JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

2073

The Design and Implementation of Unified
Invoking Component Based on Web Services
Framework

Wenpeng Su®, Zhonghua Yan®"*, Chenghui Liang®
@ School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
Email: conanswp@163.com, liangchenghui @sdu.edu.cn
b Integrated Electronic Systems Lab Co. Ltd., Jinan 250100, China
Email: yanzhonghua@ieslab.cn

Abstract— Web Services is a platform which enables the
applications interoperate on the Internet. It is widely used
in designing and building systems in open and dynamic
distributed environments such as EAI (Enterprise Appli-
cation Integration) and B2B (Business to Business). As the
development of framework technology, it is convenient and
standardized to use framework to develop web applications.
For Web Services, the frameworks Axis, Axis2, XFire
and CXF are widely used. By the performance testing of
the four frameworks, this paper not only introduces the
four framework but also analyzes the differences of the
four frameworks, and then makes some suggestions for
developers to choose the appropriate one. The framework
can simplify the development process and decrease the
development time. However, because of the differences of
the frameworks, the interoperation between different web
service’s server and client may cause incompatible prob-
lems. This paper analyzes the reasons of this incompatible
problems and finally presents a mechanism based on unified
invoking component to solve this problems. By parsing and
repacking the SOAP messages, the incompatible problems
between client and server can be solved successfully.

Index Terms— Web Services, WSDL, SOA, performance
testing, unified invoking component, framework

I. INTRODUCTION

S the information technology develops constantly
and the capability of the Internet improves gradually,
more and more application systems are established on
Internet. Web Services is a software component inde-
pendent from platform and realization, which enables
the applications interoperate on the Internet and publish,
discover and invoke services through Web. Web Services
is an implementation of SOA (Service Oriented Archi-
tecture) and can compose different units of application
programs through neutral interfaces in order to realize
loose coupling between different applications [1]. By
using the standard protocols such as XML, SOAP, UDDI,
and WSDL, Web Services has good encapsulation and
strong integration capabilities and is widely used in the
area of EAI (Enterprise Application Integration) and B2B
(Business to Business).
In order to simplify and standardize the development
process, frameworks are widely used in all field of soft-
ware. For example, it’s very convenient to use Hibernate

*Corresponding author, Email: yanzhonghua@ieslab.cn.

©2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.8.2073-2079

and Spring for web application developers. In the field of
Web Services, there are four famous frameworks called
Axis, Axis2, XFire and CXF. All of the frameworks en-
capsulate the low-level information and provide powerful
development APIs for developers, which can really reduce
the development difficulty and save development time.

The QoS (Quality of Service) refers to resource reser-
vation control mechanisms, and it is an ability to provide
different priority to different applications, or to guarantee
a certain level of performance to a data flow [2]. QoS
can be objective (encompassing reliability, availability,
and request-to-response time) or subjective (focusing on
user experience) [3]. For web service, it’s necessary to
evaluate the performance of the service [4]. Performance
testing is a generic term that can refer to many different
types of performance-related testing such as performance
test, load test, stress test and capacity test. All of them are
executed to determine how a system performs in terms of
responsiveness and stability under a particular workload
[5] [6]. All the four Web Services frameworks provide
high quality of service and reliable message transmission.
Besides, Axis2 and CXF support standards such as WS-
Policy, WS-Security and WS-Reliable Messaging. This
paper will analyze the performance of service based on
the four frameworks in order to test the performance
of the framework. Finally, the result of the performance
testing will be given and suggestions will be provided for
developers in order to help them to choose the appropriate
framework.

However, the interoperation between different service’s
server and client may cause incompatible problems. For
example, the client developed by Axis2 can not always
invoke the web service based on CXF directly. This
incompatible problems decrease the generality of the web
service. WSDL is used to describe web service [7] [8].
By some targeted test, this paper analyzes the WSDL files
produced by different frameworks on the same service,
and finally gets the conclusions that the reasons of the
incompatible problems are the differences of WSDL file.
For the same service, different frameworks generate dif-
ferent WSDL files. The differences will be introduced in
this paper. Like in [9], by analyzing the WSDL file’s
differences and repackaging the SOAP messages, this

2074

paper presents a mechanism based on unified invoking
component. By deploying a unified invoking component
between the client and server, the incompatible problems
can be solved successfully.

The rest of this paper is organized as follows. Section
II provides an overview of Web Services technology and
summarizes the main technology used in Web Services.
In section III, the architecture and use method of the four
frameworks will be introduced. Then, the performance
testing of the four frameworks will be introduced in
section IV and the WSDL differences of different frame-
works will be presented in section V. In section VI, this
paper will introduce the design and implementation of
the unified invoking component. Finally, conclusions are
made in section VIIL.

II. WEB SERVICES TECHNOLOGY

Software delivery models are changing constantly: from
standalone applications to client-server architecture, then
from browser-server architecture to service oriented archi-
tecture. SOA is a software design architecture which con-
nects different units of application programs through good
defined interfaces. Interfaces are defined in neutral ways
in order to realize loose coupling between services.The
SOA architecture makes sure the software can select and
invoke components dynamically. The architecture of SOA
and the interoperation of each components are shown in
Fig. 1.

Web Services is an implementation of SOA and it aims
to simplify the interoperation among different systems by
defining a standardized mechanism to describe, locate,
and communicate with applications on the web. In [10],
the authors divided the Web Services architecture into
three areas - communication protocols, service descrip-
tions, and service discovery.

A. Communication protocols

In order to communicate with applications in differ-
ent platform, the communication mechanism must be
platform-independent, secure and as lightweight as possi-
ble. SOAP (Simple Object Access Protocol) is a protocol
specification for exchanging structured information in the
implementation of Web Services. It relies on XML for
its message format, HTTP or SMTP for its Application
Layer protocols and RPC for its call method [11]. SOAP
is independent from hardware, platform and programming
language. SOAP messages are composed by envelope
and attachments. Envelope is made up by header, body
and fault. The body contains the request and response
messages.

B. Service descriptions

WSDL (Web Services Description Language) is a
XML-based interface description language which is used
for describing the functionality ordered by Web Services.
WSDL defines a service’s abstract description in terms of
messages exchanged in a service interaction. It explains

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

Service ‘Consumcr ‘ Provider ‘ Register
Provider]
1.Publish
Publish Bind service.
WSDL 3 Find 2.Register
services. service.
Service Service SBind 4.Set up

Register

Consumer

services.

© o oproxy. |

Figure 1. SOA architecture and component interoperation.

—

WSDL Definition 1

-isContainer 1
0.* 1 57 Types
: 1 —
Service 1 1 | -isContainer
-isContainer
0..%
1 0. Data Type
0..% 1 P———
- Message -simmplelype
Port - - -complexType
-isContainer|
-binding
1* 1 !
1 { - Part
0..*
1 l()i* 1 -name
-element
Binding |, « Port Type Operation
-portType | |-isContainer -message
1 *
1? e

Figure 2. The Structure of WSDL document.

what Web Services do, where it is and how to access
it [12]. A WSDL document is defined by a service
provider and used by service consumers. The structure
of WSDL document is shown in Fig. 2. It is divided by
two parts: the interface document and the implementation
document. The interface document is a container which is
used to describe the abstract service. It is independent of
implementation. The implementation document describes
the details of the concrete service and deployment infor-
mation such as part, operation and binding.

C. Service discovery

UDDI (Universal Descriptions, Discovery, and Integra-
tion) is a platform-independent, XML-based registry. It
provides a mechanism to register and find web service
applications [13]. By UDDI, the services can be resisted
and the consumer can find and invoke services [14]. The
transmission process of the UDDI message is shown in
Fig. 3. By this process, the client can obtain the service
methods and invoke the service.

III. WEB SERVICES FRAMEWORK

Web Services frameworks such as Axis, Axis2, XFire
and CXF are widely used in the development of web
service. All of them provide well-defined framework and
easy-use methods in order to make the development of
web service easy and normalized.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

UDDI registry
HTTP |[—*» SOAP
Client SCIVer g . server
Ly
UPDISOAP Process UDDI API
request '/’;’\PIS request
UDDI SOAP |, 4
response :
Registry data
e e
Request message ‘ ‘ Response message

Figure 3. Transmission process of UDDI message.

A. Axis

Axis is the abbreviation of Apache Extensible Interac-
tion System. It is essentially a SOAP engine framework
for constructing SOAP processors [15]. Axis framework
achieves the interoperability of SOAP messages between
server and client. Axis supports standard SOAP protocol
and offers tools for monitoring TCP/IP packages and
convert tool between WSDL and Java code, such as
WSDL2Java and Java2WSDL. It provides two approaches
to publish web service: Instant Deployment and Custom
Deployment.

B. Axis2

Axis2 is an engine of Web Services, SOAP and WSDL.
It is not developed on the basis of Axis but is re-
designed with new architecture. This new architecture
is more flexible, efficient, and configurable in compari-
son to Axis’s architecture. What’s more, Axis2 is built
on Apache AXIOM, a new high performed, pull-based
XML object model [16]. It uses its own object mode
and StAX (Streaming API for XML) parsing to achieve
significantly greater speed. Compared with Axis, Axis2
is more efficient, more modular and more XML-oriented.
Moreover, there are two implementations of the Apache
Axis2 Web services engine - Apache Axis2 for Java and
Apache Axis2 for C++.

C. XFire

Codehaus XFire is the next-generation Java SOAP
framework. The core of XFire is light message processing
mode based on StAX which is used to exchange messages
with SOAP message. XFire supports different types of
band mechanism, container and transport protocol. It also
supports SOAP, WSDL, WS-I Basic Profile, WSAddress-
ing, WS-Security, supports Spring framework and the
code generation of server and client [17].

D. CXF

CXF is the continuation of XFire project and is re-
garded as XFire 2.0. CXF helps us build and develop

©2014 ACADEMY PUBLISHER

2075

Client Engine

Server Engine

=)

Target
Service

=
g
5
2
=
o
<
=
=
2
9}

Response

Figure 4. Architecture of Web Services frameworks.

Define service
interfaces

| l *

Implement interfaces
and add business logic

— Generate WSDL files — Publish web service

Generate client — — — — —

Figure 5. Development procedure of Web Services frameworks.

services using frontend programming APIs, like JAX-WS
and JAX-RS. CXF supports both contract first develop-
ment with WSDL and code first development starting
from Java [18]. Besides, CXF and Spring have been
integrated well, which making the developments of Web
Services more convenient.

Although the implementation and the performance of
the four frameworks are different, the architecture and the
development procedure of the four frameworks are mainly
the same. The architecture is shown in Fig. 4. The whole
framework is made by two parts. One is the client engine,
the other is server engine. The client engine is used by
client application to send requests and receive responses.
The function of the server engine is to parse and pack the
SOAP messages, then invoke the target service and return
response messages [19]. The two parts are connected by
transport which can be seen as a message dispatcher.
The development procedure of the four frameworks is
shown in Fig. 5. Firstly, we define service interfaces,
including the service name and parameters and so on.
Then, the WSDL files can be generated by the tool which
is provided by the frameworks. And we should implement
the interfaces and add business logic to complete the
service on the server. As to the client, it can be auto-
generated by the framework or written by developers.
Finally, the client can call the service on the server
through Internet.

The framework is powerful and can really simplify the
development procedure. But it is a troublesome thing to
choose which frameworks to use. The performance testing
of the four frameworks may give some suggestions.

IV. THE PERFORMANCE TESTING OF THE FOUR
FRAMEWORKS

According to the development procedure mentioned
above, we develop four web services of the same function
based on the four frameworks. The service’s class diagram
is shown in Fig. 6. It contains two methods: testPrimitive

2076

and testReference. The testPrimitive method is used to
test the primitive types such as byte, double and so on.
The testReference method is used to test the reference
types such as class, interface and arrays. Next, we publish
the service as web service by Axis, Axis2, XFire and
CXF, and generate clients separately. We use the client
to call the service and test the performance of the four
frameworks. The Apache JMeter is open source software
which is designed to load test functional behavior and
measure performance. It can be used to simulate a heavy
load on a server, network or object to test its strength
or to analyze overall performance under different load
types. We can use it to make a graphical analysis of the
performance of our web services under heavy concurrent
load. There are some important indexes than can be used
to evaluate the performance testing.

1) Average time is the average response time of each
request. It is an index which can be used to evaluate
the response speed.

2) 90% Line means that 90% of the samples take no
more than this time. The remaining samples take
at least as long as the value. This is a standard
statistical measure.

3) Throughput means the quantity of the successful
request per second. It is supposed to represent the
load on the server.

4) Error% is equal the value which is calculated by
the number of the error requests divided by the total
requests. It can be used to measure the stability of
the service.

The version of the framework is shown in Table I. In
JMeter, thread is used to simulate the users who try to
assess the server and invoke the service. We test 10 times
for each frameworks, with the threads grows from 1000
to 5500 in order to simulate the growth of the workload.
The result of the performance testing is shown in Fig. 7.
The horizontal axis represents the threads and the vertical
axis represents average time, 90% line, throughput and
error%. The average time shows that the Axis2 and CXF
do better than Axis and XFire, which means that they have
a quickly response time. 90% line shows that Axis2 and
CXF have a high stability. Compare to Axis and XFire,
Axis2 and CXF are more powerful in throughput. Finally,
the four frameworks do well in dealing with errors in low
thread. The performance testing of the four framework
shows that Axis2 and CXF are better than Axis and CXF.
This is no difficult to understand. Because of Axis2 using
the Stax to parse XML, Axis2 is about 2 times faster
than Axis. CXF is designed based on XFire and adopt ad-
vanced technology. We can also see that CXF performs as
well as Axis2. It’s really difficult to make a decision from
the performance testing result. But in other aspect, Axis2
provide many visual tools and the service is deployed in
servlet containers. So, it is easy and convenient to manage
and configure the services. Besides, Axis support C++
and Java. CXF supports Spring, developing web service
by configure XML, this makes it easy to develop web
service and can integrate with other framework. This may

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

TABLE 1L
TEST ENVIRONMENT

Components | JDK | JRE | Axis | Axis2 | XFire | CXF
Version 1.6 6 1.4 1.54 1.2.6 | 251
IService
ServiceImpl

+testPrimitive(byte, char, int, short, long, float, double, boolean)
+testReference(Integer, List, Map, Integer[])

Figure 6. Class diagram of the service.

give some suggestions for our developers when choosing
web service framework.

V. INCOMPATIBLE PROBLEMS BETWEEN DIFFERENT
FRAMEWORK’S SERVER AND CLIENT

There are two ways to generate web service client.
First, by using the tools provided by the frameworks to
parsing the WSDL files, the client can be auto-generated.
It is a fast way and there is no problem when we use tools
to parse WSDL generated by the same framework. For
example, we publish web service by Axis2 and generate
WSDL files. Then we use Axis2’s tools to parse the
WSDL files in order to generate client. There is no
doubt that the client can call the web service successfully.
But, what will happen if we use CXF’s client tools to
parse WSDL files which is generated by Axis? This may
cause problems. Because of the differences of the four
frameworks, the WSDL files of the same service are
not the same. We compare the WSDL files generated
by the four frameworks of the same service and get the
differences in Table II. The differences include three parts.

1) Target namespace is the concept in
XML schema. In Axis’s WSDL files,
target namespace follows the format of

“http://HostName:PortName/services+ServicesName”.

HostName, PortName and ServicesName are
produced according to the server’s hostname,
port and the name of the service. For example,
in this test, the target namespace of Axis is
“http://localhost:8080/services/Service”. Besides,
in Axis2 and XFire, the target namespace are
“http://server” while in CXF the target namespace
is “http://server/”, with a slash added.

2) The WSDL produced by Axis does not use schema
files to restrict WSDL files. Data types are defined
and used directly in the WSDL files. However,
Axis2, XFire and CXF all use schema files to
restrict WSDL files and quote schema files by
the label “wsdl:types”. The definition and use of
the data types is separated, which have a good
flexibility.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

Average Time

35

301

251

201

ms

15

101
S5t ,\//
_—

0 . , .
0 1000 2000 3000 4000 5000 6000
—*— Axis ™ Axis2 XFire CXF ‘
Throughput
250
200} _n
"
2 1501
8
=
g
= 100
——0/
50~
ot
0 1000 2000 3000 4000 5000 6000
—— Axis ™ Axis2 XFire CXF

2077

%90Line
80
70
60
50
172}
g 401
301
201
10
- R ’Y‘/“_&_/I—l/‘
0 | | . . .
0 1000 2000 3000 4000 5000 6000
—— Axis ™ Axis2 XFire CXF ‘
Error
0.05%
0.04%
0.04% 1
0.03% 1
0.03% 1
0.02% 1
0.02% -
0.01%t /
0.01%t /‘/
et e
0.00% fe——n— !
0 1000 2000 3000 4000 5000 6000
‘ —— Axis ™ Axis2 XFire CXF

Figure 7. Results of the performance testing of different Web Services frameworks.

3) The WSDL labels, as is shown in Fig. 2, vary
from framework to framework. Message label is
used to define the data type. Axis uses the data
types directly by the property “Name”. However,
Axis2, XFire and CXF all quote the data types
defined in the external schema files by the label
“Element”. The label “portType” is made up by a
group of abstract operations and relevant messages.
In Axis and CXF, the content of this label is the
name of the web service. But in Axis2 and XFire,
the contents of this label conform to the rule of
“ServiceName+PortType”. The label “Service” is
used to describe the interfaces of the Web Services.
In Axis and CXF, the contents of this label follow
the format of “ServiceName+Service”. However, in
Axis2 and XFire the content of this label is the
name of the web service.

Because of the differences above, not all the clients
generated by the four frameworks can call the service
successfully. So, we can use the second way to generate
web service client. We write the client manually by
using the client APIs provided by the frameworks. In this
way, developers should parse the WSDL files and extract

©2014 ACADEMY PUBLISHER

parameters like target namespace, method name and so
on. It is time-consuming and easy to make mistake. So, we
want to deploy an unified invoking component to call the
services based on different frameworks in spite of which
client we use. By this component, we can use framework’s
tools to generate client in order to save development time,
and at the same time, the incompatibility existed in the
web service client can be eliminated.

VI. DESIGN OF THE UNIFIED INVOKING COMPONENT

Through the analysis above, we know that the WSDL
differences produced by different frameworks are the rea-
sons of the incompatibility exist in different web service
client. To solve this problem, we can deploy a unified
invoking component in the client. The architecture of the
component is shown in Fig. 8. It works like a proxy server.
The main function of the unified invoking component is
to receive SOAP request messages from different clients
and then repack the SOAP messages in order to call the
service on the server. After the call processes succeed,
the component receives the result SOAP messages and
transmits the results to client. By this mechanism, the
diversity among different frameworks can be eliminated.

2078

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

TABLE II.
THE WSDL DIFFERENCES ON THE SAME SERVICE.

WSDL difference

Web Services framework

Axis Axis2 | XFire CXF
Target Namespace | http://HostName:PortName/+axis/services+ServicesName http://server http://server/
Schema None XML Schema
Message Use directly by the property Name Use schema files by wsdl:types
PortType ServiceName ServiceName+PortType ServiceName
Service ServiceName+Service ServiceName ServiceName+Service

The unified invoking component is made up by
three modules: Transport, Client-to-Server and Server-to-
Client. The functions of each module are as following:

1) Transport is an injection point. It used to receive
request messages of different framework client and
transmit the response messages to server according
to the URL of the service. It works like a two-way
message pipe which is used to dispatch message.

2) The module Client-to-Server is made up by three
parts, SOAP parser, WSDL parser and SOAP wrap-
per. The SOAP parser is used to parse the request
messages and extract the message such as the
location of the web service, method name, and
request parameters. The function of WSDL parser
is to parse the WSDL files of the target web service
and generate requests SOAP message that meet the
requirement. Finally, the SOAP wrapper packs the
SOAP messages with the parameters extracted from
the SOAP parser and send them to the server.

3) The module Server-to-Client is used to parse the
respond messages from the server and transmit
the SOAP message to client. It is made up by
SOAP parser and SOAP wrapper. Firstly, the SOAP
parser receives the response message and extracts
the result. Then, the SOAP wrapper packs the SOAP
message with this result and sends it to the client.
The procedure of the unified invoking component is
shown in Fig. 9. The client calls the web service via
the unified invoking component which acts like a
proxy server. Then the component parses the SOAP
message and extracts parameters like the location
of the web service, method name and parameters
and so on. The WSDL parser analyzes the WSDL
and packs a correct SOAP request messages with
the parameters extracted from client request. Then,
the service can be invoked successfully and return
a SOAP response. The component receives the
response and extracts the result. Finally, the result
will be repacked and transmitted to the client. By
the analysis of the WSDL and repackage of SOAP
messages, the requests raised by different client
can satisfy the WSDL requests of different server.
Therefore, client can access different server. On
the base of the existing web service client, the
unified invoking component solves the incompatible
problems caused by different client call the service
and maintains the unity of the web service.

The unified invoking component is implemented by

Java language. The WSDL parser, which is the most

©2014 ACADEMY PUBLISHER

Unified invoking component

Client-to-Server [

Axis Client
[SOAP 'WSDL SOAP I
Parser Parser ‘Wrapper

Axis2 Client

¢
|
|
Y

Axis Server

@
&

Juduodwo)) syrodsuer]

Axis2 Se

3

Server-to-Client

-
ire Cli SOAP SOAP
XFire Client || e
Wrapper Parser)“ XFire Server
e

CXF Client

Juouodwoy) spodsuer],

o
&

)

€
|
|
O

CXF Server

Figure 8. Architecture of the unified invoking component.

server

client ‘ unified invoking component
7

i 1.Call the web service. 1

! i

D 2.Parse the SOAP message and extract parameters.

3.Fetch the WSDL files from server. ‘
4.Return WSDL files.

D 5.Generate correct SOAP request. !

1 6.Call the web service. :
7.Return response.

e

8.Generate correct response SOAP messag
|

|
9.Send the response to client.
—

Figure 9. The corresponding procedure between server and client.

important part of the component, is completed by wsdl4j
package. It is mainly used to parse the WSDL files and
extract service parameters like method name, endpoint
and request parameters and so on. Request SOAP mes-
sages from the client are catched and parsed to extract the
request parameters. After extracting the service parame-
ters, the correct request SOAP messages are generated and
sent to the server in order to invoke the service by RPC.
Finally, the server returns the responses and the client
extracts the results from the response SOAP messages.

VII. CONCLUSIONS

After experiencing the stage of procedure oriented,
object oriented and component oriented, service oriented
is now prevalent in the development of software. And Web
Services play an important role in SOA. It is platform
independent and widely used in EAI and B2B. Web
Services frameworks such as Axis, Axis2, XFire and CXF
support well-designed architecture and easy used APIs
which make the development of web service standard

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

and simple. However, there exist incompatible problems
when different clients call the service. By a performance
testing of the four frameworks, this paper analyzed the
performance and gave some suggestions for developers
to choose the appropriate framework. As regards to the
incompatible problem, this paper recommended unified
invoking component to solve this problem. The unified
invoking component, which is based on the existing client,
analyzed the WSDL of the service by WSDL parser and
extract service parameters. Then, by the SOAP parser and
SOAP wrapper, correct SOAP messages, which contain
client requests, were generated and sent to the server.
Finally, the results were extracted from the responses by
SOAP parser. By the unified invoking component, the
incompatible problems between different client and server
can be solved successfully.

ACKNOWLEDGMENT

The authors would like to thank Integrated Electronic
Systems Lab Co. Ltd. for providing the research environ-
ment and resources.

REFERENCES

[1] B. Benatallah, F. Casati and F. Toumani, “Web services
conversation modeling: A Cornerstone for E-Business Au-
tomation,” IEEE Internet Computing, vol. 8, no. 1, pp.
46-53, 2004.

[2] M. A. Serhani and A. Benharref, “Enforcing Quality of
Services within Web Services Communities,” Journal of
Software, vol. 6, no. 4, pp. 554-563, 2011.

[3] L. Zh. Zeng, B. Benatallah, A.H.H Ngu, M. Dumas,
J. Kalagnanam and H. Chang, “QoS-aware middleware
for Web services composition,” IEEE Transactions on
Software Engineering, vol. 30, no. 5, pp. 311-327, 2004.

[4] X. Y. Bai, C. C. Zhao and G. L. Dai, “Research on Web
Service Testing,” Computer Science, vol. 33, no. 2, pp.252-
256, 2006.

[5] C. A. Sun, G. Wang, B. H. Mu, H. Liu, Z. S. Wang,
and T. Y. Chen, “Metamorphic testing for Web Services:
framework and a case study,” in Proc. IEEE Int. Conf. Web
Services, 2011, pp. 283-290.

[6] Microsoft Corporation, Performance Testing Guidance for
Web Applications, Microsoft Press, 2007.

[7] P. Sripairojthikoon and T. Senivongse, “Concept-based
readability of web services descriptions,” in Proc. Int.
Conf. Advanced Communication Technology, 2013, pp.
853-858.

[8] Y. Jarma, K. Boloor, M.D. De Amorim, Y. Viniotis, and
R.D. Callaway, “Dynamic Service Contract Enforcement
in Service-Oriented Networks,” IEEE Transactions on Ser-
vices Computing, vol. 6, no. 1, pp. 130-142, 2013.

[9] S. Benbernou and M. S. Hacid, “Dynamic Web Service
Calls for Data Integration,” Journal of Software, vol. 1,
no. 1, pp. 1-10, 2006.

[10] E. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi and
S. Weerawarana, “Unraveling the Web services web: an
introduction to SOAP, WSDL, and UDDI,” IEEE Internet
Computing, vol. 6, no. 2, pp. 86-93, 2002.

[11] B. Li, “Research and Application of SOA Standards in the
Integration on Web Services,” Education Technology and
Computer Science, vol. 2, no. 1, pp. 492-495, 2010.

[12] S. Graham, Building Web Services with Java: Mading
Sense of XML, SOAP, WSDL and UDDI, China Machine
Press, Beijing, 2003.

©2014 ACADEMY PUBLISHER

2079

[13] K. Sivashanmugam, K. Verma and A. Sheth, “Discovery
of Web services in a federated registry environment,” in
Proc. IEEE Int. Conf. Web Services, 2004, pp. 270-278.

[14] M. Varguez-Moo, F. Moo-Mena and V. Uc-Cetina, “Use
of Classification Algorithms for Semantic Web Services
Discovery,” Journal of Software, vol. 8, no. 7, pp. 1810-
1814, 2013.

[15] “Apache:Axis,” http://ws.apache.org/axis/.

[16] “Apache:Axis2,” http://axis.apache.org/axis2/java/core/.

[17] “Codehaus:XFire,” http://xfire.codehaus.org.

[18] “Apache:CXF,” http://cxf.apache.org.

[19] Zh. Q. He, L. E. Wu, H. G. Lai and Zh. Hong, “Semantics-
based Access Control Approach for Web Service,” Journal
of Software, vol. 6, no. 6, pp. 1152-1161, 2011.

Wenpeng Su was born in Shandong province, China, in 1988.
He received the B.S. degree in electronic information science
and technology from Shandong University, Weihai, China in
2011. Now he is pursuing his M.E. degree in circuits and
systems in Shandong University, Weihai, China. His research
fields are mainly intelligent measurement and control system.

Zhonghua Yan was born in Zhejiang province, China in 1966.
He received the B.S. degree from Shandong University, China,
in 1989. Now he is the professor of School of Mechanical,
Electrical and Information Engineering, Shandong University,
China and the vice chairman of Integrated Electronic Systems
Lab Co. Ltd., Jinan, China. And he also is an expert who
enjoys the State Council special subsidy. He has been engaged
in research, development and engineering service work of power
dispatching control center system since 1988.

Chenghui Liang was born in Shandong province, China in
1972. He received the B.S. degree in intelligent measurement
and control system from Shandong University, China. Now he
is a lecturer in the School of Mechanical, Electrical and Infor-
mation Engineering, Shandong University, Weihai, China. His
research fields are mainly object-oriented technology, distributed
systems analysis and design and IEC61979/61968.

