3), denoted as PFI(3)={1}. We also 
find that the sequential patterns beginning with prefix (5) 
and the second item (3) are duplicated of the patterns 
beginning with (5) and the second item (1). For example, 
(5)(3), (5)(3)(2), and (5)(1)(3), (5)(1)(3)(2). Because 
finding all the local Prefix Frequent Items of all items 
consume much time, we just consider the PFI of length-1 
patterns. 

Definition 1 (PFI). Given a length-1 pattern α, βi is a 
frequent item that appears in the prefix of α in some 
sequences. The counts(βi) is the number of sequences in 
which βi appears before α. If counts(βi)=support(α), then 
βi is one element of Prefix Frequent Items of α, denoted 
as PFI(α)={β1,…,βi,…, βk}.  
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Definition 2 (CountsPFI). The number of elements in 
PFI(α) is called CountsPFI(α). The sum of all 
CountsPFI(αi) is denoted as CountsPFI. 

The major cost of PrefixSpan is the construction of 
projected databases. We give two ways to improve: (1) 
before the projected databases are constructed, adding the 
pruning step. Do not scan projected database when the 
projection sequence number is less than min_sup; (2) do 
not generate and scan the projected databases to some 
specific sequential patterns. For example, given a pattern 
α, if PFI(α)={β1,…,βi,…, βk} is not null, then do not 
generate and scan the projected datasets when the 
prefixes belong to prefix set {(β1)(α), ..., (βk)(α)}. 
Generate the sequential patterns with regards to prefix (α), 
and at the same time generate the patterns with regards to 
prefix set {(β1)(α), ..., (βk)(α)}. For example, we know 
that item (1) belong to PFI(3), then we do not build 
projected database with regards to prefix (1)(3). We 
generate the patterns with regards to prefix (1)(3) until 
patterns with regards to prefix (3) generated, by adding 
item (1) to the beginning of patterns (3)(…) to generate 
(1)(3)(…). Therefore, our works aim to find out the 
PFI(αk) of all 1-length pattern αk. 

We can see that, large CountsPFI means more 
duplicated works in generating patterns. Therefore, we 
can reduce runtime and memory usage by avoiding these 
works.  

Definition 3 (FromPattern). If β belongs to Prefix 
Frequent Items of α, then β is a FromPattern of α, that is 
β∈FromPattern(α). If γ belongs to Prefix Frequent Items 
of β, then (γ)(β) is a FromPattern of α, that is 
(γ)(β)∈FromPattern(α). And so on, until no new Prefix 
Frequent Items are found. The FromPattern of α is 
denoted as FromPattern(α)={(β), (γ)(β), (ξ)(γ)(β), …}. 

Definition 4 (ToPattern). If α belongs to Prefix 
Frequent Items of β, then β is the ToPattern of α, so 
β∈ToPattern(α), denoted as ToPattern(α)={(β), …}. 

 
Figure 2.  The PFI-Graph of data set new_orleans 

PFI-Graph is a directed acyclic graph, and it records 
CountsPFI(α) as weight of each node α. Node in the 
graph is an item in sequential pattern which has 
FromPattern or ToPattern , as shown in Figure 2. The 
PFI-Graph of dataset new_orleans is shown in Figure 2, 
and the root of the graph is Φ. The weight of a node 
(denoted as α) is the CountsPFI(α), while its children 
nodes are items in ToPattern(α), and its parent nodes are 
items in FromPattern(α).  

 

Figure 3.  The FromPattern tree on data new_orleans 

Take node (63) in Figure 2 as an example. The PFI of 
item (63) are (157) and (158), that is PFI(63)= {(157), 
(158)}. The weight or CountsPFI(63) of node (63) is 3. 
Here,3 is understood as 2+1, while 2 refers to the item 
number in PFI(63) and 1 refers to the item number in 
PFI(158). Meanwhile, (158) is the parent of (63). There 
are 3 links pointing to node (63) in the graph, and they 
are 157-->63, 158-->63 and 157-->158-->63. So the 
FromPattern(63)={(157), (158), (157)(158)} and 
ToPattern(63)=null. Node (56) has FromPattern and 
ToPattern, the FromPattern(56)={(78), (208)} and 
ToPattern(56)={(170)}. The (170) is the most complex 
node in Figure 2, and PFI(170)={(78), (56), (208)}. 
There are 7 links pointing to node (170) in the graph: 7 is 
equal to 3+3+1, the first value 3 refers to the item number 
in PFI(170), the second value 3 refers to the item number 
in PFI(56) and value 1 refers to the item number in 
PFI(208). Seven links pointing to (170) are: 157-->170, 
56-->170, 208-->170, 157-->56 -->170, 157-->208-->170, 
208-->56-->=70, and 157-->208 -->56-->170. It is clear 
that the FromPattern(170)= {(157), (56), (208), (157)(56), 

(157)(208), (208)(56), (157)(208)(56)} and ToPattern 
(170)=null. Therefore, when we scan the projected 
databases of prefix (170) and generate some sequential 
patterns (170)(αi), we can generate some more patterns, 
such as: 

(157)(170)(αi), (56)(170)(αi), (208)(170)(αi),  
(157)(56)(170)(αi),  
(157)(208)(170)(αi),  
(208)(56)(170)(αi), 
(157)(208)(56)(170)(αi).  

Referring to the Figure 2, we can build a FromPattern 
tree on data new_orleans, as shown in Figure 3. The root 
node is Φ. Recursively, if (α) is a node in the tree, then its 
children are all nodes (α’) such that (α’)=(β)(α) and 
β∈FromPattern(α). 

Based on the concepts of PFI, FromPattern and 
ToPattern, algorithm Prefix Frequent Items Prefix- Span 
(PFI-PrefixSpan) can be described as follows. There are 
two works to do in the novel algorithm, the first one is to 
build the PFI-Graph, in order to find all the 
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FromPattern(α) and ToPattern(α) (α∈PFI-Graph). The 
second one is to generate sequential patterns. 

Algorithm PFI-PrefixSpan (PrefixSpan based on 
prefix frequent items) 

Input: A sequence database S, and the minimum 
support threshold min_sup. 
Output: The complete set of sequential patterns 
Method 1: Call PFI-PrefixSpan (S). 

The parameters S is the sequence database S. 
Steps: 

1. Scan S once, find all length-1 patterns α1, …, αN. 
2. Scan S again, find all PFI(αi) (i=1,…,N) and build 

PFI-Graph G. 
3. For each αi 
(a) Refer to G, find out ToPattern(αi) (i=1,…,N) and 

FromPattern(αi) (i=1,…,N). 
(b) Call PrefixSpan(αi, l, S|αi, ToPattern(αi), From-

Pattern(αi)). 
Method 2: Call PrefixSpan(α, l, S|α, ToPattern, From-
Pattern). 

The parameters are (a) α is a sequential pattern; (b) l is 
the length of α; and (c) S|α is the α-projected database; (d) 
when l=1, ToPattern is the ToPattern(α), otherwise 
ToPattern is null. (e) FromPattern is the FromPattern(α). 
Steps: 

1. Scan S|α once, find each frequent item, b. 
2. For each frequent item b,  
(a) append b to α to from a sequential pattern α’, and 

output a’; 
(b) If FromPattern(α)≠null.  
For each βi∈FromPattern(α), append βi to α’ to 

from sequential patterns αi’’, and output αi’’; 
(c) If b∈ToPattern(α), then stop, go to next b. 
3. For each α’, construct α’-projected database S|α’, 

and call PrefixSpan(a’, l+1, S|a’, null, FromPattern). 
There are two problems in the algorithm PFI-

PrefixSpan. The first one is if βi∈From Pattern(α) and 
γj∈FromPattern(βi), then it is needed to add all γj to αi’’. 
It is a chain that γj-->βi-->α’, and so on, until there is no 
new FromPattern in the chain. We can get the chain from 
the PFI-Graph G. The second one is the new algorithm 
reduce the runtime and memory usage of constructing 
projected database than PrefixSpan, but adding the 
additional consuming of building and searching PFI-
Graph. 

IV.  PERFORMANCE EVALUATION 

In this chapter, we provide two experimental results. 
The first one is using some synthetic datasets to compare 
the performance of PrefixSpan with physical projection, 
PrefixSpan with pseudo projection and PFI-PrefixSpan. 
The purpose is to verify the performance of the second 
and third algorithms are better than the first one. But the 
PFI number in these synthetic datasets is small. Then we 
use three real data sets which have dense and highly 
similar sequences to compare pseudo projection 
PrefixSpan with PFI-PrefixSpan, whereas these data sets 
have big PFI number.  

4.1 Test Environment and Data Sets 
The experiments are performed on a 2.1 GHZ CUP 

with 2GB memory, and running on Win7. All the 
algorithms were coded in Java language. In our 
performance study, we use two kinds of data sets:  
synthetic data sets and real data sets. The synthetic data 
sets are generated by a data generator similar in spirit to 
the IBM data generator designed for testing sequential 
pattern mining algorithms. The convention for the data 
sets is as follows: C1N0.1T8S8 means that the data set 
contains 1000 sequences and the number of different 
items is 100. The average number of items in a 
transaction is 8 and the average number of transactions in 
sequence is 8.  

Two real data sets new_york and new_orleans are from 
UCI[19], and the number of sequence and the number of 
average transactions in sequence are shown in Table 3. 
These files are the data underlying the Entree system.  

TABLE III.   
DATA SETS 

dataset #sequence #transactions/sequence

new_york 1200 8 
new_orleans 327 11 

4.2 Experimental Results 
Firstly, we conducte our experiments of three 

algorithms: (1) PrefixSpan with physical projection 
(abbreviated as Phy-PrefixSpan), (2) PrefixSpan with 
pseudo projection (abbreviated as Pseudo-PrefixSpan) and 
(3) PrefixSpan with Prefix-Frequent-Items (PFI-Prefix-
Span) on two synthetic datasets. 

The first test is on data set C1N0.1T8S8. The average 
transactions number in sequence is 8, and the different 
items is 100. The actual transactions number in sequence 
is 7, so the distinct item recurrence rate or density [14] 
m=average sequence length/different items =8/100=0.08 
(or 0.07).  

The memory usages of the three algorithms are shown 
in the Figure 4. The support thresholds are from 0.063 to 
0.075, and the CountsPFI are 2 and 3. It makes clear 
distinction among three algorithms, and the memory usage 
of Pseudo-PrefixSpan is about 38% lower than Phy-
PrefixSpan. Memory usage of PFI-PrefixSpan is 
significantly lower than the former two algorithms when 
min_sup is lower than 0.07. Figure 5 shows the processing 
time of the three algorithms at different support thresholds 
on data set C1N0.1T8S8. But the runtime of Pseudo-
PrefixSpan and PFI-PrefixSpan is higher than Phy-
PrefixSpan. The reason is that the time consumed for 
navigating from the pseudo location to physical location 
and build PFI-Graph is more than the time saved by using 
PFI-Graph. Figure 6 shows the distributions of frequent 
sequences, the length of frequent patterns is from 1 to 6 
and length 3 and 4 patterns are the highest. 
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Figure 4.  Memory usage of three algorithms on C1N0.1T8S8 

 
Figure 5.  Runtime of of three algorithms on data set C1N0.1T8S8 

 
Figure 6.  Distribution of frequent sequences of C1N0.1T8S8 

 
Figure 7.  Runtime of of three algorithms on C1N0.1T8S10 

 
Figure 8.  Memory usage of of three algorithms on C1N0.1T8S10 

 
Figure 9.  Distribution of frequent sequences of C1N0.1T8S10 

The second test is on the data set C1N0.1T8S10, which 
contains 1000 sequences and the different items is 100 
too. The average number of items in a transaction is 8 and 
the average number of transactions in a sequence is 10. 
The actual transactions number in sequence is 9, so the 
distinct item recurrence rate is 0.1 (or 0.09). It is denser 
than C1N0.1T8S8.  

Figure 7 shows the runtime of the three algorithms at 
support thresholds from 0.1 to 0.12, and the CountsPFI is 
4. On average, the runtime of Pseudo-PrefixSpan is about 
16% lower than Phy- PrefixSpan, and PFI-PrefixSpan is 
about 20% lower than the Phy-PrefixSpan. The memory 
usage is shown in Figure 8, and both of PFI-PrefixSpan 
and Pseudo-PrefixSpan are about 12% lower than Phy-
PrefixSpan. Figure 9 shows the distributions of frequent 
sequences. The length of frequent patterns is from 1 to 7, 
and length 4 pattern is the highest. 

It can be seen from the experimental results that, the 
memory usage of Pseudo-PrefixSpan and PFI-PrefixSpan 
are significantly lower than Phy- PrefixSpan. But the 
performance of Pseudo-Prefix- Span and PFI-PrefixSpan 
is not very different. The reason is the small CountsPFI 
of synthetic data sets. We also tried other data sets, such 
as CXN0.03S8T20, CXN0.05S8T20, CXN0.03S8T30 
and so on, but the CountsPFI is still less than 8, even 
when the sequence number meet the minimum support as 
low as 10. 

TABLE IV.   
SOME INFORMATION OF NEW_ORLEANS 

min_sup #patterns #CountsPFI 
0.13 246 7 
0.12 279 7 
0.11 366 9 
0.1 452 11 
0.09 536 11 
0.08 677 11 
0.07 949 14 

Secondly, we make experiments of Pseudo-PrefixSpan 
and PFI-PrefixSpan on three real sequence databases, in 
order to verify that PrefixSpan with PFI-Graph performs 
better than PrefixSpan. Both of these algorithms use 
pseudo projection. The character of these data sets is 
highly similar items, whereas the CountsPFI is big. 

The first test real data set is new_orleans, the number 
of sequence is 327 and the average number of 
transactions in a sequence is 11. There is one item of a 
transaction. As it is shown in Table 4, the CountsPFI is 
from 7 to 14 and ascending when the min_sup decreasing. 
Therefore, more duplicated work can be reduced with 
small min_sup.  

Figures 10 to 12 show the runtime, memory usage and 
frequent sequence length of PrefixSpan and PFI-
PrefixSpan on data set new_orleans. Figure 10 shows the 
runtime of two algorithms at different support thresholds, 
and the runtime of PFI- PrefixSpan is 13.1% lower than 
PrefixSpan. We can see that the distance between the two 
broken lines is almost steadily, therefore the advantages 
of the new algorithm is stable. The memory usage of two 
algorithms on new_orleans is shown in Figure 11. It is 
clear that the memory usage of PFI-PrefixSpan is reduced 
by 5.5% than PrefixSpan on average. When minimum 
support is 0.1, PFI-PrefixSpan reduces memory 
consumption by 10% than PrefixSpan. Figure 12 shows 
the distribution of frequent sequences of data set 
new_orleans, from which we can see that the length-3 
pattern is the largest number of frequent pattern, and the 3, 
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is about 27.3% (that is 3/11) of average sequence length 
11.  

From the Figures 10 to 12, we can assume that runtime 
and memory usage of PFI-PrefixSpan algorithm is lower 
than PrefixSpan when the minimum support is low. But if 
the minimum support is too low, the memory usage of 
PFI-PrefixSpan is bigger than PrefixSpan. For example, 
suppose the min_sup is 0.02, the number of sequences is 
7, and the CountsPFI grows up to 34. Runtime of PFI- 
PrefixSpan is about 13% lower than the PrefixSpan. But 
the memory usage of the new algorithm is 6% higher than 
the old one. The reason is that the memory consumed to 
store and search PFI-Graph is increasing too much.  

TABLE V.   
SOME INFORMATION OF NEW_YORK 

min_sup #patterns #CountsPFI 
0.06 138 10 
0.055 154 10 
0.05 197 10 
0.045 236 10 
0.04 283 10 
0.035 351 10 
0.03 495 11 

The second test is performed on the data set new_york. 
Sequence number of new_york is 1200, and average 
number of transactions in sequence is 8. Some 
information is shown in Table 5, the min_sup is from 
0.03 to 0.06 and the CountsPFI values are 10 and 11. 
When min_sup is 0.11, the CountsPFI is 9. Therefore, the 
CountsPFI is around 10 when min_sup less than 0.1. 

The runtime of PFI_PrefixSpan and PrefixSpan on data 
set new_york is shown in Figure 13. From this figure, we 
can see the average runtime of novel algorithm is about 
7% lower than PrefixSpan. The distance between the two 
broken lines is almost steady. Figure 14 shows that when 
the min_sup are 0.04 and 0.035, the memory usage of 
PFI-PrefixSpan are 12% and 11.2% lower than 
PrefixSpan. On average, the memory usage of novel 
algorithm is 7% lower than PrefixSpan. Figure 15 shows 
the distribution of frequent sequences of data set 
new_york. We can see that the length 2 and 3 patterns are 
the largest number in all frequent patterns, and the length 
2 is about 25% (that is 2/8) of average sequence length 8.  

From the experiment results on synthetic data sets and 
real datasets we conclude that:  

(1) PrefixSpan with pseudo projection algorithm uses 
lower memory usage than PrefixSpan with physical 
projection, especially in large sequence databases. 

(2) Compared with Pseudo-PrefixSpan and Phy- 
PrefixSpan, novel algorithm PFI-PrefixSpan based on 
PFI-Graph can reduce the memory usage and the runtime.  

(3) PFI-PrefixSpan applies to highly similar and dense 
database. 

(4) It is difficult to build PFI-Graph in large sequence 
database, because the PFI is small and it only exists in 
very low minimum support. For example, when the 
min_sup=0.0005, the CountsPFI of data sets 
C10N0.1T2.5S10, C10N0.1T8S8, C10N0.1T8 S10, 

C10N0.05T8S8, C100N0.1T2.5S10, C100N0.1 T8S8 is 0. 
When the min_sup is 0.0001 and the number of sequence 
is 10, the CountsPFI of C100N0.1T2.5S10 and 
C100N0.1T8S8 is only 3. 
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Figure 10.  Performance of the algorithms on data set new_orleans 
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Figure 11.  Memory usage comparison among the algorithms on data set 
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Figure 12.  Distribution of frequent sequences of new_orleans 
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Figure 13.  Performance of the algorithms on data set new_york 

 
Figure 14.  Memory usage comparison among the algorithms on data set 
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Figure 15.  Distribution of frequent sequences of new_york 

Ⅴ.  CONCLUSION 

In order to improve the efficiency of sequential pattern 
mining on dense and highly similar sequence database, a 
novel algorithm PFI-PrefixSpan is provided in this paper. 
It is based on Prefix Frequent Items Graph (PFI-Graph) 
and it works quite well in the experiments. The memory 
usage and runtime of novel algorithm are about 25% and 
20% less than PrefixSpan with physical projection (Phy-
PrefixSpan) on average, respectively. It reduces about 
10% runtime and 6% memory usage than PrefixSpan 
with pseudo projection (Pseudo-PrefixSpan) on given real 
datasets, respectively.  

The novel algorithm is based on the Prefix Frequent 
Items (PFI) and PFI-Graph, and it checks weather the 
efforts for building a projected database is duplicated 
ones to others. So, the main idea of the novel algorithm is 
to avoid the duplicated projected database.  

Some experiments in this paper verify that this 
algorithm is suitable for highly similar and dense 
sequence databases. But it is difficult to build PFI-Graph 
in large and sparse database. 
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